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Abstract. In [1], Bernstein proposed a circuit-based implementation of the matrix step of the
number field sieve factorization algorithm. These circuits offer an asymptotic cost reduction
under the measure “construction cost × run time”. We evaluate the cost of these circuits, in
agreement with [1], but argue that compared to previously known methods these circuits can
factor integers that are 1.17 times larger, rather than 3.01 as claimed (and even this, only
under the non-standard cost measure). We also propose an improved circuit design based on
a new mesh routing algorithm, and show that for factorization of 1024-bit integers the matrix
step can, under an optimistic assumption about the matrix size, be completed within a day
by a device that costs a few thousand dollars. We conclude that from a practical standpoint,
the security of RSA relies exclusively on the hardness of the relation collection step of the
number field sieve.
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1 Introduction

In [1], a new circuit-based approach is proposed for one of the steps of the number field
sieve (NFS) integer factorization method, namely finding a linear relation in a large but
sparse matrix. Unfortunately, the proposal from [1] has been misinterpreted on a large
scale, even to the extent that announcements have been made that the results imply that
common RSA key sizes no longer provide an adequate level of security.

In this paper we attempt to give a more balanced interpretation of [1]. In particular,
we show that 1024-bit RSA keys are as secure as many believed them to be. Actually, [1]
provides compelling new evidence that supports a traditional and widely used method to
evaluate the security of RSA moduli. We present a variant of the analysis of [1] that would
suggest that, under the metric proposed in [1], the number of digits of factorable integers n
has grown by a factor 1.17 + o(1), for n→∞ (in [1] a factor of 3.01 + o(1) is mentioned).

We propose an improved circuit design, based on mesh routing rather than mesh sorting.
To this end we describe a new routing algorithm whose performance in our setting seems
optimal. With some further optimizations, the construction cost is reduced by several
orders of magnitude compared to [1]. In the improved design the parallelization is gained



essentially for free, since its cost is comparable to the cost of RAM needed just to store
the input matrix.

We estimate the cost of breaking 1024-bit RSA with current technology. Using custom-
built hardware to implement the improved circuit, the NFS matrix step becomes surpris-
ingly inexpensive. However, the theoretical analysis shows that the cost of the relation
collection step cannot be significantly reduced, regardless of the cost of the matrix step.
We thus conclude that the practical security of RSA for commonly used modulus sizes is
not significantly affected by [1].

Section 2 reviews background on the NFS; it does not contain any new material and
simply serves as an explanation and confirmation of the analysis from [1]. Section 3 sketches
the circuit approach of [1] and considers its implications. Section 4 discusses various cost-
aspects of the NFS. Section 5 focuses on 1024-bit numbers, presenting custom hardware
for the NFS matrix step both following [1] and using the newly proposed circuit. Section 6
summarizes our conclusions. Appendices A and B outline the limitations of off-the-shelf
parts for the mesh-based approach and the traditional approach, respectively. Throughout
this paper, n denotes the composite integer to be factored. Prices are in US dollars.

2 Background on the number field sieve

In theory and in practice the two main steps of the NFS are the relation collection step and
the matrix step. We review their heuristic asymptotic runtime analysis because it enables us
to stress several points that are important for a proper understanding of “standard-NFS”
and of “circuit-NFS” as proposed in [1].

2.1 Smoothness. An integer is called B-smooth if all its prime factors are at most B.
Following [10, 3.16] we denote by Lx[r;α] any function of x that equals

e(α+o(1))(log x)r(log log x)1−r
, for x→∞,

where α and r are real numbers with 0 ≤ r ≤ 1 and logarithms are natural. Thus, Lx[r;α]+
Lx[r;β] = Lx[r;max(α, β)], Lx[r;α]Lx[r;β] = Lx[r;α + β], Lx[r;α]Lx[s;β] = Lx[r;α] if
r < s, Lx[r, α]k = Lx[r, kα] and if α > 0 then (log x)kLx[r;α] = Lx[r;α] for any fixed k,
and π(Lx[r;α]) = Lx[r;α] where π(y) is the number of primes ≤ y.

Let α > 0, β > 0, r, and s be fixed real numbers with 0 < s < r ≤ 1. A random positive
integer ≤ Lx[r;α] is Lx[s;β]-smooth with probability

Lx[r − s;−α(r − s)/β], for x→∞.

We abbreviate Ln to L and L[1/3, α] to L(α). Thus, a random integer ≤ L[2/3, α] is
L(β)-smooth with probability L(−α/(3β)). The notation L1.901···+o(1) in [1] corresponds to
L(1.901 · · · ) here. We write “ζ o=x” for “ζ = x + o(1) for n→∞.”
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2.2 Ordinary NFS. To factor n using the NFS, more or less following the approach
from [11], one selects a positive integer

d = δ

(
log n

log log n

)1/3

for a positive value δ that is yet to be determined, an integer m close to n1/(d+1), a
polynomial f(X) =

∑d
i=0 fiX

i ∈ Z[X] such that f(m) ≡ 0 mod n with each fi of the same
order of magnitude as m, a rational smoothness bound Br, and an algebraic smoothness
bound Ba. Other properties of these parameters are not relevant for our purposes.

A pair (a, b) of integers is called a relation if a and b are coprime, b > 0, a− bm is Br-
smooth, and bdf(a/b) is Ba-smooth. Each relation corresponds to a sparse D-dimensional
bit vector with

D ≈ π(Br) + #{(p, r) : p prime ≤ Ba, f(r) ≡ 0 mod p} ≈ π(Br) + π(Ba)

(cf. [11]). In the relation collection step a set of more than D relations is sought. Given this
set, one or more linear dependencies modulo 2 among the corresponding D-dimensional bit
vectors are constructed in the matrix step. Per dependency there is a chance of at least 50%
(exactly 50% for RSA moduli) that a factor of n is found in the final step, the square root
step. We discuss some issues of the relation collection and matrix steps that are relevant
for [1].

2.3 Relation collection. We restrict the search for relations to the rectangle |a| < L(α),
0 < b < L(α) and use Br and Ba that are both L(β) (which does not imply that Br = Ba),
for α, β > 0 that are yet to be determined. It follows (cf. 2.1) that D = L(β). Furthermore,

|a− bm| = L[2/3, 1/δ] and |bdf(a/b)| = L[2/3, αδ + 1/δ].

With 2.1 and under the usual assumption that a− bm and bdf(a/b) behave, with respect
to smoothness probabilities, independently as random integers of comparable sizes, the
probability that both are L(β)-smooth is

L

(
−1/δ

3β

)
· L
(
−αδ − 1/δ

3β

)
= L

(
−αδ + 2/δ

3β

)
.

The search space contains 2L(α)2 = 2L(2α) = L(2α) pairs (a, b) and, due to the o(1), as
many pairs (a, b) with gcd(a, b) = 1. It follows that α and β must be chosen such that

L(2α) · L
(
−αδ + 2/δ

3β

)
= L(β) (= D).

We find that

(1) α o=
3β2 + 2/δ

6β − δ
.
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2.4 Testing for smoothness. The (a, b) search space can be processed in L(2α) oper-
ations. If sufficient memory is available this can be done using sieving. Current PC imple-
mentations intended for the factorization of relatively small numbers usually have adequate
memory for sieving. For much larger numbers and current programs, sieving would become
problematic. In that case, the search space can be processed in the “same” L(2α) opera-
tions (with an, admittedly, larger o(1)) but at a cost of only L(0) memory using the Elliptic
Curve Method (ECM) embellished in any way one sees fit with trial division, Pollard rho,
early aborts, etc., and run on any number K of processors in parallel to achieve a K-fold
speedup. This was observed many times (see for instance [10, 4.15] and [4]). Thus, despite
the fact that current implementations of the relation collection require substantial memory,
it is well known that asymptotically this step requires negligible memory without incurring,
in theory, a runtime penalty – in practice, however, it is substantially slower than sieving.
Intermediate solutions that exchange sieving memory for many tightly coupled processors
with small memories could prove valuable too; see [6] for an early example of this approach
and [1] for various other interesting proposals that may turn out to be practically relevant.
For the asymptotic argument, ECM suffices.

In improved NFS from [4] it was necessary to use a “memory-free” method when search-
ing for Ba-smooth numbers (cf. 2.2), in order to achieve the speedup. It was suggested in [4]
that the ECM may be used for this purpose. Since memory usage was no concern for the
analysis in [4], regular “memory-wasteful” sieving was suggested to test Br-smoothness.

