
An ~(n 2 log n) Lower Bound to the Shortest Paths Problem %~

Andrew C. Yao
Cemp~ter Science Department, Stanford University

David M. Avis
Department of Operations Research, Stanford University

Ronald L. Rivest

Laboratory for Computer Science, M.I.T.

S ummary.

Let P be a polyhedron with f
s

s-dimensional faces. We show that ~(log fs)

• t
linear comparlsons are needed to determine if

a point lies in P. This is used to establish

an ~(n 2 log n) lower bound to the all-pairs

shortest path problem between n points.

1. Introduction•

Let G be an undirected complete graph on

n vertices {Vl,V2,...v n} , with a non-negative

weight w•. (i < j) assigned to each edge
13

(vi,vj). The n×n shortest distance matrix

for G is D = (dij) where dii = 0 and

dij (i # j) is the minimum weighted path

length between v. and v.. Several
l 3

~ngenious algorithms have been invented to solve

the all-pairs shortest path problem, in which D

is to be computed. The classical methods

of Dijkstra [2] and Floyd [4] both require

cn 3 running time in the worst case, and more

recently Fredman [5] gave an algorithm with a

but no lower bound better than cn 2 is

known [8] for general algorithms with branching

instructions. (For a straight-line computation

with two operations "+" and "m_in", Kerr [7]

showed that cn 3 steps are needed.)

In this paper we prove that ~(n 2 log n)

comparisons between linear functions of edge

weights are.,needed in the decision tree model.

In fact, ~(n 2 log n) comparisons are

required to verify that D = (dij) is the

shortest distance matrix for a graph G

with {wij} . In the process we shall

show that ~(log fs) linear comparisons are

necessary to determine if a point is in a

polyhedron with f s-dimensional faces
s

(see Section 2 for definitions). This

general theorem is of interest in itself

since (i) it relates the complexity of

polyhedral decision problems (e.g. Rabin [9])

to some classical aspect of polyhedrons

studied by mathematicians (the number of

vertices, faces, etc.), and (2) it is

worst-case bound O(n3(log log n)i/3/(log n)i/3),

which is o(n3). It is likely that substantially

better algorithms (say, 0(n2"2)) do not exist,

potentially possible to derive from it

t
~(g(x)) means e cg(x) for some positive constant c.

Research Supported by NSF Grants #'s: MCS 72-06336 A04, MCS72-03752 A03 and MCS75-14294

ii

non-linear lower bounds for other computational of B(P) is the minimum height of any decision

problems, e.g. constructing minimum-cost spanning tree, and is denoted by C(P) .

trees (although Tarjan's result [15] suggests

that a n~-linear lower bound ~n mi~imum-cQst

spanning trees may be difficult to obtain).

2. Definitions and Notations

(i) Complexity of finding shortest paths.

Consider the all-pairs shortest path problem

for a graph with n vertices and weights {wij}.

We are interested in the linear decision tree

(3) Faces of a Polyhedron. Let

P = {~IZi(~) N 0, i = 1,2 m} be a polyhedron

in R N . To each subset H (maybe ~) of

{1,2 ,m} , we define a set FH(P) i R N by

FH(P) = {~I£i(~) < 0 for each icH,

~.(x) = 0 for each i~H} . We say
1

that FH(P) is a face of dimension s if the

smallest subspace of R N containing FH(P)

has dimension s. The empty face has

model. An algorithm is a ternary tree with each

internal node representing a test of the form

"Elijwij:c", and each leaf containing a set of

linear functions {f.., 1 ~ i, j N n} on
13

n(n-l)/2 variables. For any input, the algorithm

proceeds by moving down the tree, testing and

then branching according to the test result,

until a leaf is reached. At that point, the

shortest distance matrix D = (dij) is given

by dij = fij(~) . The cost of an algorithm is

the height of the tree, ~md the complexity L
n

is defined to be the minimum cost for any

dimension -i by convention. Let F (P) be
S

the set of faces of dimension s of P.

Note that no two elements of F (P) overlap.
S

The set of faces Fs(P) is independent of the

choice of ~i(x) That is, if

P {~l " + = ~i(x) ~ 0, i = 1,2,...,m'} , the set

Fs(P) constructed using {£~(~)} is the same

as the one constructed using {£i(x)} For

an intrinsic definition of faces, see for

example [6,10]. A face of dimension 1 is

called an edge, as it is part of a line (agreeing

with intuition).

algorithm.

(2) Polyhedral Decision Problems.

