On the Cost of Factoring RSA-1024

Adi Shamir Eran Tromer

Weizmann Institute of Science
{shamir,tromer }@wisdom.weizmann.ac.il

Abstract tion. The best known algorithm for factoring large in-
tegers is the Number Field Sieve (NESyhose time

_ and space complexities are subexponential in the size
As many cryptographic schemes rely on the hardnesgs the composite. However, little is known about the

of integer factorization, exploration of the concrete g complexity of this problem. The evident confi-

costs of factoring large integers is of considerable iNyance in the hardness of factoring comes from observ-

terest. Most research has focused on PC-based inlyq that despite enormous interest, no efficient factor-
plementations of factoring algorithms; these have SUCihg algorithm has been found.

cessfully factored 530-bit integers, but practically can-

not scale much further. Recent works have placed To determine what key sizes are appropriate for a
the bottleneck at the sieving step of the Number Fieldyiven application, one needs concrete estimates for the
Sieve algorithm. We present a new implementation otost of factoring integers of various sizes. Predicting
this step, based on a custom-built hardware device thahese costs has proved notoriously difficult, for two
achieves a very high level of parallelism "for free”. reasons. First, the performance of modern factoring
The design combines algorithmic and technologicahlgorithms is not understood very well: their com-
aspects: by devising algorithms that take advantagglexity analysis is often asymptotic and heuristic, and
of certain tradeoffs in chip manufacturing technology,leaves large uncertainty factors. Second, even when
efficiency is increased by many orders of magnitudehe exact algorithmic complexity is known, it is hard
compared to previous proposals. Using this hypothetto estimate the concrete cost of a suitable hypothetical
ical device (and ignoring the initial R&D costs), it ap- |large-scale computational effort using current technol-
pears possible to break a 1024-bit RSA key in one yeasgy; it's even harder to predict what this cost would
using a device whose cost is about $10M (previouse at the end of the key’s planned lifetime, perhaps a
predictions were in the trillions of dollars). decade or two into the future.

Due to these difficulties, common practice is to

. rely on extrapolations from past factorization exper-
1 Introduction iments. Many such experiments have been performed
and published; for example, the successful factoriza-

. i .) o
The security of many cryptographic schemes and Iorot_|on of a 512-bit RSA key in 1999 [5] clearly indicated

tocols depends on the hardness of finding the factors 1igee [10] for the seminal works ard [17] for an introduction.
of large integers drawn from an appropriate distribu-The subtask we discuss is defined in Section 2.1.

the insecurity of such keys for many applications, andhe NFS factoring algorithm using a combination of
prompted a transition to 1024-bit keys (often necessihighly parallel electronics and an analog optical adder.
tating software or hardware upgradésY.he current
factorization record, obtained nearly four years later Recently, D. J. Bernstein made an important ob-
in March 2003, stands at 530 bits 3 From this data, ~Servation [3] about the major algorithmic steps in the
and in light of the subexponential complexity of the NFS algorithm. These steps have a huge input, which
algorithm used, it seems reasonable to surmise that accessed over and over many times. Thus, tradi-
factoring 1024-bit RSA keys’ which are Currenﬂy in tional PC-based implementations are very inefficient
common use, should remain infeasible for well over dn their use of storage: a huge number of storage bits
decade. is just sitting in memory, waiting for a single pro-
cessor to access them. Most of the previous work
However, the above does not reflect a fundamenen NFS cost analysis (with the notable exception of
tal economy-of-scale consideration. While the pubq{21]) considered only the number of processor instruc-
lished experiments have employed hundreds of worktions, which is misleading because the cost of mem-
stations and Cray supercomputers, they have alwaywy greatly outweighs the cost of the processor. In-
used general-purpose computer hardware. Howevestead, one should consider the equipment cost per unit
when the workload is sufficiently high (either be- of throughput, i.e., the construction cost multiplied by
cause the composites are large or because there ate running time per unit of work.
many of them to factor), it becomes more efficient
to construct and employ custom-built hardware ded- Following this observation, Bernstein presented a
icated to the task. Direct hardware implementatio’€W parallel algorithm for the matrix step of the NFS
of algorithms is considerably more efficient than soft-algorithm, based on a mesh-connected array of pro-
ware implementations, and makes it possible to elimcessors. Intuitively, the idea is to attach a simple pro-
inate the expensive yet irrelevant peripheral hardwar€essor to each block of memory and execute a dis-
found in general-purpose computers. An example offibuted algorithm among these processors to get bet-
this approach is the EFF DES Cracker [7], built inter utilization of the memaory. With this algorithm, and
1998 at a cost of $210,000 and capable of breakin§y changing some adjustable parameter in the NFS al-
a DES key in expected time of 4.5 days using 368640rithm so as to minimize “cost per unit of through-
search units packed into 1536 custom-built gate arraput” rather than instruction count, Bernstein's algo-
Chips_ |ndeed’ |tS equipment cost per unit Of through.nthm allows one to factor integers that are 3.01 times

