Lecture 11

Lecturer: Ronitt Rubinfeld
Scribe: Christina Sauper

1 Estimating the Number of Connected Components

Given a graph $G(V, E)$ with max degree d and adjacency list representation and some ϵ, we want to give an additive estimate of the number of connected components to within ϵn.

1.1 Main Idea

Define:

$$
n_{u} \equiv \text { number of nodes in } u \text { 's component, where } u \in V
$$

Fact 1 For any connected component $A \subseteq V$:

$$
\sum_{u \in A} \frac{1}{n_{u}}=\sum_{u \in A} \frac{1}{|A|}=1
$$

In addition, there are $\sum_{u \in V} \frac{1}{n_{u}}$ connected components.
Determining this value exactly takes $O\left(n^{2}\right)$ time, but we will estimate the sum and the values of n_{u}.
Define:

$$
\begin{aligned}
\hat{n}_{u} & \equiv \min \left\{\text { nodes in } u \text { 's component, } \frac{2}{\epsilon}\right\} \\
\hat{c} & =\sum_{u \in V} \frac{1}{\hat{n}_{u}}
\end{aligned}
$$

Fact 2 The error in estimating $\frac{1}{\hat{n}_{u}}$ is small.

$$
\left|\frac{1}{\hat{n}_{u}}-\frac{1}{n_{u}}\right| \leq \frac{\epsilon}{2}
$$

Either $\hat{n}_{u}=n_{u}$ or $n_{u}>\hat{n}_{u}=\frac{2}{\epsilon}$. In the latter case, $\frac{\epsilon}{2}=\frac{1}{\hat{n}_{u}} \geq \frac{1}{n_{u}} \geq 0$. Therefore, the error is small, at most $\frac{\epsilon}{2}$.
Corollary $3 \frac{1}{\hat{n}_{u}}$ is a good estimate of connected components.

$$
\begin{gathered}
\sum_{u \in V}\left|\frac{1}{n_{u}}-\frac{1}{\hat{n}_{u}}\right| \leq \frac{\epsilon n}{2} \\
c-\frac{\epsilon n}{2} \leq \frac{1}{\hat{n}_{u}} \leq c+\frac{\epsilon n}{2}
\end{gathered}
$$

Fact 4 We can compute \hat{n}_{u} in $O\left(\frac{d}{\epsilon}\right)$ time.
Take $\frac{2}{\epsilon}$ steps of a BFS. If we see the entire connected component, set $\hat{n}_{u}=n_{u}=\frac{1}{\text { size }}$. Otherwise, $\hat{n}_{u}=\frac{2}{\epsilon}$.

Summing these \hat{n}_{u} values yields a linear time algorithm. Now, we want to estimate this sum by estimating the average cluster size $\left(\sum_{u \in V} \frac{1}{\hat{n}_{u}}\right)$ and multiplying by $|V|$.

1.2 Algorithm

Approx_Num_CC(G, ϵ)
Choose $r=O\left(\frac{1}{\epsilon^{3}}\right)$ nodes $u_{1} \ldots u_{r}$
$\forall u_{i}$ compute $\hat{n}_{u_{i}}$
Output $\tilde{c}=\frac{n}{r} \sum_{i=1}^{r} \frac{1}{\hat{n}_{u_{i}}}$

Runtime of this algorithm is $O\left(\frac{1}{\epsilon^{3}} \cdot \frac{d}{\epsilon}\right)=O\left(\frac{d}{\epsilon^{4}}\right)$.
Theorem $5 \operatorname{Pr}\left[|\tilde{c}-\hat{c}| \leq \frac{\epsilon}{2} n\right] \geq \frac{3}{4}$
Corollary 6 Since $|c-\tilde{c}| \leq|c-\hat{c}|+|\hat{c}-\tilde{c}|$ and $|c-\hat{c}| \leq \frac{\epsilon n}{2}$:

$$
\operatorname{Pr}[|c-\tilde{c}| \leq \epsilon n] \geq \frac{3}{4}
$$

Proof of theorem: We know upper and lower bounds on our estimated average cluster size:

$$
\forall i \frac{\epsilon}{2} \leq \frac{1}{\hat{n}_{i}} \leq 1
$$

Using Chernoff bounds, we can compute the error probability for the estimated cluster size:

$$
\operatorname{Pr}\left[\left|\frac{1}{r} \sum_{1 \leq i \leq r} \frac{1}{\hat{n}_{u_{i}}}-\operatorname{Exp}\left[\frac{1}{\hat{n}_{u_{i}}}\right]\right|>\frac{\epsilon}{2} \operatorname{Exp}\left[\frac{1}{\hat{n}_{u_{i}}}\right]\right] \leq \exp \left(-O\left(r \operatorname{Exp}\left[\frac{1}{\hat{n}_{u_{i}}}\right] \cdot\left(\frac{\epsilon}{2}\right)^{2}\right)\right) \leq \frac{1}{4}
$$

Here, using $r=\frac{c}{\epsilon^{3}}$ samples is good enough for constant c. The cutoff bound gets a better running time by bounding the maximum vs. minimum cluster sizes.

