
�

Factoring Large Numbers Factoring Large Numbers
with the TWIRL Devicewith the TWIRL Device

Adi Shamir, Eran TromerAdi Shamir, Eran Tromer

�

Bicycle chain sieve [D. H. Lehmer, 1928]Bicycle chain sieve [D. H. Lehmer, 1928]

�

The Number Field Sieve
Integer Factorization Algorithm

• Best algorithm known for factoring large
integers.

• Subexponential time, subexponential space.

• Successfully factored a 512-bit RSA key in
1999 (hundreds of workstations running for
many months).

• Record: 530-bit integer factored in 2003.

�

NFS: Main steps
Matrix step:

Find a linear
dependency among the
numbers found.

Relation collection
(sieving) step:
Find many numbers
satisfying a certain (rare)
property.

�

NFS: Main steps

Cost dramatically
reduced by
[Bernstein 2001]
followed by [LSTT 2002]
and [GS 2003].

This work

Matrix step:

Find a linear
dependency among the
numbers found.

Relation collection
(sieving) step:
Find many numbers
satisfying a certain (rare)
property.

�

Cost of sieving for RSA-1024 in 1 year

• Traditional PC-based: [Silverman 2000]

100M PCs with 170GB RAM each: $5×1012

• TWINKLE: [Lenstra,Shamir 2000][Silverman 2000]*

3.5M TWINKLEs and 14M PCs: ~ $1011

• Mesh-based sieving [Geiselmann,Steinwandt 2002]*

Millions of devices, $1011 to $1010 (if at all?)
Multi-wafer design – feasible?

• Our design: $10M using standard silicon
technology (0.13um, 1GHz).

�

The Sieving Problem
Input: a set of arithmetic progressions. Each
progression has a prime interval p and value logp.

OOOOOOOOOOOO

OOOOOOOOO

OOOOO

OOO

OOO

Output: indices where the sum of values exceeds a
threshold.

�

1024-bit NFS sieving parameters

• Total number of indices to test: 3×1023.

• Each index should be tested against all
primes up to 3.5×109.

�

Three ways to sieve your numbers...

OOOOOOOOO3

19
O

O

20

O

21
O

22

O

23
O

24

O

1817161514131211109876543210
OOOOOOOOO2

OOOO5
OO7

OO11
O13

O17
O19

O23
29

O31
37

O41

pr
im

es

indices (� values)

��

T
im

e

OOOOOOOOO3

19
O

O

20

O

21
O

22

O

23
O

24

O

1817161514131211109876543210
OOOOOOOOO2

OOOO5
OO7

OO11
O13

O17
O19

O23
29

O31
37

O41

Memory

One contribution per clock cycle.
PC-based sieving, à la Eratosthenes

276–194 BC

� �

C
o

u
n

te
rs

TWINKLE: time-space reversal

OOOOOOOOO3

19
O

O

20

O

21
O

22

O

23
O

24

O

1817161514131211109876543210
OOOOOOOOO2

OOOO5
OO7

OO11
O13

O17
O19

O23
29

O31
37

O41

Time

One index handled at each clock cycle.The Weizmann
Institute Key

Locating Engine

[Shamir 99]

� �

V
ar

io
u

s
ci

rc
u

it
s

TWIRL: compressed time

OOOOOOOOO3

19
O

O

20

O

21
O

22

O

23
O

24

O

1817161514131211109876543210
OOOOOOOOO2

OOOO5
OO7

OO11
O13

O17
O19

O23
29

O31
37

O41

Time

s=5 indices handled at each clock cycle. (real: s=32768)The Weizmann
Institute Relation

Locator

� �

0

1

2

3

Parallelization in TWIRL
TWINKLE-like

pipeline
a � ���

�
�

�
� …

� �

Parallelization in TWIRL
TWINKLE-like

pipeline Simple parallelization with factor s
a � ��� s�

�

s� …
TWIRL with parallelization factor s

a � ��� s�
�

s� …a � ���
�
�

�
� …

� �

Example (simplified): handling large primes
• Each prime makes a contribution once per 10,000’s of clock

cycles (after time compression); inbetween, it’s merely
stored compactly in DRAM.

• Each memory+processor unit handles 10,000’s of
progressions. It computes and sends contributions across
the bus, where they are added at just the right time. Timing
is critical.

Memory

P
ro

ce
ss

or

Memory

P
ro

ce
ss

or

� �

Handling large primes (cont.)

Memory

P
ro

ce
ss

or

� �

Implementing a priority queue of events
• The memory contains a list of events of the form (p �,a �),

meaning “a progression with interval p � will make a
contribution to index a �”. Goal: implement a priority queue.

1. Read next event (p �,a �).

2. Send a log p � contribution to
line a � (m od s) of the pipeline.

3. Update a �←a �+p �

4. Save the new event (p �,a �) to the memory location that
will be read just before index a � passes through the
pipeline.

• To handle collisions, slacks and logic are added.

• The list is ordered by increasing a �.
• At each clock cycle:

� �

Handling large primes (cont.)
• The memory used by past events can be reused.
• Think of the processor as rotating around the cyclic

memory:

P
ro

ce
ss

or

� �

Handling large primes (cont.)
• The memory used by past events can be reused.
• Think of the processor as rotating around the cyclic

memory:

• By assigning similarly-sized primes to the same processor
(+ appropriate choice of parameters), we guarantee that
new events are always written just behind the read head.

• There is a tiny (1:1000) window of activity which is “twirling”
around the memory bank. It is handled by an SRAM-based
cache. The bulk of storage is handled in compact DRAM.

P
ro

ce
ss

or

��

Rational vs. algebraic sieves

• In fact, we need to perform two
sieves: rational (expensive) and
algebraic (even more expensive).

• We are interested only in indices
which pass both sieves.

• We can use the results of the
rational sieve to greatly reduce the
cost of the algebraic sieve.

algebraic

rational

� �

Notes

• TWIRL is a hypothetical and untested
design.

• It uses a highly fault-tolerant
wafer-scale design.

• The following analysis is based on
approximations and simulations.

� �

TWIRL for 512-bit composites

One silicon wafer full of TWIRL devices
(total cost ~$15,000) can complete the
sieving in under 10 minutes.

This is 1,600 times faster than the best
previous design.

��

TWIRL for 1024-bit composites

• Operates in clusters of 3
almost independent wafers.

• Initial investment (NRE):
~$20M

• To complete the sieving in 1 year
• Use 194 clusters (~600 wafers).
• Silicon cost: ~$2.9M
• Total cost: ~$10M (compared to ~$1T).

A

R

R R

R
R

R R

R

� �

.