put was much lower than similar experiments thatonger compared to traditional algorithms (though
used general_purpose Computersl Only 1.17 times |Onger when the traditional algorithms

are re-optimized for throughput cost). Subsequent
Custom-built hardware can go beyond efficient im-works |14, 8] evaluated the practicality of Bernstein’'s
plementation of standard algorithms — it allow spe-algorithm for 1024-bit composites, and suggested im-
cialized data paths, enormous parallelism and caproved versions that significantly reduced its cost.
even use non-electronic physical phenomena. Takin@vith these hypothetical (but detailed) designs, the cost
advantage of these requires new algorithms or adaptaf the matrix step was brought down from trillions of
tion of existing ones. One example is the TWINKLE dollars [21] to at most a few dozen million dollars (all
device [18, 13], which implements the sieving step offigures are for completing the task in 1 year).

2Earlier extrapolations indeed warned of this prospect. This left open the issue of the other major step

_ Better r_esults were obtained for_composnes of a special form|n the Number Field Sieve, namely the sieving step.
using algorithms which are not applicable to RSA keys.

For 1024-bit composites it was predicted that sievper such prime. Each paip;,r;) corresponds to an
ing would require trillions of dollars,[2#]and would ~ arithmetic progressio;, = {a : a = r; (mod p;)}.

be impractical even when using the TWINKLE de- We are interested in identifying the sieve locations
vice. This article discusses a new design for a custom{0, ... ,R— 1} that are members of many progressions
hardware implementation of the sieving step, whichP; with largep;:

reduces this cost to about $10M. The new device,

called TWIRL®, can be seen as an extension of the g(a) >T where g(z) = Z logy, ps
TWINKLE device. However, unlike TWINKLE it iaeh;

does not have optoelectronic components, and cafdr some small constarit. It is permissible to have
thus be manufactured using standard VLSI technolésmall” errors in this threshold check; in particular, we
ogy on silicon wafers. The underlying idea is to useround all logarithms to the nearest integer. For each
a single copy of the input to solve many subproblemshat exceeds the threshold, we also need to find the set
in parallel. Since input storage dominates cost, if the(; : ¢ ¢ P;} of progressions that contribute §¢a).
parallelization overhead is kept low then the resulting

speedup is obtained essentially for free. Indeed, the We shall concentrate on 1024-bit composites and
main challenge lies in achieving this parallelism effi-a particular choice of the adjustable NFS parameters,
ciently while allowing compact storage of the input. with R = 1.1 - 10' and B = 3.5 - 10°. We need
Addressing this involves myriad considerations, rangto performH = 2.7 - 10® such sieving tasks, called
ing from number theory to VLSI technology. The re- sieve linesthat have different (though related) inpfits.
sulting design is sketched in the following sections,The numerical values that appear below refer to this
and a more detailed description appears in [19]. specific parameter choice.