A set P in R N is a polyhedron if

~ N
P = {xlxEK ,£i(X) ~ 0, i = 1,2 m} ,

+

where m is an integer, x = (Xl,X2,...XN) ,

÷ E for some real numbers and £i (x) = l~j~n cijx j

cij. We remark that we are restricting attention

to homogeneous polyhedra, i.e. cones. The

(4) Open Polyhedron. A non-empty set Q

in R N is called an open polyhedron if

Q = {~I£i(I) < 0, i = 1,2 m} . The concepts

of faces andset of faces are defined

identically as for polyhed@a. More precisely,

let P = {~I£i(~) ~ 0, i = 1,2 m}, then

FH(Q) = FN(P), Fs(Q) = Fs(P)

polyhedral decision problem B(P) is to

+
determine whether ~¢P for an input x .

Here we are also interested in the linear

decision tree model (each internal node

representing a test Zllxi:c), with a "yes" or

"no" decision at every leaf. The complexity

3. Lower Bounds for PolyhedralDeclsio n Problems.

Let T be a polygon on the plane. Suppose

we are asked to decide if a given point x is

inside T by making a series of tests of the

form "~.~:c". It is easy to see that about

12

log v tests are necessary if T has v

vertices. The following thereom is a general-

ization:

= {~I~(~) <- 0 for i -- 1,2 m} Theorem i. Let P

be a polyhedron in R N . Then for each s,

• (C(P)~ > IFs(P) I 2C (P) "N-s J

Corollary. C(P) > 1/2 log IEs(P) I o

Theorem 1 relates the complexity of B(P)

to certain "static" combinatorial properties

of the polyhedron P. Informally, if a

polyhedron P has many edges (or faces), then

the theorem says it is difficult to decide

whether a point lles in P. The rest of this

section is devoted to proving Theorem i.

Note that the corollary follows from Theorem 1

since ~C(P)~ < 2C(P)
~N-s J -

We first show that we can assume that in

an optimal algorithm each query "lllxi:c" has

c = 0 . Let T be a decision tree for B(P).

A node v is said to be inhomo~eneous if the

associated query "El x "c" has c ~ 0 Without
i i"

loss of generality, we shall assume c > 0

since we can always ask an equivalent query

7 (-li)x i: (-c) otherwise. We shall remove

i~homogeneous nodes from T by performing the

following operation for each inhomogeneous

node v: eliminate v, the " >", and "="

branches of the subtree rooted at v; connect

the "<" branch directly to the father of v.

The resulting tree T ~ clearly has a height

no greater than the original tree T , and

has no inhomogeneous nodes. It remains to

show that T ~ is a decision tree algorithm for

B(P) . Let a = min(clElixi:c is associated

with some inhomogeneous node in T}, and let

b = max{ II i I} be similarly defined. Then,

for each x~D = {~I Ixil < a/Nb ~i} , the

decision tree T always branches to the "<"

path at each inhomogeneous node. Hence, the

tree T ~ also works correctly for xED.

+

But this implies that T" also works for all x ,

as all the comparisons in T" are homogeneous

and the problem B(P) is homogeneous. We have

thus proved that we can assume all queries

+ :0" are of the form "q(x) where q(~) = Zl.x.
ll

We will assume in what follows that P is

of dimension N, i.e. that {P} = FN(P).

The following informal argument demonstrates

that this can be done without loss of generality.

Suppose that dim(P) = N" < N. Let S c R N

be the smallest subspace of R N containing

all of P; thus dim(S) = N" . Now every test

El.x.:c in R N either corresponds to a
1 1

linear test Z%I xi:c in S (where 5" is, for

xcS, x expressed in a basis for S having

the same origin as R N), or else (if

{~RNIElix i = c} o S = 6) the test El x :c
ii

->

is useful only for determining if x~S, and

not for telling if ~P under the assumption

÷
that xcS. Therefore the complexity of

determining if an ~ER N is in P is at least

as great as the complexity of determining if an

xES iS in P. Since dim(S) = dim(P) we are

finished with our demonstration. In any case

we should also like to remark that for our

application of Theorem i to the complexity of

the shortest paths problem, this assumption holds•

13

We shall employ an "Oracle" to help our

proof. The following lemma is essential to the

construction of the oracle:

Lemma i: Let Q = {xlPi(X) < 0, i = 1,2,...,t}
N

be an open polyhedron, q(~) = 7 ~ x a linear
i=lii

form, Q1 = Q n {xlq(x) < 0} , and

Q2 = Q n {xlq(x) > 0} . Then for each s ,

there exists a jE{I,2} such that Qj is

non-empty, and IFs(Qj) I > 1/21Fs(Q) I •

Proof of Lemma i.

If Q2 = 4, then Q c_ {~lq(~) _< 0} .