2.5 The matrix step. The choices made in 2.3 result in a bit matrix A consisting
of D = L(β) columns such that each column of A contains only L(0) nonzero entries.
Denoting by w(A) the total number of nonzero entries of A (its weight), it follows that
w(A) = L(β) · L(0) = L(β). Using a variety of techniques [5,13], dependencies can be
found after, essentially, O(D) multiplications of A times a bit vector. Since one matrix-by-
vector multiplication can be done in O(w(A)) = L(β) operations, the matrix step can be
completed in L(β)2 = L(2β) operations. We use “standard-NFS” to refer to NFS that uses
a matrix step with L(2β) operation count.

We will be concerned with a specific method for finding the dependencies in A, namely
the block Wiedemann algorithm [5][18] whose outline is as follows. Let K be the blocking
factor, i.e., the amount of parallelism desired. We may assume that either K = 1 or
K > 32. Choose 2K binary D-dimensional vectors vi,uj for 1 ≤ i, j ≤ K. For each i,
compute the vectors Akvi for k up to roughly 2D/K, using repeated matrix-by-vector
multiplication. For each such vector Akvi, compute the inner products ujA

kvi, for all j.
Only these inner products are saved, to conserve storage. From the inner products, compute
certain polynomials fl(x), l = 1, . . . ,K of degree about D/K. Then evaluate fl(A)vi, for
all l and i (take one vi at a time and evaluate fl(A)vi for all l simultaneously using
repeated matrix-by-vector multiplications). From the result, K elements from the kernel
of A can be computed. The procedure is probabilistic, but succeeds with high probability
for K � 1 [17]. For K = 1, the cost roughly doubles [18].

4



For reasonable blocking factors (K = 1 or 32 ≤ K �
√

D), the block Wiedemann algo-
rithm involves about 3D matrix-by-vector multiplications. These multiplications dominate
the cost of the matrix step; accordingly, the circuits of [1], and our variants thereof, aim to
reduce their cost. Note that the multiplications are performed in 2K separate chains where
each chain involves repeated left-multiplication by A. The proposed circuits rely on this for
their efficiency. Thus, they appear less suitable for other dependency-finding algorithms,
such as block Lanczos [13] which requires just 2D multiplications.

2.6 NFS parameter optimization for matrix exponent 2ε > 1. With the relation
collection and matrix steps in L(2α) and L(2β) operations, respectively, the values for α,
β, and δ that minimize the overall NFS operation count follow using Relation (1). However,
we also need the optimal values if the “cost” of the matrix step is different from L(β)2:
in [1] “cost” is defined using a metric that is not always the same as operation count, so
we need to analyse the NFS using alternative cost metrics. This can be done by allowing
flexibility in the “cost” of the matrix step: we consider how to optimize the NFS parameters
for an L(β)2ε matrix step, for some exponent ε > 1/2. The corresponding relation collection
operation count is fixed at L(2α) (cf. 2.4).

We balance the cost of the relation collection and matrix steps by taking α o= εβ.
With (1) it follows that

3(2ε− 1)β2 − εβδ − 2/δ o=0, so that β o=
εδ +

√
ε2δ2 + 24(2ε− 1)/δ

6(2ε− 1)
.

Minimizing β given ε leads to

(2) δ o= 3
√

3(2ε− 1)/ε2

and

(3) β o=2 3
√

ε/(3(2ε− 1))2.

Minimizing the resulting

(4) α o=2ε 3
√

ε/(3(2ε− 1))2

leads to ε = 1 and α o=2/32/3: even though ε < 1 would allow more “relaxed” relations (i.e.,
larger smoothness bounds and thus easier to find), the fact that more of such relations have
to be found becomes counterproductive. It follows that an operation count of L(4/32/3) is
optimal for relation collection, but that for 2ε > 2 it is better to use suboptimal relation
collection because otherwise the matrix step would dominate. We find the following optimal
NFS parameters:

1 < 2ε ≤ 2:
δ o=31/3, α o=2/32/3, and β o=2/32/3, with operation counts of relation collection and
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matrix steps equal to L(4/32/3) and L(4ε/32/3), respectively. For ε = 1 the operation
counts of the two steps are the same (when expressed in L) and the overall operation
count is L(4/32/3) = L((64/9)1/3) = L(1.9229994 · · · ). This corresponds to the heuristic
asymptotic runtime of the NFS as given in [11]. We refer to these parameter choices as
the ordinary parameter choices.

2ε > 2:
δ, α, and β as given by Relations (2), (4), and (3), respectively, with operation count
L(2α) for relation collection and cost L(2εβ) for the matrix step, where L(2α) = L(2εβ).
More in particular, we find the following values.

2ε = 5/2:
δ o=(5/3)1/3(6/5), α o=(5/3)1/3(5/6), and β o=(5/3)1/3(2/3), for an operation count and
cost L((5/3)4/3) = L(1.9760518 · · · ) for the relation collection and matrix steps, re-
spectively. These values are familiar from [1, Section 6: Circuits]. With (1.9229994 · · · /
1.9760518 · · · + o(1))3 o=0.9216 and equating operation count and cost, this suggests
that factoring 0.9216 · 512 ≈ 472-bit composites using NFS with matrix exponent 5/2
is comparable to factoring 512-bit ones using standard-NFS with ordinary parameter
choices (disregarding the effects of the o(1)’s).

2ε = 3:
δ o=2/31/3, α o=32/3/2, and β o=3−1/3, for an operation count and cost of L(32/3) =
L(2.0800838 · · · ) for the relation collection and matrix steps, respectively.

2.7 Improved NFS. It was shown in [4] that ordinary NFS from [11], and as used
in 2.2, can be improved by using more than a single polynomial f . Let α and δ be as in 2.3
and 2.2, respectively, let β indicate the rational smoothness bound Br (i.e., Br = L(β)),
and let γ indicate the algebraic smoothness bound Ba (i.e., Ba = L(γ)). Let G be a set of
Br/Ba = L(β − γ) different polynomials, each of degree d and common root m modulo n
(as in 2.2). A pair (a, b) of integers is a relation if a and b are coprime, b > 0, a − bm is
Br-smooth, and bdg(a/b) is Ba-smooth for at least one g ∈ G. Let ε be the matrix exponent.
Balancing the cost of the relation collection and matrix steps it follows that α o= εβ.

Optimization leads to

γ o=

(
ε2 + 5ε + 2 + (ε + 1)

√
ε2 + 8ε + 4

9(2ε + 1)

)1/3

and for this γ to

α o=
9γ3 + 1 +

√
18γ3(2ε + 1) + 1
18γ2

, β o=α/ε,

and

δ o=
3γ(−4ε− 1 +

√
18γ3(2ε + 1) + 1)

9γ3 − 4ε
.

It follows that for 2ε = 2 the method from [4] gives an improvement over the ordinary
method, namely L(1.9018836 · · · ). The condition β ≥ γ leads to 2ε ≤ 7/3, so that for
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2ε > 7/3 (as in circuit-NFS, cf. 3.1) usage of the method from [4] no longer leads to
an improvement over the ordinary method. This explains why in [1] the method from [4]
is used to select parameters for standard-NFS and why the ordinary method is used for
circuit-NFS.

With 2.1 it follows that the sum of the (rational) sieving and ECM-based (algebraic)
smoothness times from [4] (cf. last paragraph of 2.4) is minimized if β = γ + 1/(3βδ).
The above formulas then lead to 2ε = (3 +

√
17)/4 = 1.7807764 · · · . Therefore, unlike the

ordinary parameter selection method, optimal relation collection for the improved method
from [4] occurs for an ε with 2ε < 2: with ε = 0.8903882 · · · the operation count for relation
collection becomes L(1.8689328 · · · ). Thus, in principle, and depending on the cost function
one is using, the improved method would be able to take advantage of a matrix step with
exponent 2ε < 2. If we disregard the matrix step and minimize the operation count of
relation collection, this method yields a cost of L(1.8689328 · · · ).

3 The circuits for integer factorization from [1]

3.1 Matrix-by-vector multiplication using mesh sorting. In [1] an interesting new
mesh-sorting-based method is described to compute a matrix-by-vector product. Let A be
the bit matrix from 2.5 with D = L(β) columns and weight w(A) = L(β), and let m be the
least power of 2 such that m2 > w(A) + 2D. Thus m = L(β/2). We assume, without loss
of generality, that A is square. A mesh of m ×m processors, each with O(log D) = L(0)
memory, initially stores the matrix A and a not necessarily sparse D-dimensional bit vector
v. An elegant method is given that computes the product Av using repeated sorting in
O(m) steps, where each step involves a small constant number of simultaneous operations
on all m×m mesh processors. At the end of the computation Av can easily be extracted
from the mesh. Furthermore, the mesh is immediately, without further changes to its state,
ready for the computation of the product of A and the vector Av. We use “circuit-NFS”
to refer to NFS that uses the mesh-sorting-based matrix step.