2 Context 2.2 Traditional Sieving

o The traditional method of performing the sieving task
2.1 The Sieving Task is a variant of Eratosthenes’s algorithm for finding
primes. It proceeds as follows. An array of accumula-

The TWIRL device is specialized to a particular task,torsC[a] is initialized to0. Then, the progression§
namely the sieving task which occurs in the Numberare considered one by one, and for e&tkhe indices
Field Sieve (and also in its predecessor, the Quadratie € P; are calculated and the value, p; is added to

Sieve). This section briefly reviews the sieving prob-every suchC[a]. Finally, the array is scanned to find
lem, with many simplifications. the a values where’[a] > T'. The point is that when

looking at a specifid®; its members can be enumer-
The inputs of the sieving problem afec Z (sieve ated very efficiently, so the amortized cost dbgy, p;
line width), T > 0 (threshold and a set of pair§;,r;) contribution is low.
where thep; are the prime numbers smaller than some

factor base bound3. There is, on average, one pair When this algorithm is implemented on a PC, we
cannot apply it to the full range = 0, ... ,R—1 since

4 [15] gave a lower bound of about $160M for a one-day ef-
fort. This disregarded memory, but is much closer to our results In fact, for each sieve line we need to perform two sieves: a
since the new device greatly reduces the amortized cost of menfrational sieve” and an “algebraic sieve” (see Sec:ior 3.3). The
ory. parameters given here correspond to the rational sieve, which is

STWIRL stands for The Weizmann Institute Relation Locator. responsible for most (two thirds) of the device’s cost.

there would not be enough RAM to stofeaccumu- Traditional TWINKLE
lators. Thus, the range is broken into smaller chunks, Sieve locations| Space (accumulators) Time
each of which is processed as above. However, if Progressions Time Space (cells)
the chunk size is not much larger thahthen most

progressions make very few contributions (if any) to

each chunk, so the amortized cost per contributionin3 T\N/IRL

creases. Thus, a large amount of memory is required,

both for the accumulators and for storing the input

(that is, the list of progressions). As Bernstein [3]3.1 Approach

observed, this is inherently inefficient because each

memory bit is accessed very infrequently.

The TWIRL device follows the time-space reversal
of TWINKLE, but increases the throughput by simul-
taneously processing thousands of sieve locations at
2.3 Sieving with TWINKLE each clqck cycle. _Since this is dpne with (almost) no
duplication of the input, the equipment cost per unit
of throughput decreases dramatically. Equivalently,
An alternative way of performing the sieving was pro-\e can say that the cost of storing the huge input is

posed in the TWINKLE device: [18. 13], which oper- amortized across many parallel processes.
ates as follows. Each TWINKLE device consists of a

wafer containing numerous independent cells, each in As a first step toward TWIRL, consider an elec-
charge of a single progressidn. After initialization tronic variant of TWINKLE which still operates at a
the device operates synchronously foclock cycles, rate of one sieve location per clock cycle, but does so
corresponding to the sieving range < a < R}. At using a pipelined systolic chain of electronic adders.
clock cyclea, the cell in charge of the progressiéh Such a device would consist of a long unidirectional
emits the valuéog,,p; iff « € P;. The values emitted bus, 10 bits wide, that connects millions of conditional
at each clock cycle are summed to obtgim), and if ~ adders in series. Each conditional adder is in charge
this sum exceeds the threshdldhen the integet is of one progressio;; when activated by an associ-
reported. This event is announced back to the cells, sated timer, it adds the valdeg;,p; to the bus. At time
that thei values of the pertaining; is also reported. ¢, the z-th adder handles sieve location- z. The
first value to appear at the end of the pipeling(8),

The global summation is done using analog op-ollowed by ¢(1),...,g(R), one per clock cycle. See
tics: to “emit” the valudog p;, a cell flashes an inter- Fig. 1(a).

nal LED whose intensity is proportional tog p;. A

light sensor above the wafer measures the total light The parallelization is obtained by handling the sieve
intensity in each clock cycle, and reports a succesgange{0,...,R — 1} in consecutive chunks of length
when this exceeds a given threshold. The cells thems = 4096.% To do so, the bus is thickened by a fac-
selves are implemented by simple registers and riptor of s and now contains logical lines, where each
ple adders. To support the optoelectronic operationdine carries10-bit numbers. At time, the z-th stage
TWINKLE uses Gallium Arsenide wafers (alas, theseof the pipeline handles the sieve locatighs- z)s + i,
are relatively small, expensive and hard to manufac "This variant was considered in [13], but deemed inferior in
ture compared to silicon wafers, which are readily, . - = U

available). Compared to traditional sieving, TWIN- &, _ 4096 applies to the rational sieve. For the algebraic sieve
KLE exchanges the roles of space and time: (see Section 3.3) we use even higher parallelism: 32768.