Since Q is an open set, we must have

Q _c {xlq(x) < 0} . Therefore, QI Q , and

j = i satisfies the requirements. Similarly,

for the case QI = ~ we can choose j = 2.

It remains to prove the lemma when both QI and Q2

are non-empty. We shall accomplish this by

constructing a i-i mapping @ from Fs(Q)

into Fs(QI) u Fs(Q2) . This then implies

that IFs(Q) I < IFs(QI) I + IFs(Q2) I We can

then choose a j such that IFs(Qj) I >- 1/2[Fs(Q) I.

Now we construct ~ Let FH(Q)EFs(Q).

Define

A I = FH(Q) n {xlq(ix) < 0} ,

A 2 = FH(Q) n {~lq(-x) > 0} ,

A 3 = FH(Q) n {xiq(x) = 0} .

Case i) A I u A 2 = ~ : In this case

FH(Q) c_ {~lq &) = 0}. Let us write

QI = {xlPi(X) < 0, i = 1,2 t~-l} , with

pt+l(~) = q (~) . Clearly

FH(QI) = FH(Q) n {q(E:) = 0} = FH(Q)

Define @ (FH(Q)) = FH(QI).

Case 2) A I u A 2 # 4: Assume that A I # 4;

the case A 2 # ~ can be similarly treated.

Write as before

Q1 = {~IPi(~) < 0, i = 1,2 t+l} With

Pt+l(~) = q (~). Define H" = H u {t+l}

Clearly, FH.(QI) = FH(Q) n {~lq(~) < 0}

is non-empty and is an s-dimensional face

of Ql"

Define ~(FH(Q)) = FH.(Q I) •

It remains to show that the ~ constructed is

an i-i mapping. It is easily seen that

@(FH(Q)) c FH(Q) . Since all the FH(Q) in

Fs(Q) are disjoint, it follows that all the

~(FH(Q)) are disjoint, hence distinct. This

completes the proof of Lemma i.

The Oracle :

The Oracle shall specify a way to answer

questions with the help of a sequence of open

polyhedra V o , V 1 , . . . I n i t i a l l y , V 0 = Q . w h e r e

Q = {~l~i(~) < 0, i = 1,2 gn}. At the time

of the j th query qj (~):0 , the oracle has

constructed V 0,V I,...,Vj_ 1 The oracle

decides the answer for the query in the following

way:

let Q1 = vj-I n {~{qj(~) < 0} ,

Q2 = Vj-1 n {xlqj(x) > O} ; by Lemma l, there

is an i such that Qi is non-empty, and

IFs(Qi)l -> 1/21Fs(Vj-I) I;

The oracle's answer is then: qj

qj

The oracle then defines

< 0 if i " i, and

>0 if i= 2.

Vj to be Qi"

14

-Analysis of the Oracle.

+

Let qj(x):0 (j = 1,2,...,t) be the

entire sequence of queries asked by the

algorithm under the above oracle, and let

ejqj(~) < 0 be the results of the queries

(ej = -+i). Then,

: gi(x) v t {-~1 + < o , i = 1 , 2 m,

< o , j 1 , 2 t } # ejqj (:~) = .

and

(i)

IFs(Vt) I ~ 1/21Fs(Vt_l~ ~ 1/22 IFs(Vt_2) I

• -.e i/2tlF s(v O) I

IFs(Vt) [e 1/2 t IFs(Q) I (21

For each ~¢Vt, the same leaf in the tree T

is reached and the algorithm must say "yes ,

+

xE~' Since the algorithm only knows that

+xE{x+l (~) < 0 j = 1,2 t } we have ,ejqj ,

{llejqj(~) < 0, j = 1,2 t} e P I

As Q is the "largest" open set contained in

P, we have

{~Igjqj(~) < 0, j = 1,2 t} E Q =

{xl£i(x) < 0, i = 1,2 m}

Therefore, (i) can be written as

= {~Igjqj(~) < 0, j = 1,2 t} . (3) V t

As there are only t linear functions in (3),

t
there can be at most (N_s) s-dimensional faces

of V Therefore,
t

(N-st) _> IFs(Vt) I (4)

(2) and (4) lead to 2 t. (N_s)t e IFs(Vt) I. (5)

As the left-hand side of (5) is an increasing

function of t, and C(P) e t, we have proved

the lemma.

General discussions of the maximal number

of faces of dimension's that a polyhedron

can have are given in [6] and [12]. We now

turn our attention to the polyhedron associated

with the all-points shortest-paths problem.

4. The Shortest Paths Problem.

In this section we make use of results

derived in the previous section to obtain an

~(n 2 log n) lower bound for the shortest paths

problem. Theorem 1 can not be directly

applied to the shortest paths problem, as the

latter is not a polyhedral decision problem.

