
6.895 Randomness and Computation March 5, 2008

Lecture 9

Lecturer: Ronitt Rubinfeld Scribe: Andrew Correa

1 Last Time

Today we look at the problem of learning Fourier coefficients with queries. The goal is to output all S
s.t. f̂(S) ≥ θ and all S that are output should have f̂(S) ≥ θ

2 .
We explore the following full binary tree. The 2k nodes on the k-th level, 0 ≤ k ≤ k, correspond to

all subsets of [k]. A node S ⊆ [k] on the k-th level has two children that correspond to S and S∪{k+1}.
The leaves of the tree correspond to all subsets of [n], and therefore to all Fourier coefficients.

For a node S1 ⊆ [k] on the k-the level, we define

fk,S1
(xk+1, . . . , xn) =

∑

T2⊆{k+1,...,n}

f̂(S1 ∪ T2) · χT2
(xk+1, . . . , xn).

Our plan is to go down subtrees of value Ex[f2
k,S1

(x)] ≥ δ2

2 .

2 Learning Fourier Coefficients with Queries

So far we looked at the case where we had no choice of which x to use. We had to make the best of the
pairs (x, f(x)) we were given. This time we look at the case when we are allowed to choose which x to
query, so we can take advantage of that. The basic idea is that we will be using a exhaustive search of
a (hopefully very) pruned binary tree. How do we prune it? We will be using an “amazing” oracle.

Remember Parseval’s: 1 = Ex[f2(x)] =
∑

S f̂2(S).

Claim 1 ∀k, S1 ⊆ [k]

Ex[f2
k,S1

(x)] =
∑

T2

f̂2(S1 ∪ T2)

Proof This follows directly from Parseval’s as f̂2(S1 ∪ T2) is a Fourier coefficient of f2
k,S1

(x).

Now we must prove that we are traversing an appropriate number (i.e. not too many and not too few)

nodes of the tree. In other words, we must prove both that we are pruning bad x whose E[f̂2
k,S1

(x)] < θ2

2

and at the same time traversing into nodes that represent the x whose E[f̂2
k,S1

(x)] ≥ θ2

2 .

Fact 2 (Not too Few) For all subsets S1, if there exists a T̃2 such that |f̂(S1 ∪ T̃2)| > θ, then:

Ex[f2
k,S1

(x)] =
∑

T2

f̂2(S1 ∪ T2) ≥ f̂2(S1 ∪ T̃2) ≥ θ2

Thus we know that we will not visit too few nodes in the tree.
. . . but what if we visit too many . . .

Lemma 3 (Not too Many) For all θ > 0, we have:

1. Less than 1
θ2 S’s satisfy |f̂(S)| ≥ θ2.

2. For all 0 ≤ k ≤ n, less than 1
θ2 functions fk,S1

have Ex[f2
k,S1

(x)] ≥ θ2.

1

Notice two things. First, notice that Part 1 bounds the number of returned nodes S and Part 2
bounds the running time, so both the amount of returned data and the running size are bounded from
above. Second, notice that while the the actual values will differ slightly from those above, it will be by
only a constant factor.

Proof

1. Assume that Part 1 (above) is false. Then:

1 =
∑

S

f̂2(S) >

(
1

θ2

)

· θ2 = 1

And thus 1 > 1 which is a contradiction.

2. Assume that Part 2 (above) is false. Then given k:

1 =
∑

S

f̂2(S)

=
∑

S1⊆[k]

∑

T2⊆{k+1,...,n}

f̂2(S1 ∪ T2)

=
∑

S1⊆[k]

Ex[f2
k,S1

(x)]

>

(
1

θ2

)

· θ2 = 1

And thus 1 > 1, which is (still) a contradiction.

Now that we know that the algorithm neither leaves anything out nor selects too much, how can we
speed it up? How can we quickly estimate fk,S1

(x)?

Lemma 4 (fk,S1
(x) Estimation)

fk,S1
(x) = Ey∈{±1}k [f(yx)χS1

(y)]

Note that this could be estimated by sampling. In general,Thus, picking random y’s and outputting
the average value gives γ-additive approximation by Chernoff Bounds in O(1

γ2 log 1
δ) (where δ is the

security parameter). Then we can use these estimates to estimate Ex[fk,S1
(x)] also by Chernoff Bounds.