3.2 The throughput cost function from [1]. Judging by operation counts, the mesh-
based algorithm is not competitive with the traditional way of computing Av: as indi-
cated in 2.5 it can be done in O(w(A)) = L(β) operations. The mesh-based computation
takes O(m) steps on all m×m mesh processors simultaneously, resulting in an operation
count per matrix-by-vector multiplication of O(m3) = L(3β/2). Iterating the matrix-by-
vector multiplications L(β) times results in a mesh-sorting-based matrix step that requires
L(5β/2) = L(β)5/2 operations as opposed to just L(2β) for the traditional approach. This
explains the non-ordinary relation collection parameters used in [1] corresponding to the
analysis given in 2.6 for 2ε = 5/2, something we comment upon below in 3.3.

However, the standard comparison of operation counts overlooks the following fact.
The traditional approach requires memory O(w(A) + D) = L(β) for storage of A and the
vector; given that amount of memory it takes time L(2β). But given the m×m mesh, with
m × m = L(β), the mesh-based approach takes time just L(3β/2) because during each
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unit of time L(β) operations are carried out simultaneously on the mesh. To capture the
advantage of “active small processors” (as in the mesh) compared to “inactive memory” (as
in the traditional approach) and the fact that their price is comparable, it is stipulated in [1]
that the cost of factorization is “the product of the time and the cost of the machine.” We
refer to this cost function as throughput cost, since it can be interpreted as measuring the
equipment cost per unit problem-solving throughput. It is frequently used in VLSI design
(where it’s known as “AT cost”, for Area×Time), but apparently was not used previously
in the context of computational number theory.

It appears that throughput cost is indeed appropriate when a large number of problems
must be solved during some long period of time while minimizing total expenses. This does
not imply that throughput cost is always appropriate for assessing security, as illustrated
by the following example. Suppose Carrol wishes to assess the risk of her encryption key
being broken by each of two adversaries, Alice and Bob. Carrol knows that Alice has plans
for a device that costs $1M and takes 50 years to break a key, and that Bob’s device costs
$50M and takes 1 year to break a key. In one scenario, each adversary has a $1M budget
— clearly Alice is dangerous and Bob is not. In another scenario, each adversary has a
$50M budget. This time both are dangerous, but Bob apparently forms a greater menace
because he can break Carrol’s key within one year, while Alice still needs 50 years. Thus,
the two devices have the same throughput cost, yet either can be more “dangerous” than
the other, depending on external settings. The key point is that if Alice and Bob have many
keys to break within 50 years then indeed their cost-per-key figures are identical, but the
time it will take Bob to break Carrol’s key depends on her priority in his list of victims,
and arguably Carrol should make the paranoid assumption that she is first.

In Section 4 we comment further on performance measurement for the NFS.

3.3 Application of the throughput cost. The time required for all matrix-by-vector
multiplications on the mesh is L(3β/2). The equipment cost of the mesh is the cost of m2

small processors with L(0) memory per processor, and is thus L(β). The throughput cost,
the product of the time and the cost of the equipment, is therefore L(5β/2). The matrix step
of standard-NFS requires time L(2β) and equipment cost L(β) for the memory, resulting
in a throughput cost of L(3β). Thus, the throughput cost advantage of the mesh-based
approach is a factor L(β/2) if the two methods would use the same β (cf. Remark 3.4).

The same observation applies if the standard-NFS matrix step is K-fold parallelized, for
reasonable K (cf. 2.5): the time drops by a factor K which is cancelled (in the throughput
cost) by a K times higher equipment cost because each participating processor needs the
same memory L(β). In circuit-NFS (i.e., the mesh) a parallelization factor m2 is used: the
time drops by a factor only m (not m2), but the equipment cost stays the same because
memory L(0) suffices for each of the m2 participating processors. Thus, with the throughput
cost circuit-NFS achieves an advantage of m = L(β/2). The mesh itself can of course be
K-fold parallelized but the resulting K-fold increase in equipment cost and K-fold drop in
time cancel each other in the throughput cost [1, Section 4].

8



Remark 3.4 It can be argued that before evaluating an existing algorithm based on a
new cost function, the algorithm first should be tuned to the new cost function. This is
further commented upon below in 3.5.

3.5 Implication of the throughput cost. We consider the implication of the matrix
step throughput cost of L(5β/2) for circuit-NFS compared to L(3β) for standard-NFS.
In [1] the well known fact is used that the throughput cost of relation collection is L(2α)
(cf. 2.4): an operation count of L(2α) on a single processor with L(0) memory results in
time L(2α), equipment cost L(0), and throughput cost L(2α). This can be time-sliced in
any way that is convenient, i.e., for any K use K processors of L(0) memory each and spend
time L(2α)/K on all K processors simultaneously, resulting in the same throughput cost
L(2α). Thus, for relation collection the throughput cost is proportional to the operation
count. The analysis of 2.6 applies with 2ε = 5/2 and leads to an optimal overall circuit-
NFS throughput cost of L(1.9760518 · · · ). As mentioned above and in 3.2, the throughput
cost and the operation count are equivalent for both relation collection and the matrix
step of circuit-NFS. Thus, as calculated in 2.6, circuit-NFS is from an operation count
point of view less powerful than standard-NFS, losing already 40 bits in the 500-bit range
(disregarding the o(1)’s) when compared to standard-NFS with ordinary parameter choices.
This conclusion applies to any NFS implementation, such as many existing ones, where
memory requirements are not multiplicatively included in the cost function.

But operation count is not the point of view taken in [1]. There standard-NFS is com-
pared to circuit-NFS in the following way. The parameters for standard-NFS are chosen
under the assumption that the throughput cost of relation collection is L(3α): operation
count L(2α) and memory cost L(α) for the sieving result in time L(2α)/K and equipment
cost K · L(α) (for any K-fold parallelization) and thus throughput cost L(3α). This dis-
regards the fact that long before [1] appeared is was known that the use of L(α) memory
per processor may be convenient, in practice and for relatively small numbers, but is by
no means required (cf. 2.4). In any case, combined with L(3β) for the throughput cost of
the matrix step this leads to α o=β, implying that the analysis from 2.6 with 2ε = 2 ap-
plies, but that the resulting operation count must be raised to the 3/2-th power. In [1] the
improvement from [4] mentioned in 2.7 is used, leading to a throughput cost for standard-
NFS of L(2.8528254 · · · ) (where 2.8528254 · · · is 1.5 times the 1.9018836 · · · referred to
in 2.7). Since (2.8528254 · · · /1.9760518 · · · )3 = 3.0090581 · · · , it is suggested in [1] that the
number of digits of factorable composites grows by a factor 3 if circuit-NFS is used instead
of standard-NFS.

3.6 Alternative interpretation. How does the comparison between circuit-NFS and
standard-NFS with respect to their throughput costs turn out if standard-NFS is first
properly tuned (Remark 3.4) to the throughput cost function, given the state of the art
in, say, 1990 (cf. [10, 4.15]; also the year that [4] originally appeared)? With throughput
cost L(2α) for relation collection (cf. above and 2.4), the analysis from 2.6 with 2ε = 3
applies, resulting in a throughput cost of just L(2.0800838 · · · ) for standard-NFS. Since
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(2.0800838 · · · /1.9760518 · · · )3 < 1.17, this would suggest that 1.17D-digit composites can
be factored using circuit-NFS for the throughput cost of D-digit integers using standard-
NFS. The significance of this comparison depends on whether or not the throughput cost
is an acceptable way of measuring the cost of standard-NFS. If not, then the conclusion
based on the operation count (as mentioned above) would be that circuit-NFS is slower
than standard-NFS; but see Section 4 for a more complete picture. Other examples where
it is recognized that the memory cost of relation collection is asymptotically not a concern
can be found in [12] and [9], and are implied by [14].

Remark 3.7 It can be argued that the approach in 3.6 of replacing the ordinary standard-
NFS parameters by smaller smoothness bounds in order to make the matrix step easier
corresponds to what happens in many actual NFS factorizations. There it is done not only
to make the matrix step less cumbersome at the cost of somewhat more sieving, but also to
make do with available PC memories. Each contributing PC uses the largest smoothness
bounds and sieving range that fit conveniently and that cause minimal interference with
the PC-owner’s real work. Thus, parameters may vary from machine to machine. This is
combined with other memory saving methods such as “special-q’s.” In any case, if insuffi-
cient memory is available for sieving with optimal ordinary parameters, one does not run
out to buy more memory but settles for slight suboptimality, with the added benefit of an
easier matrix step. See also 4.1.

Remark 3.8 In [19], Wiener outlines a three-dimensional circuit for the matrix step, with
structure that is optimal in a certain sense (when considering the cost of internal wiring).
This design leads to a matrix step exponent of 2ε = 7/3, compared to 5/2 in the designs
of [1] and this paper. However, adaptation of that design to two dimensions yields a matrix
step exponent that is asymptotically identical to ours, and vice versa. Thus the approach
of [19] is asymptotically equivalent to ours, while its practical cost remains to be evaluated.
We note that in either approach, there are sound technological reasons to prefer the 2D
variant. Interestingly, 2ε = 7/3 is the point where improved and standard NFS become the
same (cf. 2.7).

