March 13, 2007

Lecture 11

1 Estimating the Number of Connected Components

Given a graph G(V, E) with max degree d and adjacency list representation and some ϵ , we want to give an additive estimate of the number of connected components to within ϵn .

1.1 Main Idea

Define:

 $n_u \equiv$ number of nodes in u's component, where $u \in V$

Fact 1 For any connected component $A \subseteq V$:

$$\sum_{u \in A} \frac{1}{n_u} = \sum_{u \in A} \frac{1}{|A|} = 1$$

In addition, there are $\sum_{u \in V} \frac{1}{n_u}$ connected components.

Determining this value exactly takes $O(n^2)$ time, but we will estimate the sum and the values of n_u .

Define:

$$\hat{n}_u \equiv \min\left\{ \text{nodes in } u \text{'s component}, \frac{2}{\epsilon} \right\}$$

$$\hat{c} = \sum_{u \in V} \frac{1}{\hat{n}_u}$$

Fact 2 The error in estimating $\frac{1}{\hat{n}_u}$ is small.

$$\left|\frac{1}{\hat{n}_u} - \frac{1}{n_u}\right| \le \frac{\epsilon}{2}$$

Either $\hat{n}_u = n_u$ or $n_u > \hat{n}_u = \frac{2}{\epsilon}$. In the latter case, $\frac{\epsilon}{2} = \frac{1}{\hat{n}_u} \ge \frac{1}{n_u} \ge 0$. Therefore, the error is small, at most $\frac{\epsilon}{2}$.

Corollary 3 $\frac{1}{\hat{n}_u}$ is a good estimate of connected components.

$$\sum_{u \in V} \left| \frac{1}{n_u} - \frac{1}{\hat{n}_u} \right| \le \frac{\epsilon n}{2}$$
$$c - \frac{\epsilon n}{2} \le \frac{1}{\hat{n}_u} \le c + \frac{\epsilon n}{2}$$

Fact 4 We can compute \hat{n}_u in $O(\frac{d}{\epsilon})$ time.

Take $\frac{2}{\epsilon}$ steps of a BFS. If we see the entire connected component, set $\hat{n}_u = n_u = \frac{1}{\text{size}}$. Otherwise, $\hat{n}_u = \frac{2}{\epsilon}$.

Summing these \hat{n}_u values yields a linear time algorithm. Now, we want to estimate this sum by estimating the average cluster size $\left(\sum_{u \in V} \frac{1}{\hat{n}_u}\right)$ and multiplying by |V|.

1.2 Algorithm

APPROX_NUM_CC(G, ϵ) Choose $r = O(\frac{1}{\epsilon^3})$ nodes $u_1 \dots u_r$ $\forall u_i$ compute \hat{n}_{u_i} Output $\tilde{c} = \frac{n}{r} \sum_{i=1}^r \frac{1}{\hat{n}_{u_i}}$

Runtime of this algorithm is $O(\frac{1}{\epsilon^3} \cdot \frac{d}{\epsilon}) = O(\frac{d}{\epsilon^4}).$

Theorem 5 $\Pr\left[|\tilde{c} - \hat{c}| \le \frac{\epsilon}{2}n\right] \ge \frac{3}{4}$

Corollary 6 Since $|c - \tilde{c}| \le |c - \hat{c}| + |\hat{c} - \tilde{c}|$ and $|c - \hat{c}| \le \frac{\epsilon n}{2}$:

$$\Pr\left[|c - \tilde{c}| \le \epsilon n\right] \ge \frac{3}{4}$$

Proof of theorem: We know upper and lower bounds on our estimated average cluster size:

$$\forall i \frac{\epsilon}{2} \leq \frac{1}{\hat{n}_i} \leq 1$$

Using Chernoff bounds, we can compute the error probability for the estimated cluster size:

$$\Pr\left[\left|\frac{1}{r}\sum_{1\leq i\leq r}\frac{1}{\hat{n}_{u_i}} - \exp\left[\frac{1}{\hat{n}_{u_i}}\right]\right| > \frac{\epsilon}{2} \exp\left[\frac{1}{\hat{n}_{u_i}}\right]\right] \leq \exp\left(-O(r \exp\left[\frac{1}{\hat{n}_{u_i}}\right] \cdot \left(\frac{\epsilon}{2}\right)^2)\right) \leq \frac{1}{4}$$

Here, using $r = \frac{c}{\epsilon^3}$ samples is good enough for constant c. The cutoff bound gets a better running time by bounding the maximum vs. minimum cluster sizes.