Proof First notice some (maybe obvious) things:

• f(yx) =
∑

T f̂(T)χT (yx)

• For T = T1 ∪ T2, where T1 ⊆ [k], and T2 ⊆ {k + 1, . . . , n},

χT (yx) = χT1
(y)χT2

(x).

2

Now the proof:

Ey [f(yx)χS(y)] = Ey










∑

T1

∑

T2

f̂(T1 ∪ T2)χT1
(y)χT2

(x)

︸ ︷︷ ︸

f(yx)

χS1
(y)










=
∑

T1

∑

T2

f̂(T1 ∪ T2)χT2
(x) Ey [χT1

(y)χS1
(y)]

︸ ︷︷ ︸

0 unless T1=S1

=
∑

T2

f̂(S1 ∪ T2)χT2
(x)

= fk,S1
(x)

So the algorithm then becomes:

1. If k = n, output S1.

2. Else:

(a) If estimate of E[f2
k+1,S1∪{k+1}(x)] ≥ θ2

2 , recurse on (k + 1, S1 ∪ {k + 1}).

(b) If estimate of E[f2
k+1,S1

(x)] ≥ θ2

2 , recurse on (k + 1, S1).

Theorem 5 For all θ > 0, this algorithm outputs S = {S1, . . . , Sl} such that l = θ
(

1
θ2

)
such that

with probability greater than 1 − δ:

1. ∀Si ∈ S, |f̂(S)| ≥ θ
2 ,

2. ∀Si /∈ S, |f̂(S)| < θ,

with query complexity poly(n, 1
θ , log 1

δ).

Proof

1. If f̂(S) < θ
2 , then f̂2(S) ≤ θ2

4

2. If f̂(S) > θ, then all ancestors of S will continue the recursion.

The total number of nodes explored will be less than O(n
θ2).

After we learn a small set of significant Fourier coefficients, we can use the following theorem to
compute a function close to f .

Theorem 6 There exists an algorithm, which given S ⊆ 2[n] such that
∑

S∈S f̂2(S) ≥ 1 − ε and exam-
ples, with probability 1 − δ outputs g : {±1}n 7→ R such that:

• g(x) =
∑

S∈S CSχS(x)

• Pr[f(x) 6= sign(g(x))] ≤ ε + τ

• The number of examples/queries is poly(n, |S|, 1
τ , log 1

δ).

Proof The same method as proving the low degree algorithm

3

In general: Good functions for our approach are functions like the parity functions χS (only one
non-zero Fourier coefficients). Problem functions are, for instance, functions of the form:

P2 = (x1 ∧ x2) ⊕ . . . ⊕ (xn−1 ∧ xn) =
∑

S

±2−
n

2 · χS

since they have many small Fourier coefficients.

Definition 7 For a function f : {±1}n 7→ R the L1 norm of f is
∑

S |f̂(S)|.

Notice that for the above example of good and bad functions, the L1 norm of a good function is 1
and the L1 norm of a bad function is 2n/2.

Claim 8 Let f : {±1}n 7→ {±1} be a function. Given ε, let Sε =
{

S ⊆ [n]
∣
∣
∣ |f̂(S)| ≥ ε

L1(f)

}

. It holds:

1.
∑

S∈Sε
f̂2(S) ≥ 1 − ε

2. |Sε| ≤
L2

1
(f)
ε

Proof

1.
∑

S /∈S f̂2(S) ≤ ε
L1(f)

∑

S |f̂(S)| ≤ ε

2. |Sε|
ε

L1(f) ≤
∑

S∈Sε
|f̂(S)| ≤

∑

S∈[n] |f̂(S)| = L1(f)

Theorem 9 We can learn any Boolean function f to ε-accuracy with queries in time poly(n, L1(f), 1
ε).

Sketch of Proof Suppose first that we know L1(f). We first learn all coefficients in Sε (plus perhaps

a few other coefficients). We are interested in coefficients f̂(S) ≥ ε
L1(f) , and we run the algorithm

that uses queries to find a set of size O(|Sε|) that contains all of them. Then, we run the algorithm of
Theorem 6 to compute f ’s approximation.

But we are not given L1(f), so what should we do? We try setting L1(f) to 1, 2, 4, 8, . . . Each time
we compare the g that we obtain to f on random samples to test if we are done.

4