4 Operation count, equipment cost, and real time

The asymptotic characteristics of standard-NFS and circuit-NFS with respect to their
operation count, equipment, and real time spent are summarized in Table 1. For non-
L(0) equipment requirements it is specified if the main cost goes to memory (“RAM”),
processing elements (“PEs”) with L(0) memory, or a square mesh as in 3.1, and “tuned”
refers to the alternative analysis in 3.6. The underlined operation counts are the same as the
corresponding throughput costs. For the other operation count the throughput cost (not
optimized if no sieving is used) follows by taking the maximum of the products of the figures
in the “equipment” and “real time” columns. Relation collection, whether using sieving or
not, allows almost arbitrary parallelization (as used in the last two rows of Table 1). The
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amount of parallelization allowed in the matrix step of standard-NFS is much more limited
(cf. 2.5); it is not used in Table 1.

Table 1. NFS costs: operation count, equipment, and real time.

overall
operation

count

relation collectionz }| {
equipment

real
time

matrix stepz }| {
equipment

real
time

standard-NFS:
sieving
no sieving

L(1.90)


L(0.95) RAM
L(0)

L(1.90) L(0.95) RAM L(1.90)

tuned no sieving L(2.08)
sequential: L(0)
parallel: L(0.69) PEs

L(2.08)
L(1.39)

L(0.69) RAM L(1.39)

circuit-NFS: L(1.98)
sequential: L(0)
parallel: L(0.79) PEs

L(1.98)
L(1.19)

L(0.79) mesh L(1.19)

4.1 Lowering the cost of the standard-NFS matrix step. We show at what cost
the asymptotic advantages of the circuit-NFS matrix step (low throughput cost and short
real time) can be matched, asymptotically, using the traditional approach to the matrix
step. This requires a smaller matrix, i.e., lower smoothness bounds, and results therefore in
slower relation collection. We illustrate this with two examples. To get matching throughput
costs for the matrix steps of standard-NFS and circuit-NFS, β must be chosen such that
L(3β) = L((5/3)4/3) = L(1.9760 · · · ), so that the matrix step of standard-NFS requires
L(β) = L(0.6586 · · · ) RAM and real time L(2β) = L(1.3173 · · · ). Substituting this β in
Relation (1) and minimizing α with respect to δ we find

(5) δ o=

√
4 + 36β3 − 2

3β2
,

i.e., δ o=1.3675 · · · and α o=1.0694 · · · , resulting in relation collection operation count L(2.1389 · · · ).
Or, one could match the real time of the matrix steps: with L(2β) = L((5/3)1/3) =
L(1.1856 · · · ) the matrix step of standard-NFS requires L(0.5928 · · · ) RAM and real time
L(1.1856 · · · ). With Relation (5) we find that δ o=1.3195 · · · , α o=1.1486 · · · , and relation
collection operation count L(2.2973 · · · ).

4.2 Operation count based estimates. Operation count is the traditional way of mea-
suring the cost of the NFS. It corresponds to the standard complexity measure of “runtime”
and neglects the cost of memory or other equipment that is needed to actually “run” the
algorithm. It was used, for instance, in [11] and [4] and was analysed in 2.6 and 2.7.

It can be seen in Table 1, and was indicated in 3.5, that the operation count for circuit-
NFS is higher than for standard-NFS (assuming both methods are optimized with respect
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to the operation count): L(1.9760518 · · · ) as opposed to just L(1.9018836 · · · ) when using
the improved version (cf. 2.7) as in Table 1, or as opposed to L(1.9229994 · · · ) when using
the ordinary version (cf. 2.6) as in 3.5. Thus, RSA moduli that are deemed sufficiently
secure based on standard-NFS operation count security estimates, are even more secure
when circuit-NFS is considered instead. Such estimates are common; see for instance [14]
and the “computationally equivalent” estimates in [9,12]. Security estimates based on the
recommendations from [14] or the main ones (i.e., the conservative “computationally equiv-
alent” ones) from [9,12] are therefore not affected by the result from [1]. Nevertheless, we
agree with [2] that the PC-based realization suggested in [12], meant to present an at the
time possibly realistic approach that users can relate to, may not be the best way to realize
a certain operation count; see also the last paragraph of [12, 2.4.7]. The estimates from [15]
are affected by [1].

Remark 4.3 Historically, in past factorization experiments the matrix step was always
solved using a fraction of the effort required by relation collection. Moreover, the memory
requirements of sieving-based relation collection have never turned out to be a serious prob-
lem (it was not even necessary to fall back to the memory-efficient ECM and its variations).
Thus, despite the asymptotic analysis, extrapolation from past experience would predict
that the bottleneck of the NFS method is relation collection, and that simple operation
count is a better practical cost measure for NFS than other measures that are presumably
more realistic. The choice of cost function in [9,12] was done accordingly.

The findings of [1] further support this conservative approach, by going a long way
towards closing the gap between the two measures of cost when applied to the NFS: 93%
of the gap according to 3.5, and 61% according to 3.6.

5 Hardware for the matrix step for 1024-bit moduli

In this section we extrapolate current factoring knowledge to come up with reasonable
estimates for the sizes of the matrix A that would have to be processed for the factorization
of a 1024-bit composite when using ordinary relation collection (cf. 2.6), and using slower
relation collection according to matrix exponent 5/2 as used in circuit-NFS. For the latter
(smaller sized) matrix we consider how expensive it would be to build the mesh-sorting-
based matrix-by-vector multiplication circuit proposed in [1] using custom-built hardware
and we estimate how much time the matrix step would take on the resulting device. We then
propose an alternative mesh-based matrix-by-vector multiplication circuit and estimate its
performance for both matrices, for custom-built and off-the-shelf hardware.

Throughout this section we are interested mainly in assessing feasibility, for the pur-
pose of evaluating the security implications. Our assumptions will be somewhat optimistic,
but we believe that the designs are fundamentally sound and give realistic indications of
feasibility using technology that is available in the present or in the near future.

12



5.1 Matrix sizes. For the factorization of RSA-512 the matrix had about 6.7 million
columns and average column density about 63 [3]. There is no doubt that this matrix
is considerably smaller than a matrix that would have resulted from ordinary relation
collection as defined in 2.6, cf. Remark 3.7. Nevertheless, we make the optimistic assumption
that this is the size that would result from ordinary relation collection.

Combining this figure with the L(2/32/3) matrix size growth rate (cf. 2.6) we find

6 700 000 · L21024 [1/3, 2/32/3]
L2512 [1/3, 2/32/3]

≈ 1.8 · 1010

(cf. 2.1). Including the effect of the o(1) it is estimated that an optimal 1024-bit matrix
would contain about 1010 columns. We optimistically assume an average column density
of about 100. We refer to this matrix as the “large” matrix.

Correcting this matrix size for the L((5/3)1/3(2/3)) matrix size growth rate for matrix
exponent 5/2 (cf. 2.6) we find

1.8 · 1010 · L21024 [1/3, (5/3)1/3(2/3)]
L21024 [1/3, 2/32/3]

≈ 8.7 · 107.

We arrive at an estimate of about 4 · 107 columns for the circuit-NFS 1024-bit matrix. We
again, optimistically, assume that the average column density is about 100. We refer to
this matrix as the “small” matrix.

5.2 Estimated relation collection cost. Relation collection for RSA-512 could have
been done in about 8 years on a 1GHz PC [3]. Since

8 · L21024 [1/3, 4/32/3]
L2512 [1/3, 4/32/3]

≈ 6 · 107

we estimate that generating the large matrix would require about a year on about 30
million 1GHz PCs with large memories (or more PC-time but less memory when using
alternative smoothness tests – keep in mind, though, that it may be possible to achieve
the same operation count using different hardware, as rightly noted in [1] and speculated
in [12, 2.4.7]). With

L21024 [1/3, (5/3)4/3]
L21024 [1/3, 4/32/3]

≈ 5

it follows that generating the smaller matrix would require about 5 times the above effort.
Neither computation is infeasible. But, it can be argued that 1024-bit RSA moduli provide
a reasonable level of security just based on the operation count of the relation collection
step.
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5.3 Processing the “small” matrix using Bernstein’s circuits. We estimate the
size of the circuit required to implement the mesh circuit of [1] when the NFS parameters
are optimized for the throughput cost function and 1024-bit composites. We then derive a
rough prediction of the associated costs when the mesh is implemented by custom hardware
using current VLSI technology. In this subsection we use the circuit exactly as described
in [1]; the next subsections will make several improvements, including those listed as future
plans in [1].