(t-1)s+(s-1)
t-2)s+(s-1)
t-3)s+(s-1)

1—4)s+(s=1)

(b)

Figure 1: Flow of sieve locations through the device in (a) a chain of adders and (b) TWIRL.

i €{0,...,s—1}. Thefirst values to appear atthe end While the function of all the stations is identical, we
of the pipeline ardg(0),...,9(s—1)}; they appear si- use a heterogeneous architecture that employs three
multaneously, followed by successive disjoint groupdifferent station designs — thg come in a very large
of sizes, one group per clock cycle. See Fig. 1(b). range of sizes, and different sizes involve very differ-
ent design tradeoffs. The progressions are partitioned
We now have to add thieg,,p; contributions to all jnto stations according to the size of their intervals

s lines in parallel. Obviously, the naive solution of du- and the optimal station design is employed in each
plicating all the adders times gains nothing in terms case.

of equipment cost per unit of throughput. If we try to

use the TWINKLE-like circuitry without duplication, Due to space limitations, we describe only the most
we encounter difficulties in scheduling and communi-important station design, which is used for the ma-
cating the contributions across the thick bus: the sievgority of progressions. The other station designs, and
locations flow down the bus (in Fig 1(b), vertically), additional details, can be found in [19].

and the contributions should somehow travel across

the bus (horizontally) and reach an appropriate adder

at exactly the right time. :
y g 3.2 Large primes

Accordingly, we replace the simple TWINKLE-like
cells by other units that perform scheduling and routq, every prime smaller thaB = 3.5-10° there is (on

ing. Each such unit, called station handles some yerage) one progression. Thus the majority of pro-
small portion of the progressions; its interface consistgressions have intervajs that are much larger than
of bus input, bus output, clock and some circuitry for ;. _ 4096, so they producéog,,p; contributions very
loading the inputs. The stations are connected seriall¥a|qom. For 1024-bit composites there is a huge num-
in a pipeline, and gt the end of the bus (i.e., at the OU'Fber (aboutl.6 - 108) of such progressions; even with
put of the last station) we place a threshold check uniny/NKLE’s simple emitter cells, we could not fit all

that produces the device output. of them into a single wafer. The primary considera-

tion is thus to store these progressions as compactlynchronized, which requires a lot of care. However,
as possible, while maintaining a low cost per contri-the benefit is that the cost per contribution is very low:
bution. Indeed, we will succeed in storing these pro-most of the time the event is stored very compactly in
gressions in compact DRAM-type memory using onlythe form of an event in DRAM; then, for a brief mo-
sequential (and thus very efficient) read/write accesanent it occupies the processor, and finally it occupies
This necessitates additional support logic, but its cosa delivery line for the minimum possible duration —
is amortized across many progressions. This efficienthe amount of time needed to travel across the bus to
storage lets us fit 4 independent 1024-bit TWIRL de-the destination bus line.

vices (each of which is = 4096 times faster than
TWINKLE) into a single 30cm silicon wafer. It is the processor’s job to ensure accurate schedul-

ing of emission3® The ideal way to achieve this
The station design for these progressions (namelyyould be to store the events in a priority queue that
those withp; > 5.2-10°) is shown in Fig. 2 (after some is sorted by the emission time. Then, the processor
simplifications). The progressions are partitioned intowvould simply repeat the following loch*
8,490 memory banks, so that each bank contains many
(betweerB2 and2.2-10°) progressions. Each progres-
sion is stored in one of these memory banks, where at1. Pop the next eventp;, ¢;, 7;) from the priority

any given time it is represented by eventof the form queue.