Likewise, we can see the error probability for the estimated sum:

$$
\begin{array}{lc}
\operatorname{Pr}\left[\left|\frac{n}{r} \cdot \sum \frac{1}{\hat{n}_{u_{i}}}-n \cdot \operatorname{Exp}\left[\frac{1}{\hat{n}_{u_{i}}}\right]\right|\right. & \left.\leq \epsilon \cdot \operatorname{Exp}\left[\frac{n}{\hat{n}_{u_{i}}}\right]\right] \geq \frac{3}{4} \\
\operatorname{Pr}[& \left|\tilde{c}-\hat{c}\left(=\sum \frac{1}{\hat{n}}\right)\right| \\
& \leq \epsilon \cdot \hat{c}(\leq n)] \geq \frac{3}{4}
\end{array}
$$

2 Minimum Spanning Tree

2.1 Definitions

Given a graph $G=(V, E)$ of degree $\leq d$, in adjacency list format and with edge weights $w_{i j} \in 1 \ldots w \cup \infty$.
We will assume the graph is connected; i.e., there is a minimum spanning tree of finite weight.
For a tree $T \subseteq E$:

$$
\begin{aligned}
w(T) & =\sum_{(i j) \in T} w_{i j} \\
M & =\min _{T \text { spans } G} w(T)
\end{aligned}
$$

We will assume that all weights are positive and finite, therefore $n-1 \leq M \leq \infty$.

2.2 Main Idea

Our goal is to output \hat{M} such that $(1-\epsilon) M \leq \hat{M} \leq(1+\epsilon) M$. This is close to an ϵ-multiplicative estimate because $\frac{1}{1+\epsilon} \approx 1-\epsilon$.
Given a graph G :

$$
\begin{aligned}
G^{(i)} & =\text { edges of } G \text { which have weight at least } i \\
c^{(i)} & =\text { number of connected components in } G^{(i)}
\end{aligned}
$$

So the number of edges of weight at least k is $c^{(k-1)}-1$.
For example:

Claim $7 \operatorname{MST}(G)=n-w+\sum_{1 \leq i \leq w-1} C^{(i)}$

Proof

Let $\alpha_{i}=$ the number of weight i edges in the MST.
Fact 8 For any MST of G, α_{i} 's are the same. Note that $\sum_{i=l+1}^{w} \alpha_{i}=c^{(l)}-1$, and in particular $\sum_{i=1}^{w} \alpha_{i}=n-1 ; \alpha_{w}=c^{(w-1)}-1$.

$$
\begin{aligned}
\operatorname{MST}(G) & =\sum_{i=1}^{w} i \alpha_{i} \\
& =\sum_{i=1}^{w} \alpha_{i}+\sum_{i=2}^{w} \alpha_{i}+\ldots+\alpha_{w} \\
& =n-1+c^{(1)}-1+c^{(2)}-1+\ldots+c^{(w-1)}-1 \\
& =n-w+\sum_{i=1}^{w-1} c^{(i)}
\end{aligned}
$$

2.3 Algorithm

```
MST_Approx_Alg(G, \epsilon,w)
    for }i=1\ldotsw-
    \mp@subsup{\hat{c}}{}{(i)}=Approx_Num_CC}(\mp@subsup{G}{}{(i)},\frac{\epsilon}{w}
    Output \hat{M}=n-w+\mp@subsup{\sum}{i=1}{w-1}\mp@subsup{c}{}{(i)}
```

Run time:
There are w calls to Approx_Num_CC (run time $O\left(d /\left(\frac{\epsilon}{w}\right)^{4}\right)$), for an overall run time of $O\left(\frac{d w^{5}}{\epsilon^{4}}\right)$.
Because this running time depends on w, it is best when there is a good max to min ratio of edge weights.
Sketch of Proof $\forall i\left|\hat{c}^{(i)}-c^{(i)}\right| \leq \frac{\epsilon}{w} n$ (with high enough probability) then $|M-\hat{M}| \leq \epsilon n$.
Since $M>n$:
$(1-\epsilon) M \leq \hat{M} \leq M+\epsilon n \leq M+\epsilon M=(1+\epsilon) M$
The lower bound is proved similarly.