In [1], the algorithm used for finding dependencies among the columns of A is Wiede-
mann’s original algorithm [18], which is a special case of block Wiedemann with blocking
factor K=1 (cf. 2.5). In the first stage (inner product computation), we are given the sparse
D×D matrix A and some pair of vectors u,v and wish to calculate uAkv for k = 1, . . . , 2D.
The polynomial evaluation stage is slightly different, but the designs given below can be
easily adapted so we will not discuss it explicitly.

The mesh consists of m ×m nodes, where m2 > w(A) + 2D (cf. 3.1). By assumption,
w(A) ≈ 4 · 109 and D ≈ 4 · 107 so we may choose m = 63256. To execute the sorting-based
algorithm, each node consists mainly of 3 registers of

⌈
log2(4 · 107)

⌉
= 26 bits each, a 26-bit

compare-exchange element (in at least half of the nodes), and some logic for tracking the
current stage of the algorithm. Input, namely the nonzero elements of A and the initial
vector v, is loaded just once so this can be done serially. The mesh computes the vectors
Akv by repeated matrix-by-vector multiplication, and following each such multiplication
it calculates the inner product u(Akv) and outputs this single bit.

In standard CMOS VLSI design, a single-bit register (i.e., a D-type edge-triggered flip-
flop) requires about 8 transistors, which amounts to 624 transistors per node. To account
for the logic and additional overheads such as a clock distribution network, we shall assume
an average of 2000 transistors per node for a total of 8.0 · 1012 transistors in the mesh.

As a representative of current technology available on large scale we consider Intel’s
latest Pentium processor, the Pentium 4 “Northwood” (0.13µm2 feature size process).
A single Northwood chip (inclusive of its on-board L2 cache) contains 5.5 · 107 transis-
tors, and can be manufactured in dies of size 131mm2 on wafers of diameter 300mm, i.e.,
about 530 chips per wafer when disregarding defects. The 1.6GHz variant is currently sold
at $140 in retail channels. By transistor count, the complete mesh would require about(
8.0 · 1012

)
/
(
5.5 · 107

)
≈ 145 500 Northwood-sized dies or about 273 wafers. Using the

above per-chip price figure naively, the construction cost is about $20M. Alternatively, as-
suming a wafer cost of about $5,000 we get a construction cost of roughly $1.4M, and the
initial costs (e.g., mask creation) are under $1M.

The matter of inter-chip communication is problematic. The mesh as a whole needs
very few external lines (serial input, 1-bit output, clock, and power). However, a chip
consisting of s × s nodes has 4s − 4 nodes on its edges, and each of these needs two
26-bit bidirectional links with its neighbor on an adjacent chip, for a total of about 2 ·
2 · 26 · 4s = 416s connections. Moreover, such connections typically do not support the
full 1GHz clock rate, so to achieve the necessary bandwidth we will need about 4 times as
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many connections: 1664s. While standard wiring technology cannot provide such enormous
density, the following scheme seems plausible. Emerging “flip-chip” technologies allow direct
connections between chips that are placed face-to-face, at a density of 277 connections per
mm2 (i.e., 60µs array pitch). We cut each wafer into the shape of a cross, and arrange
the wafers in a two-dimensional grid with the arms of adjacent wafers in full overlap. The
central square of each cross-shaped wafer contains mesh nodes, and the arms are dedicated
to inter-wafer connections. Simple calculation shows that with the above connection density,
if 40% of the (uncut) wafer area is used for mesh nodes then there is sufficient room left
for the connection pads and associated circuitry. This disregards the issues of delays (mesh
edges that cross wafer boundaries are realized by longer wires and are thus slower than
the rest), and of the defects which are bound to occur. To address these, adaptation of the
algorithm is needed. Assuming the algorithmic issues are surmountable, the inter-wafer
communication entails a cost increase by a factor of about 3, to $4.1M.

According to [1, Section 4], a matrix-by-vector multiplication consists of, essentially,
three sort operations on the m×m mesh. Each sort operation takes 8m steps, where each
step consists of a compare-exchange operation between 26-bit registers of adjacent nodes.
Thus, multiplication requires 3 · 8m ≈ 1.52 · 106 steps. Assuming that each step takes a
single clock cycle at a 1GHz clock rate, we get a throughput of 659 multiplications per
second.

Basically, Wiedemann’s algorithm requires 3D multiplications. Alas, the use of blocking
factor K = 1 entails some additional costs. First, the number of multiplications roughly
doubles due to the possibility of failure (cf. 2.5). Moreover, the algorithm will yield a
single vector from the kernel of A, whereas the Number Field Sieve requires several linearly
independent kernel elements: half of these yield a trivial congruence (c.f. 2.2), and moreover
certain NFS optimizations necessitate discarding most of the vectors. In RSA-512, a total of
about 10 kernel vectors were needed. Fortunately, getting additional vectors is likely to be
cheaper than getting the first one (this is implicit in [18, Algorithm 1]). Overall, we expect
the number of multiplications to be roughly 2 · 10

3 · 3D = 20D. Thus, the expected total
running time is roughly 20 · 4 · 107/659 ≈ 1 210 000 seconds, or 14 days. The throughput
cost is thus 5.10 · 1012 $× sec.

If we increase the blocking factor from 1 to over 32 and handle the multiplication chains
sequentially on a single mesh, then only 3D multiplications are needed ([1] considers this
but claims that it will not change the cost of computation; that is true only up to constant
factors). In this case the time decreases to 50 hours, and the throughput cost decreases to
7.4 · 1011 $× sec.

Heat dissipation (i.e., power consumption) may limit the node density and clock rate
of the device, and needs to be analysed. Note however that this limitation is technological
rather than theoretical, since in principle the mesh sorting algorithm can be efficiently
implemented using reversible gates and arbitrarily low heat dissipation.

5.4 A routing-based circuit. The above analysis refers to the mesh circuit described
in [1], which relies on the novel use of mesh sorting for matrix-by-vector multiplication. We
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now present an alternative design, based on mesh routing. This design performs a single
routing operation per multiplication, compared to three sorting operations (where even a
single sorting operation is slower than routing). The resulting design has a reduced cost,
improved fault tolerance and very simple local control. Moreover, its inherent flexibility
allows further improvements, as discussed in the next section. The basic design is as follows.

For simplicity assume that each of the D columns of the matrix has weight exactly h
(here h = 100), and that the nonzero elements of A are uniformly distributed (both as-
sumptions can be easily relaxed). Let m =

√
D · h. We divide the m×m mesh into D blocks

of size
√

h×
√

h. Let Si denote the i-th block in row-major order (i ∈ {1, . . . , D}), and let
ti denote the node in the upper left corner of Si. We say that ti is the target of the value
i. Each node holds two log2 D-bit values, Q[i] and R[i]. Each target node ti also contains
a single-bit value P [i]. For repeated multiplication of A and v, the mesh is initialized as
follows: the i-th entry of v is loaded into P [i], and the row indices of the nonzero elements
in column i ∈ {1, . . . , D} of A are stored (in arbitrary order) in the Q[·] of the nodes in Si.
Each multiplication is performed thus:

1. For all i, broadcast the value of P [i] from ti to the rest of the nodes in Si (this can be
accomplished in 2

√
h− 2 steps).

2. For all i and every node j in Si: if P [i] = 1 then R[j] ← Q[j], else R[j] ← nil (where
nil is some distinguished value outside {1, . . . , D}).

3. P [i]← 0 for all i

4. Invoke a mesh-based packet routing algorithm on the R[·], such that each non-nil value
R[j] is routed to its target node tR[j]. Each time a value i arrives at its target ti, discard
it and flip P [i].

After these steps, P [·] contain the result of the multiplication, and the mesh is ready for the
next multiplication. As before, in the inner product computation stage of the Wiedemann
algorithm, we need only compute uAkv for some vector u, so we load the i-th coordinate
of u into node ti during initialization, and compute the single-bit result uAkv inside the
mesh during the next multiplication.

There remains the choice of a routing algorithm. Many candidates exist (see [7] for
a survey). To minimize hardware cost, we restrict our attention to algorithms for the
“one packet” model, in which at each step every node holds at most one packet (and
consequentially each node can send at most one packet and receive at most one packet per
step). Note that this rules out most known algorithms, including those for the well-studied
“hot-potato” routing model which provides a register for every edge. Since we do binary
multiplication, the routing problem has the following unusual property: pairwise packet
annihilation is allowed. That is, pairs of packets with identical values may be “cancelled
out” without affecting the result of the computation. This relaxation can greatly reduce
the congestion caused by multiple packets converging to a common destination. Indeed this
seems to render commonly-cited lower bounds inapplicable, and we are not aware of any
discussion of this variant in the literature. While known routing and sorting algorithms
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can be adapted to our task, we suggest a new routing algorithm that seems optimal, based
on our empirical tests.