., Y, 1;), whose meaning is:at time 5, send) - .
(pis i, 73) a gis Tir 2. Wait until time 7; and then send an emission to
a log,p; contribution to bus line 4.

the delivery line, addressed to bus lifje

Each memory bank is connected to a special-
purpose processor, which continuously processes
these events and sends correspondmigsion®f the
form “add log,p; to bus line ¢;" to attached de-

livery lines, which span the bus. Each delivery line gianqard implementations of priority queues (e.g., the
acts as a shift register that carries the emissions aCroR3ap data structure) are unsuitable for our purposes
the bus. Additionally, at every intersection betweenyq tq the passive nature of standard DRAM and high
a delivery line and a bus line there is a conditionaljztency First, the processor would need to make a log-
addef; when the emission reaches its destination bus,ihmic number of memory accesses at each iteration.
line (;, the valuelog,,p; is added to the value that \yqrse yet, these memory accesses occur at unpre-
passes through that point of the bus pipeline at thafiapie places, and thus incur a significant random-
moment. access overhead. Fortunately, by taking advantage of

. , , , the unique properties of the sieving problem we can
Thus, sieve locations are (logically) flowing down o Y .
et a good approximation of a priority queue that is

the bus at a constant velocity, and emissions are bex -
. . ighly efficient.
ing sent across the bus at a constant velocity. To en-

sure that each emission “hits” its target at the right pyiefiy the idea is as follows. The events are read
time, the two perpendicular flows must be perfeC“ysequentially from memory (step 1 above) in a cyclic

order, at constant rate. When the new calculated event
®We use carry-save adders, which are very compact and have
low latency (the tradeoff is that the bus lines now use a redun- *°In the full design [19], there is an additional component,
dant representation of the sums, which doubles the bit-width ofalled abuffer, which performs fine-tuning and load balancing.
the bus). "For simplicity, here we ignore the possibility of collisions.

3. Compute the next everp;, ¢, /) of this pro-

20 11

gression, and push it into the priority queue.

Memory |

Processor
5
.
.
.
5
—

Memory |@=

Processor
v
]
v
&
o
L]
v
]
v
]
m
al

Memory |

Processor
—
—
—
—
—
—

Figure 2: Schematic structure of a (simplified) largish station.

is written back to memory (step 3 above), it is written 3.3 Other Highlights

to a memory address that will be read just before its

schedule time/. Since bothr/ and the read schedule _ _ , ,

are known, this memory address is easily calculatecg)ther station deS|gnséFo.r Progressions with small
by the processor. In this way, after a short stabiIizatioﬂmerval bi < 5.2-10°), it 'S inefficient to contin-
period the processor always reads imminent events, upusly shuttle the progression state' to gnd from pas-
exactly as desired. Each iteration now involves justs've_ memory. Thus_, egch progression 1s handl_ed by
one sequential-access read operation and one randofil* independent gctl_\zearnlttercell that includes an in-
access write operation. In addition, it turns out thatternal count.er (S|mllquy to T\,NINKLE)_' An emitter
with appropriate choice of parameters we can causg® ves multiple '9“3 lines, using a varlanF of the d(_a-
the write operations to always occur in asmallwindow“_’ery lines described above. Using certain algebraic
of activity, just behind the “read head”. We may thust”CkS’ thgse ceII; can be made very compact. TWO
view the 8,490 memory banks as closed rings of var- SL_‘Ch stapon d_e3|gr_1$ are used: for the progressions
ious sizes, with an active window “twirling” around with medlum-glzed |.ntervalis, many'prc.)gressmns_share
each ring at a constant linear velocity. Each such indEhe same de""e“_’ lines .(smce emissions are still r_IOt
ing window is handled by a fast SRAM-based cachee"Y frequent);_thls requires some coordlnatlon logic.
whose content is swapped in and out of DRAM inFor. very _smaII intervals, each emitter cell has its own
large blocks. This allows the bulk of events to be heldOIeIIVery line.

in DRAM. Better yet, now the only interface to the
DRAM memory is through the SRAM cache; this al-
lows elimination of various peripheral circuits that are
needed in standard DRAM.