Likewise, we can see the error probability for the estimated sum:

$$\begin{aligned}
\Pr\left[\begin{array}{c|c} \left|\frac{n}{r} \cdot \sum \frac{1}{\hat{n}_{u_i}} - n \cdot \operatorname{Exp}\left[\frac{1}{\hat{n}_{u_i}}\right]\right| &\leq \epsilon \cdot \operatorname{Exp}\left[\frac{n}{\hat{n}_{u_i}}\right]\right] \geq \frac{3}{4} \\
\Pr\left[\begin{array}{c|c} \left|\tilde{c} - \hat{c}(=\sum \frac{1}{\hat{n}})\right| &\leq \epsilon \cdot \hat{c}(\leq n)\right] \geq \frac{3}{4}
\end{aligned}$$

2 Minimum Spanning Tree

2.1 Definitions

Given a graph G = (V, E) of degree $\leq d$, in adjacency list format and with edge weights $w_{ij} \in 1 \dots w \cup \infty$. We will assume the graph is connected; i.e., there is a minimum spanning tree of finite weight.

For a tree $T \subseteq E$:

$$w(T) = \sum_{(ij)\in T} w_{ij}$$
$$M = \min_{T \text{ spans } G} w(T)$$

We will assume that all weights are positive and finite, therefore $n-1 \leq M \leq \infty$.

2.2 Main Idea

Our goal is to output \hat{M} such that $(1 - \epsilon)M \leq \hat{M} \leq (1 + \epsilon)M$. This is close to an ϵ -multiplicative estimate because $\frac{1}{1+\epsilon} \approx 1 - \epsilon$. Given a graph G:

> $G^{(i)}$ = edges of G which have weight at least i $c^{(i)}$ = number of connected components in $G^{(i)}$

So the number of edges of weight at least k is $c^{(k-1)} - 1$. For example:

Claim 7 $MST(G) = n - w + \sum_{1 \le i \le w-1} C^{(i)}$

Proof

Let α_i = the number of weight *i* edges in the MST.

Fact 8 For any MST of G, α_i 's are the same. Note that $\sum_{i=l+1}^{w} \alpha_i = c^{(l)} - 1$, and in particular $\sum_{i=1}^{w} \alpha_i = n - 1$; $\alpha_w = c^{(w-1)} - 1$.

$$MST(G) = \sum_{i=1}^{w} i\alpha_i$$

= $\sum_{i=1}^{w} \alpha_i + \sum_{i=2}^{w} \alpha_i + \dots + \alpha_w$
= $n - 1 + c^{(1)} - 1 + c^{(2)} - 1 + \dots + c^{(w-1)} - 1$
= $n - w + \sum_{i=1}^{w-1} c^{(i)}$

2.3 Algorithm

$$\begin{split} \text{MST_APPROX_ALG}(G,\,\epsilon,\,w) \\ \text{for} \quad i=1\ldots w-1 \\ \hat{c}^{(i)} = \text{APPROX_NUM_CC}(G^{(i)},\,\frac{\epsilon}{w}) \\ \text{Output} \ \hat{M} = n-w + \sum_{i=1}^{w-1} c^{(i)} \end{split}$$

Run time:

There are w calls to APPROX_NUM_CC (run time $O(d/(\frac{\epsilon}{w})^4)$), for an overall run time of $O(\frac{dw^5}{\epsilon^4})$. Because this running time depends on w, it is best when there is a good max to min ratio of edge weights. **Sketch of Proof** $\forall i |\hat{c}^{(i)} - c^{(i)}| \leq \frac{\epsilon}{w}n$ (with high enough probability) then $|M - \hat{M}| \leq \epsilon n$. Since M > n:

 $(1-\epsilon)M \le \hat{M} \le M + \epsilon n \le M + \epsilon M = (1+\epsilon)M$ The lower bound is proved similarly.