The algorithm, which we call clockwise transposition routing, has an exceptionally sim-
ple control structure which consists of repeating 4 steps. Each step involves compare-
exchange operations on pairs of neighboring nodes, such that the exchange is performed
iff it reduces the distance-to-target of the non-nil value (out of at most 2) that is farthest
from its target along the relevant direction. This boils down to comparison of the target
row indices (for vertically adjacent nodes) or target column indices (for horizontally adja-
cent nodes). For instance, for horizontally adjacent nodes i, i + 1 such that tR[i] resides on
column ci and tR[i+1] resides on column ci+1, an exchange of i and i + 1 will be done iff
ci > ci+1. To this we add annihilation: if R[i] = R[i + 1] then both are replaced by nil.

The first step of clockwise transposition routing consists of compare-exchange between
each node residing on an odd row with the node above it (if any). The second step consists
of compare-exchange between each node residing on an odd column with the node to its
right (if any). The third and fourth steps are similar to the first and second respectively,
except that they involve the neighbors in the opposite direction. It is easily seen that each
node simply performs compare-exchanges with its four neighbors in either clockwise or
counterclockwise order.

We do not yet have a theoretical analysis of this algorithm. However, we have simulated
it on numerous inputs of sizes up to 13 000 × 13 000 with random inputs drawn from a
distribution mimicking that of the above mesh, as well as the simple distribution that puts
a random value in every node. In all runs (except for very small meshes), we have not
observed even a single case where the running time exceeded 2m steps. This is just two
steps from the trivial lower bound 2m− 2.

Our algorithm is a generalization of odd-even transposition sort, with a schedule that
is identical to the “2D-bubblesort” algorithm of [8] but with different compare-exchange
elements. The change from sorting to routing is indeed quite beneficial, as [8] shows that
2D-bubblesort is considerably slower than the observed performance of our clockwise trans-
position routing. The new algorithm appears to be much faster than the 8m sorting algo-
rithm (due to Schimmler) used in [1], and its local control is very simple compared to the
complicated recursive algorithms that achieve the 3m-step lower bound on mesh sorting
(cf. [16]).

A physical realization of the mesh will contain many local faults (especially for devices
that are wafer-scale or larger, as discussed below). In the routing-based mesh, we can
handle local defects by algorithmic means as follows. Each node shall contain 4 additional
state bits, indicating whether each of its 4 neighbors is “disabled”. These bits are loaded
during device initialization, after mapping out the defects. The compare-exchange logic
is augmented such that if node i has a “disabled” neighbor in direction ∆ then i never
performs an exchange in that direction, but always performs the exchange in the two
directions orthogonal to ∆. This allows us to “close off” arbitrary rectangular regions of
the mesh, such that values that reach a “closed-off” region from outside are routed along
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its perimeter. We add a few spare nodes to the mesh, and manipulate the mesh inputs such
that the spare effectively replace the nodes of the in closed-off regions. We conjecture that
the local disturbance caused by a few small closed-off regions will not have a significant
effect on the routing performance.

Going back to the cost evaluation, we see that replacing the sorting-based mesh with a
routing-based mesh reduces time by a factor of 3 · 8/2 = 12. Also, note that the Q[·] values
are used just once per multiplication, and can thus be stored in slower DRAM cells in
the vicinity of the node. DRAM cells are much smaller than edge-triggered flip-flops, since
they require only one transistor and one capacitor per bit. Moreover, the regular structure
of DRAM banks allows for very dense packing. Using large banks of embedded DRAM
(which are shared by many nodes in their vicinity), the amortized chip area per DRAM
bit is about 0.7µm2. Our Northwood-based estimates lead to 2.38µm2 per transistor, so
we surmise that for our purposes a DRAM bit costs 1/3.4 as much as a logic transistor,
or about 1/27 as much as a flip-flop. For simplicity, we ignore the circuitry needed to
retrieve the values from DRAM — this can be done cheaply by temporarily wiring chains
of adjacent R[·] into shift registers. In terms of circuit size, we effectively eliminate two of
the three large registers per node, and some associated logic, so the routing-based mesh is
about 3 times cheaper to manufacture. Overall, we gain a reduction of a factor 3 · 12 = 36
in the throughput cost.

5.5 An improved routing-based circuit. We now tweak the routing-based circuit de-
sign to gain additional cost reductions. Compared to the sorting-based design (cf. 5.3),
these will yield a (constant-factor) improvement by several order of magnitudes. While
asymptotically insignificant, this suggests a very practical device for the NFS matrix step
of 1024-bit moduli. Moreover, it shows that already for 1024-bit moduli, the cost of par-
allelization can be negligible compared to the cost of the RAM needed to store the input,
and thus the speed advantage is gained essentially for free.

The first improvement follows from increasing the density of targets. Let ρ denote the
average number of P [·] registers per node. In the above scheme, ρ = h−1 ≈ 1/100. The total
number of P [·] registers is fixed at D, so if we increase ρ the number of mesh nodes decreases
by hρ. However, we no longer have enough mesh nodes to route all the hD nonzero entries
of A simultaneously. We address this by partially serializing the routing process, as follows.
Instead of storing one matrix entry Q[·] per node, we store hρ such values per node: for
ρ ≥ 1, each node j is “in charge” of a set of ρ matrix columns Cj = {cj,1, . . . , cj,ρ}, in the
sense that node j contains the registers P [cj,1], . . . , P [cj,ρ], and the nonzero elements of A
in columns cj,1, . . . , cj,ρ. To carry out a multiplication we perform hρ iterations, where each
iteration consists of retrieving the next such nonzero element (or skipping it, depending
on the result of the previous multiplication) and then performing clockwise transposition
routing as before.

The second improvement follows from using block Wiedemann with a blocking factor
K > 1 (cf. 2.5). Besides reducing the number of multiplications by a factor of roughly 20

3
(cf. 5.3), this produces an opportunity for reducing the cost of multiplication, as follows.
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Recall that in block Wiedemann, we need to perform K multiplication chains of the form
Akvi, for i = 1, . . . ,K and k = 1, . . . , 2D/K, and later again, for k = 1, . . . , D/K. The
idea is to perform several chains in parallel on a single mesh, reusing most resources (in
particular, the storage taken by A). For simplicity, we will consider handling all K chains
on one mesh. In the routing-based circuits described so far, each node emitted at most
one message per routing operation — a matrix row index, which implies the address of
the target cell. The information content of this message (or its absence) is a single bit.
Consider attaching K bits of information to this message: log2(D) bits for the row index,
and K bits of “payload”, one bit per multiplication chain.

Combining the two generalizations gives the following algorithm, for 0 < ρ ≤ 1 and
integer K ≥ 1. The case 0 < ρ < 1 requires distributing the entries of each matrix column
among several mesh nodes, as in 5.4, but its cost is similar.

Let {Cj}j∈{1,...,D/ρ} be a partition of {1, . . . , D}, Cj = {c : (j−1)ρ ≤ c−1 < jρ}. Each
node j ∈ {1, . . . , D/ρ} contains single-bit registers Pi[c] and P ′

i [c] for all i = 1, . . . ,K and
c ∈ Cj , and a register Rj of size log2(D) + K. Node j also contains a list Qj = {(r, c) |
Ar,c = 1, c ∈ Cj} of the nonzero matrix entries in the columns Cj of A, and an index Ij

into Cj . Initially, load the vectors vi into the Pi[·] registers. Each multiplication is then
performed thus:

1. For all i and c, P ′
i [c]← 0. For all j, Ij ← 1.

2. Repeat hρ times:
(a) For all j: (r, c)← Qj [Ij ], Ij ← Ij + 1, R[j]←

〈
r, P1[c], . . . , PK [c]

〉
.

(b) Invoke the clockwise transposition routing algorithm on the R[·], such that each
value R[j] = 〈r, . . .〉 is routed to the node tj for which r ∈ Cj .
During routing, whenever a node j receives a message 〈r, p1, . . . , pK〉 such that
r ∈ Cj , it sets P ′

i [r] ← P ′
i [r] ⊕ pi for i = 1, . . . ,K and discards the message.

Moreover, whenever packets 〈r, p1, . . . , pK〉 and 〈r, p′1, . . . , p
′
K〉 in adjacent nodes

are compared, they are combined: one is annihilated and the other is replaced by
〈r, p1 ⊕ p′1, . . . , pK ⊕ p′K〉.