Diaries. Recall that in addition to finding the sieve
locationsa whose contributions exceed the threshold,
we also want to find the sets : a € P;} of rele-
vant progressions. This is accomplished by adding a
diary to each processor (it suffices to handle the pro-
gressions with large interval). The diary is a memory
bank which records every emission sent by the pro-
cessor and saves it for a few thousand clock cycles
2Collisions are handled by adding appropriate slacks. — the depth of the bus pipeline. By that time, the

corresponding sieve locatianhas reached the end of 4 CoOSt
the bus and the accumulated sum of logarithyts)
was checked. If the threshold was exceeded, this is

reported to all processors and the corresponding diar§,ced on the detailed design, we estimated the cost

entries are recalled and collected. Otherwise, these di;,q performance of the TWIRL device using today’s
ary entries are discarded (i.e., their memory is reusedy| g technology (namely, the.13um process used

in many modern memory chips and CPUs). While
these estimates are hypothetical, they rely on a de-
&ailed analysis and should reasonably reflect the real
cost. It should be stressed that the NFS parameters as-
sumed are partially based on heuristic estimates. See
‘[ﬂlg] for details.

Cascading the sievesln the Number Field Sieve we
have to perform two sieving tasks in parallel:ra
tional sievewhose parameters were given above, an
an algebraic sievewhich is usually more expensive
since it has a large value d8. However, we suc-
ceed in greatly reducing the cost of the algebraic siev

by using an even higher parallelization factor for it: 1924 it composites.Recall that to implement NFS

s = 32,768. This is made possible by an alteration e haye to perform two different sieving tasks, a ratio-
that greatly reduces the bus width: the algebraic sievg,| sieve and an algebraic sieve, which have different
needs only to consider the sieve locations that passeéjarameters. Here, the rational sieve (whose param-
the rational sieve, i.e., about one in 5,000. Thus Weyters were given above) dominates the cost. For this
connect the input of the algebraic sieve to the output ofjaye a TWIRL device requirds,960mm? of silicon

the rational sieve, and in the algebraic sieve we replacgafer area. so we can fit 4 of tr;em on a 30cm silicon
the thick bus and delivery lines by units that consideryafer. Most of the device area is occupied by the large
only the sieve locations that passed the ratl_or_1al Sieveyrogressions (and specifically7% of the device is
We now have a much narrower bus containing onlyseq for their DRAM banks). For the algebraic sieves
32 lines, though each line now carries both a partialye yse a higher parallelization factor, = 32,768.

sum (as before) and the indexof the sieve location e algebraic TWIRL device requirés,900mm? of
to which the sum belongs. Logically, the sieve loca-gjjicon wafer area — a full wafer — and here too most

tions still travel in chunks of size, so that the regular of the device is occupied by the largish progressions
and predictable timing is preserved. Physically, Only(the DRAM banks occup§6%)
the “relevant” locations (at most 32) in each chunk are

present; emissions addressed to the rest are discardedThe devices are assembled in clusters that con-
sist of 8 rational TWIRLs (occupying two wafers)

Fault tolerance. The issue of fault tolerance is very 504 1 algebraic TWIRL (on a third wafer), where
important, as silicon wafers normally have multiple g5ch rational TWIRL has a unidirectional link to

local faults. When the wafer contains many indepenyyq algebraic TWIRL over which it transmit2 bits
dent small chips, one usually discards the faulty ones,er clock cycle. A cluster handles a full sieve line
However, for 1024-bit composites TWIRL is a wafer- j, R/32,768 clock cycles, i.e.,33.4 seconds when
scale design and thus must operate in the presence of,cked at 1GHz. The full sieving involvel sieve
faults. All large components of TWIRL can be made”neS’ which would require94 years when using a
fault-tolerant by a combination of techniques: routingsing|e cluster (after a heuristic that rules 68%% of
around faults, post-processing and re-assigning faulty,» sieve locations). At a cost ¢2.9M (assum-

units to spare. We can tolerate occasional transieqﬁg $5,000 per wafer), we can builth4 indepen-

faults since the sieving task allows a few errors; onlyyent TWIRL clusters that, when run in parallel, would
the total number of good values matters. complete the sieving task within 1 year.