3. Pi[c]← P ′
i [c] for all i and c.

After these steps, Pi[·] contain the bits of Akvi and the mesh is ready for the next mul-
tiplication. We need to compute and output the inner products uj(Akvi) for some vectors
u1, . . . ,uK , and this computation should be completed before the next multiplication is
done. In general, this seems to require Θ(K2) additional wires between neighboring mesh
nodes and additional registers. However, usually the uj are chosen to have weight 1 or 2,
so the cost of computing these inner products can be kept very low. Also, note that the
number of routed messages is now doubled, because previously only half the nodes sent
non-nil messages. However, empirically it appears that the clockwise transposition routing
algorithm handles the full load without any slowdown.

It remains to determine the optimal values of K and ρ. This involves implementation
details and technological quirks, and obtaining precise figures appears rather hard. We
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thus derive expressions for the various cost measures, based on parameters which can
characterize a wide range of implementations. We then substitute values that reasonably
represent today’s technology, and optimize for these. The parameters are as follows:

– Let At, Af and Ad be the average wafer area occupied by a logic transistor, an edge-
triggered flip-flop and a DRAM bit, respectively (including the related wires).

– Let Aw be the area of a wafer.
– Let Ap be the wafer area occupied by an inter-wafer connection pad (cf. 5.3).
– Let Cw be the construction cost of a single wafer (in large quantities).
– Let Cd be the cost of a DRAM bit that is stored off the wafers (this is relevant only to

the FPGA design of Appendix A).
– Let Td be the reciprocal of the memory DRAM access bandwidth of a single wafer

(relevant only to FPGA).
– Let Tl be the time it takes for signals to propagate through a length of circuitry (aver-

aged over logic, wires, etc.).
– Let Tp be the time it takes to transmit one bit through a wafer I/O pad.

We consider three concrete implementations: custom-produced “logic” wafers (as used
in 5.3, with which we maintain consistency), custom-produced “DRAM” wafers (which
reduce the size of DRAM cells at the expense of size and speed of logic transistors) and
an FPGA-based design using off-the-shelf parts (cf. Appendix A). Rough estimates of the
respective parameters are given in Table 2.

Table 2. Implementation hardware parameters

Custom1 (“logic”) Custom2 (“DRAM”) FPGA
At 2.38 µm2 2.80 µm2 0.05
Af 19.00 µm2 22.40 µm2 1.00
Ad 0.70 µm2 0.20 µm2 ∅
Ap 4 000 µm2 × sec 4 000 µm2 × sec ∅
Aw 6.36 · 1010 µm2 6.36 · 1010 µm2 25 660
Cw $5,000 $5,000 $150
Cd ∅ ∅ $4 · 10−8

Td ∅ ∅ 1.1 · 10−11 sec
Tp 4 · 10−9 sec 4 · 10−9 sec 2.5 · 10−9 sec
Tl 1.46 · 10−11 sec/µm 1.80 · 10−11 sec/µm 1.43 · 10−9 sec

∅ marks values that are inapplicable, and taken to be zero.

The cost of the matrix step is derived with some additional approximations:

– The number of mesh nodes is D/ρ.
– The values in Qj [·] (i.e., the nonzero entries of A) can be stored in DRAM banks in the

vicinity of the nodes, where (with an efficient representation) they occupy hρ log2(D)Ad

per node.
– The Pi[c] registers can be moved to DRAM banks, where they occupy ρKAd per node.
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– The P ′
j [c] registers can also be moved to DRAM. However, to update the DRAM when a

message is received we need additional storage. Throughout the D/ρ steps of a routing
operation, each node gets 1 message on average (or less, due to annihilation). Thus
log2(ρ) + K latch bits per node would suffice (if they are still in use when another
message arrives, it can be forwarded to another node and handled when it arrives
again). This occupies ρKAf per node when ρ < 2, and ρKAd + 2(log2(ρ) + K)Af per
node when ρ ≥ 2.

– The bitwise logic related to the Pi[c] registers, the P ′
i [c] and the last K bits of the R[j]

registers together occupy 20 ·min(ρ, 2)KAt per node.
– The R[j] registers occupy (log2(D) + K)Af per node
– The rest of the mesh circuitry (clock distribution, DRAM access, clockwise transposition

routing, I/O handling, inner products, etc.) occupies (200 + 30 log2(D))At per node.
– Let An be total area of a mesh node, obtained by summing the above (we get different

formulas for ρ < 2 vs. ρ ≥ 2).
– Let Am = AnD/ρ be the total area of the mesh nodes (excluding inter-wafer connec-

tions).
– Let Nw be the number of wafers required to implement the matrix step, and let Np

be the number of inter-wafer connection pads per wafer. For single-wafer designs,
Nw = 1/bAw/Amc and Np = 0. For multiple-wafer designs, these values are de-
rived from equations for wafer area and bandwidth: NwAw = Am + NwNpAp, Np =
4 · 2 ·

√
D/(ρNw) · (log2D + K) · Tp/(

√
AnTl).

– Let Nd be total number of DRAM bits (obtained by evaluating Am for Af = At =
0,Ad = 1).

– Let Na be the number of DRAM bit accesses (reads+writes) performed throughout the
matrix step. We get: Na = 3D(2hDK + Dh log2(D)), where the first term due to the
the P ′

i [c] updates and the second term accounts for reading the matrix entries.
– Let Cs = NwCw +NdCd be the total construction cost for the matrix step.
– The full block Wiedemann algorithm consists of 3D/K matrix-by-vector multiplica-

tions, each of which consists of hρ routing operations, each of which consists of 2
√

D/ρ
clocks. Each clock cycle takes Tl

√
An.

Let Ts be the time taken by the full block Wiedemann algorithm. We get:
Ts = 6D3/2hTl

√
ρAn/K +NaTd/Nw.

Table 3 lists the cost of the improved routing-based circuit for several choices of ρ and
K, according to the above. It also lists the cost of the sorting-based circuits (cf. 5.3) and
the PC implementation of Appendix B. The lines marked by “(opt)” give the parameter
choice that minimize the throughput cost for each type of hardware.

The second line describes a routing-based design whose throughput cost is roughly
45 000 times lower than that of the original sorting-based circuit (or 6 700 times lower
than sorting with K � 1). Notably, this is a single-wafer device, which completely solves
the technological problem of connecting multiple wafers with millions of parallel wires, as
necessary in the original design of [1]. The third line shows that significant parallelism can
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be gained essentially for free: here, 88% of the wafer area is occupied simply by the DRAM
banks needed to store the input matrix, so further reduction in construction cost seems
impossible.

Table 3. Cost of the matrix step for the “small” matrix

Algorithm Impleme- ρ K Wafers/ Construction Run time Throughput
ntation chips/ cost cost

PCs Cs Ts (sec) CsTs ($× sec)

Routing Custom1 0.51 107 19 $94,600 1440 (24 min) 1.36·108 (opt)
Routing Custom2 42.10 208 1 $5,000 21 900 (6.1 hours) 1.10·108 (opt)
Routing Custom2 216.16 42 0.37 $2,500 341 000 (4 days) 8.53·108

Routing Custom1 0.11 532 288 $1,440,000 180 (3 min) 2.60·108

Routing FPGA 5473.24 25 64 $13,800 15 900 000 (184 days) 2.20·1011(opt)
Routing FPGA 243.35 60 2500 $380,000 1 420 000 (17 days) 5.40·1011

Sorting Custom1 1 273 $4,100,000 1 210 000 (14 days) 4.96·1012

Sorting Custom1 � 1 273 $4,100,000 182 000 (50 hours) 7.44·1011

Serial PCs 32 1 $4,460 125 000 000 (4 years) 5.59·1011

Tree PCs 32 66 $24,000 2 290 000 (27 days) 5.52·1010

5.6 An improved circuit for the “large” matrix. The large matrix resulting from
ordinary relation collection contains 250 times more columns: D ≈ 1010. We assume that
the average column density remains h = 100. It is no longer possible to fit the device on a
single wafer, so the feasibility of the mesh design now depends critically on the ability to
make high bandwidth inter-wafer connections (cf. 5.3).

Using the formulas given in the previous section, we obtain the costs in Table 4 for the
custom and FPGA implementations, for various parameter choices. The third line shows
that here too, significant parallelism can be attained at very little cost (88% of the wafer
area is occupied by DRAM storing the input). As can be seen, the improved mesh is
quite feasible also for the large matrix, and its cost is a small fraction of the cost of the
alternatives, and of relation collection.