After accounting for the cost of packaging, power5 Conclusions

supply and cooling systems, adding the cost of PCs
for collecting the data and leaving a generous error
margin’® it appears realistic that all the sieving re-
quired for factoring 1024-bit integers can be com-It has been often claimed that 1024-bit RSA keys are
pleted within 1 year by a device that co$ts)M to safe for the next 15 to 20 years, since when applying
manufacture. In addition to this per-device cost, theréhe Number Field Sieve to such composites both the
would be an initial NRE cost on the order $20M sieving step and the linear algebra step would be un-
(for design, simulation, mask creation, etc.). feasible (e.g., [4. 21] and a NIST guideline draft [16]).

However, these estimates relied on PC-based imple-
512-bit composites. Since 512-bit factorization is mentations. We presented a new design for a custom-
well-studied [18. 13. 8] and backed by experimentalbuilt hardware implementation of the sieving step,
data [5], it is interesting to compare 512-bit TWIRL which relies on algorithms that are highly tuned for
to previous designs. We shall use the same 512-bit pahe available technology. With appropriate settings of
rameters as in [13, 8], though they are far from optimakthe NFS parameters, this design reduces the cost of
for TWIRL. With s = 1,024, we can fit 79 TWIRLs sieving to about $10M (plus a one-time cost of $20M).
into a single silicon wafer; together, they would han-Recent works [14, 9] indicate that for these NFS pa-
dle a sieve line in 0.00022 seconds (compared to 1.8ameters, the cost of the matrix step is even lower.
seconds for TWINKLE wafer and 0.36 seconds for
a full wafer using mesh-based design of [8]). Thus, Our estimates are hypothetical and rely on numer-
in factoring 512-bit composites the basic TWIRL de-0us approximations; the only way to learn the precise
sign is about,600 times more cost effective than the costs involved would be to perform a factorization ex-
best previously published desigri [8], atd00 times ~ periment. However, it is difficult to identify any spe-
more cost effective than TWINKLE. Such a wafer full cific issue that may prevent a sufficiently motivated
of TWIRLs, which can be manufactured for aboutand well-funded organization from applying the Num-
$5,000 in large quantities, can complete the sieving fober Field Sieve to 1024-bit composites within the next
512-bit composites in under 10 minutes (this is befordew years. This should be taken into account by any-
TWIRL-specific optimizations which would halve the one planning to use a 1024-bit RSA key.
cost, and using the standard but suboptimal parameter
choice).

Acknowledgment. This work was inspired by Daniel

768-bit composites For 768-bit composites, a sin- 5 gemstein’s insightful work on the NFS matrix step,
gle wafer containing 6 TWIRL clusters can complete 4 its adaptation to sieving by Willi Geiselmann

the sieving in 95 days. This wafer would cost aboutyq Rainer Steinwandt. We thank the latter for in-

$5,000 to manufacture — one tenth of the RSA-768gegting discussions of their design and for suggest-

challenge prizeT [20]. U_nfortunately these figures Aréng an improvement to ours. We are indebted to Ar-
not easy to verify experimentally, nor do they providejen, k. | enstra for many insightful discussions, and

a quick way to gain $45,000, since the initial NRE costi; ropert D. Silverman, Andrew “bunnie” Huang,

remains $10M-$20M. Michael Szydlo and Markus Jakobsson for valuable
comments and suggestions. Early versions of [12] and
the polynomial selection programs of Jens Franke and
Bt is a common rule of thumb to estimate the total cost as 1 NOrsten Kleinjung were indispensable in obtaining
twice the silicon cost; to be conservative, we triple it. refined estimates for the NFS parameters.

References

[1] F. Bahr, J. Franke, T. Kleinjung, M. Lochter, [12]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

M. Bohm, RSA-160Q e-mail announcement,
Apr. 2003, http://lwww.loria.fr/
“zimmerma/records/rsal60

Daniel J. BernsteirtHow to find small factors of [13]

integers manuscript, 200Chttp://cr.yp.
to/papers.html

Daniel J. BernsteinCircuits for integer factor-
ization: a proposagl manuscript, 2001http:
/icr.yp.to/papers.htmi

Richard P. BrentRecent progress and prospects
for integer factorisation algorithmsproc. CO-
COON 2000, LNCS1858 3-22, Springer-
Verlag, 2000

S. Cavallar, B. Dodson, A.K. Lenstra, W. Lioen,
P.L. Montgomery, B. Murphy, H.J.J. te Riele,
et al., Factorization of a 512-bit RSA modu-
lus, proc. Eurocrypt 2000, LNC3807 1-17,
Springer-Verlag, 2000

Don CoppersmithModifications to the number
field sieve Journal of Cryptology6(3) 169-180,
1993

Electronic Frontier Foundation, DES
Cracker Project http://www.eff.org/
descracker

Willi Geiselmann, Rainer Steinwandf dedi-
cated sieving hardwargroc. PKC 2003, LNCS
2567254-266, Springer-Verlag, 2002

Willi Geiselmann, Rainer Steinwandtdard-

ware to solve sparse systems of linear equations

over GF(2) proc. CHES 2003, LNCS, Springer-
Verlag, to appear.

Arjen K. Lenstra, H.W. Lenstra, Jr., (edsThe
development of the number field siekecture
Notes in Math1554 Springer-Verlag, 1993

Arjen K. Lenstra, Bruce DodsonNFS with
four large primes: an explosive experiment

10

proc. Crypto '95, LNC®63372-385, Springer-
Verlag, 1995

Arjen K. Lenstra, Bruce Dodson, James Hughes,
Wil Kortsmit, Paul LeylandFactoring estimates
for a 1024-bit RSA modulusproc. Asiacrypt
2003, LNCS, Springer-Verlag, to appear.

Arjen K. Lenstra, Adi Shamir\nalysis and opti-
mization of the TWINKLE factoring devigaroc.
Eurocrypt 2002, LNCSL807 35-52, Springer-
Verlag, 2000

Arjen K. Lenstra, Adi Shamir, Jim Tomlinson,
Eran TromerAnalysis of Bernstein’s factoriza-
tion circuit, proc. Asiacrypt 2002, LNC2501
1-26, Springer-Verlag, 2002

Arjen K. Lenstra, Eric R. VerheulSelecting
cryptographic key sizeslournal of Cryptology,
14(4) 255-293, 2002

NIST, Key management guidelines,
Part 1. General guidance (draft) Jan.
2003, http://csrc.nist.gov/
CryptoToolkit/tkkeymgmt.html

7] Carl PomeranceA Tale of Two Sieved\otices

of the AMS, 1473-1485, Dec. 1996

Adi Shamir, Factoring large numbers with the
TWINKLE device (extended abstractproc.
CHES'99, LNCS1717 2-12, Springer-Verlag,
1999

9] Adi Shamir, Eran Tromelkactoring large num-

bers with the TWIRL deviggroc. Crypto 2003,
LNCS 2729 Springer-Verlag, 2003

RSA Securityy, The new RSA factor-
ing challenge web page, Jan. 2003,
http://www.rsasecurity.com/
rsalabs/challenges/factoring/

Robert D. Silverman, A cost-based secu-
rity analysis of symmetric and asymmetric
key lengths Bulletin 13, RSA Security,
2000, http://www.rsasecurity.com/
rsalabs/bulletins/bulletin13.

htmi

http://www.loria.fr/~zimmerma/records/rsa160
http://www.loria.fr/~zimmerma/records/rsa160
http://cr.yp.to/papers.html
http://cr.yp.to/papers.html
http://cr.yp.to/papers.html
http://cr.yp.to/papers.html
http://www.eff.org/descracker
http://www.eff.org/descracker
http://csrc.nist.gov/CryptoToolkit/tkkeymgmt.html
http://csrc.nist.gov/CryptoToolkit/tkkeymgmt.html
http://www.rsasecurity.com/rsalabs/challenges/factoring/
http://www.rsasecurity.com/rsalabs/challenges/factoring/
http://www.rsasecurity.com/rsalabs/bulletins/bulletin13.html
http://www.rsasecurity.com/rsalabs/bulletins/bulletin13.html
http://www.rsasecurity.com/rsalabs/bulletins/bulletin13.html

	Abstract
	1 Introduction
	2 Context
	2.1 The Sieving Task
	2.2 Traditional Sieving
	2.3 Sieving with TWINKLE

	3 TWIRL
	3.1 Approach
	3.2 Large primes
	3.3 Other Highlights

	4 Cost
	5 Conclusions
	References