Table 4. Cost of the matrix step for the “large” matrix

Algorithm Impleme- ρ K Wafers/ Construction Run time Throughput
ntation chips/ cost cost

PCs Cs Ts (sec) CsTs ($× sec)

Routing Custom1 0.51 136 6 030 $30.1M 5.04 · 106 (58 days) 1.52·1014(opt)
Routing Custom2 4112 306 391 $2.0M 6.87 · 107 (2.2 years) 1.34·1014(opt)
Routing Custom2 261.60 52 120 $0.6M 1.49 · 109 (47 years) 8.95·1014

Routing Custom1 0.11 663 9000 $500.0M 6.40 · 105 (7.4 days) 2.88·1014

Routing FPGA 17 757.70 99 13 567 $3.5M 3.44 · 1010 (1088 years) 1.19·1017(opt)
Routing FPGA 144 .41 471 6.6 · 106 $1000.0M 1.14 · 109 (36 years) 1.13·1018

Serial PCs 32 1 $1.3M 270 000 years 1.16·1019

Tree PCs 3484 813 $153.0M 3.17 · 108 (10 years) 4.84·1016
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5.7 Summary of hardware findings. The improved design of 5.5 and 5.6, when imple-
mented using custom hardware, appears feasible for both matrix sizes. Moreover, it is very
attractive when compared to the traditional serial implementations (though appropriate
parallelization techniques partially close this gap; see Appendix B). However, these con-
clusions are based on numerous assumptions, some quite optimistic. Much more research,
and possibly actual relation collection experiments, would have to be carried out to get a
clearer grasp of the actual cost (time and money) of both the relation collection and matrix
steps for 1024-bit moduli.

In light of the above, one may try to improve the overall performance of NFS by re-
balancing the relation collection step and the matrix step, i.e., by increasing the smoothness
bounds (the opposite of the approach sketched in Remark 3.7). For ordinary NFS, asymp-
totically this is impossible since the parameters used for ordinary relation collection (i.e.,
the “large” matrix) already minimize the cost of relation collection (cf. 2.6). For improved
NFS that is applied to a single factorization (cf. 2.7), if we disregard the cost of the matrix
step and optimize just for relation collection then we can expect a cost reduction of about
L21024 [1/3, 1.9018836 · · · ]/L21024 [1/3, 1.8689328 · · · ] ≈ 2.8.

If many integers in a large range must be factored — a reasonable assumption given our
interpretation of the throughput cost (cf. 3.2) — a much faster method exists (cf. [4]). It
remains to be studied whether these asymptotic properties indeed hold for 1024-bit moduli
and what are the practical implications of the methods from [4].

6 Conclusion

We conclude that methods to evaluate the security of RSA moduli that are based on
the traditional operation count are not affected by the circuits proposed in [1]. Although
the traditional estimates underestimate the difficulty of factoring, [1] provides yet another
reason — other than the mostly historical reasons used so far — not to rely too much on
supposedly more accurate cost-based estimates for the NFS.

We have shown that the suggestion made in [1] that the number of digits of factorable
numbers has grown by a factor of 3, is based on an argument that may not be to everyone’s
taste. An alternative interpretation leads to a factor 1.17, under the cost function defined
in [1]. The most traditional cost function, however, even leads to a factor 0.92.

Finally, we have presented an improved design for a mesh-based implementation of the
linear algebra stage of the NFS. For an optimistically estimated 1024-bit factorization, our
analysis suggests that a linear dependency between the columns of the sparse matrix can
be found within a few hours by a device that costs about $5,000. At the very least, this
is an additional argument not to rely on the alleged difficulty of the matrix step when
evaluating the difficulty of factoring. As mentioned in [1] there are many other possibilities
to be explored. Further study — and unbiased interpretation of the results — should
eventually enable the cryptographic research and users communities to assess the true
impact of [1] and the method proposed in 5.5.
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A Using off-the-shelf hardware for the circuit approach

In subsections 5.3–5.5 we were concerned primarily with custom-produced hardware, in
accordance with the focus on throughput cost. In practice, however, we are often concerned
about solving a small number of factorization problems. In this case, it may be preferable
to use off-the-shelf components (especially if they can be dismantled and reused, or if
discreteness is desired).

Tables 2–4 in Section 5.5 contain the parameters and cost estimates for off-the-shelf
hardware, using the following scheme. FPGA chips are connected in a two-dimensional grid,
where each chip holds a block of mesh nodes. The FPGA we consider is the Altera Stratix
EP1S25F1020C7, which is expected to cost about $150 in large quantities in mid-2003.
It contains 2Mbit of DRAM and 25 660 “logic elements” that consist each of a single-bit
register and some configurable logic. Since on-chip DRAM is scant, we connect each FPGA
to several DRAM chips. The FPGA has 706 I/O pins that can provide about 70Gbit/sec
of bandwidth to the DRAM chips (we can fully utilize this bandwidth by “swapping” large
continuous chunks into the on-FPGA DRAM; the algorithm allows efficient scheduling).
These I/O pins can also be used for communicating with neighbouring FPGAs at an
aggregate bandwidth of 280Gbit/sec.

The parameters given in Table 2 are normalized, such that one LE is considered to
occupy 1 area unit, and thus Af = 1. We make the crude assumption that each LE
provides the equivalent of 20 logic transistors in our custom design, so At = 0.05. Every
FPGA chip is considered a “wafer” for the purpose of calculation, so Aw = 51 840. Since
DRAM is located outside the FGPA chips, Ad = 0 but Cd = 4 · 108, assuming $320 per
gigabyte of DRAM. Td and Tp are set according to available bandwidth. For Tl we assume
that on average an LE switches at 700MHz. Ap = 0, but we need to verify that the derived
Np is at most 706 (fortunately this holds for all our parameter choices).

As can be seen from the tables, the FPGA-based devices are significantly less efficient
than both the custom designs and properly parallelized PC-based implementation. Thus
they appear unattractive.

B The traditional approach to the matrix step

We give a rough estimate of the price and performance of a traditional implementation of
the matrix step using the block Lanczos method [13] running on standard PC hardware.
Let the “small” and “large” matrices be as in 5.1.

B.1 Processing the “small” matrix using PCs. A bare-bones PC with a 2GHz
Pentium 4 CPU can be bought for $300, plus $320 per gigabyte of RAM. We will use
block Lanczos with a blocking factor of 32, to match the processor word size. The hD =
4 · 109 nonzero entries of the “small” matrix require 13GB of storage, and the auxiliary
D-dimensional vectors require under 1GB. The construction cost is thus about $4,500.

The bandwidth of the fastest PC memory is 4.2GB/sec. In each matrix-by-vector
multiplication, all the nonzero matrix entries are read, and each of these causes an up-
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date (read and write) of a 32-bit word. Thus, a full multiplication consists of accessing
hD log2(D) + 2hD · 32 = 4.8 · 1010 bits, which takes about 11 seconds. The effect of the
memory latency on non-sequential access, typically 40n, raises this to about 50 seconds
(some reduction may be possible by optimizing the memory access pattern to the specific
DRAM modules used, but this appears nontrivial). Since 2D/32 matrix-by-vector multi-
plications have to be carried out [13], we arrive at a total of 1.25 ·108 seconds (disregarding
the cheaper inner products), i.e., about 4 years.

The throughput cost is 5.6 ·1011, which is somewhat better than the sorting-based mesh
design (despite the asymptotic advantage of the latter), but over 5000 times worse than the
the single-wafer improved mesh design (cf. 5.5). Parallelization can be achieved by increas-
ing the blocking factor of the Lanczos algorithm — this would allow for different tradeoffs
between construction cost and running time, but would not decrease the throughput cost.

B.2 Processing the “large” matrix using PCs. The large matrix contains 250 times
more columns at the same (assumed) average density. Thus, it requires 250 times more
memory and 2502 = 62 500 times more time than the small matrix. Moreover, all row
indices now occupy dlog2 109e = 34 bits instead of just 24. The cost of memory needed to
store the matrix is $1.36M (we ignore the lack of support for this amount of memory in
existing memory controllers), and the running time is 270 000 years. This appears quite
impractical (we cannot increase the blocking factor by over

√
D, and even if we could, the

construction cost would be billions of dollars).

Remark B.3 Once attention is drawn to the cost of memory, it becomes evident that bet-
ter schemes are available for parallelizing a PC-based implementation. One simple scheme
involves distributing the matrix columns among numerous PCs such that each node j is
in charge of some set of columns Cj ⊂ {1, . . . , D}, and contains only these matrix entries
(rather than the whole matrix). The nodes are networked together with a binary tree topol-
ogy. Let ai denote the i-th column of A. Each matrix-by-vector multiplication Aw consists
of the root node broadcasting the bits w1, . . . , wD down the tree, each node j computing
a partial sum vector rj =

∑
i∈Cj ,wi=1 ai (mod 2), and finally performing a converge-cast

operation to produce the sum
∑

j rj = Aw (mod 2) at the root. If the broadcast and
converge-cast are done in a pipelined manner on 0.5 gigabit links, this is easily seen to
reduce the throughput cost to roughly 5.5 · 1010 for the small matrix and 4.8 · 1016 for the
large matrix (see Tables 3,4).

For constant-bandwidth links, this scheme is asymptotically inefficient since its through-
put cost is L(3β). However, for the parameters considered it is outperformed only by the
custom-built improved mesh.
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