The shortest paths problem is, however, closely

related to the following polyhedral decision

problem, which is a special case of the

verification problem for finding shortest paths .

Verifying the Trian$1e Inequalities:

Let p(n) be the polyhedron in R nCn-l) 12

defined as follows: A vector w~R n~n-l)/2"'"

is written as

w = (w12,w13 Wln,W23 W2n Wn_l,n);

p(n) = {5 lWik > 0, £ijk(~) > 0 for

i < k, i # j ~ k}

where £ijk(W) = Wik-Wij-Wjk . The problem

B(e(n)) + ~(n) is to determine if wc~ , i.e.

whether all the w..'s are positive and all mJ

the triangle inequalites are satisfied by (wij).

The following lemma relates the complexity

for shortest paths L to the complexity of
n

B(p (n)) :

Lemma 2: L > C(p (n)) -n(n-l)/2
n

Proof: Let T be an optimal decision tree

algorithm for computing the shortest distance

15

matrix (dij) from the input matrix (wij).

The height of T is L , by definition of L
n n

We can obtain a decision tree T" for the

problem B(P (n)) by modifiying T as follows.

Replace each leaf of T by a sequence of

n(n-l)/2 distinct tests of the form

"Is dij = wij. Since at each leaf of T

we have dij = fij(~), T" is a linear decision

+

tree. We construct T" so that w is

accepted iff all of the newly added tests have

"yes" answers. The correctness of T" is

ensured by the fact [8, page 89] that a matrix

is a shortest distance matrix iff it satisfies

all the triangle inequalities and by the fact

that if all the triangle inequalities are

satisfied without equality the matrix is

positive. Hence L + n(n-l)/2 • C(P (n)) .
n

To obtain an explicit bound on L , we
n

need a recent combinatorial result of Avis,

which states that p(n) has a very large set

of edges.

Lemma 3: There exists a positive constant c

,ilFl(P(n))l > 2n2(l°g n - c log log n)/4 that SO

for all n

Proof: This counting argument is given in [i],

and is omitted here due to its length.

Theorem 2: L ~ n(log n - c log log n)/4,
n

for some constant C" > 0.

Proof: By Theorem 1 and Lemma 3 we know that

C(P (p)) + log fC(p(n))~
~N-I J

n2(log n - c log log n)/4 ,

where N = (~) Since (~) ~ ?/b' , if

x satisfies

x + (N-I) log x - log((N-l) X)

= n2(log n - c log log n)/4 (6)

it must also satisfy x ~ C(P (n)) . Now (6)

implies

x + (n2/2 - n/2 - l) log x

= (5n21og n)/4 - (cn21og log n)/4 + O(n 2)

(7)

since log ((N-I)]) = (N-I/2) log (N-l)

-(N-l) log e + O(i)

(Stirling's approximation), and

log (N-l) = log (n 2) - O(i) . The solution to

(7) is

x = (n21og n)/4 - (cn21og log n)/4 + O(n 2)

Using (8) and Lemma 2 we can conclude that

L
n

for some

(8)

C(p (n)) rn%

• x -

> (n21og n)/4 - (cn21og log n)/4 - O(n 2)

• (n21og)/4 - (c'n21og log n)/4

C ~ > C .

5. Remarks.

(i) We have shown that

L > (n21og n)/4 - (c log log n)/4 , and a
n

~(n21og n) bound is the best we can obtain

under this approach as

loglFs(P) I < cn 2 log n for all s,

The best upper bound know (Fredman [5]) is

L n -< cn 2"5 Hence a large gap still exists

even in this decision tree model.

(2) The linear decision tree model has

received considerable attention in the recent

16

literature ([3],[5],[7],[ii],[14],[15]).

This model only counts the number of branchings,

and thus tends to underestimate the total

running time (for example, it is conceivable

that no shortest-paths algorithm can achieve

cn 2-5 in total running time). Nevertheless,

the linear decision tree model enables us to

study non-trlvlal lower bounds, and Theorem 1

has added yet another useful device in this model.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[io]

[11]

References

D.M. Avis, "Some Polyhedral Cones Related
to Metric Spaces," Ph.D. Thesis, Department
of Operations Research, Stanford University,
(April 1977).

E.W. Dijkstra, "A note on two problems in
connection with graphs ," Numer. Math., i
(1959), 269-271.

D.P. Dobkln, R.J. Lipton, and S.P. Reiss,
"Excursions Into Geometry," Yale University
Research Report"# 71.

R.W. Floyd, "Algorithm 97: Shortest path,"
C.ACM 5 (1962), p. 345.

M.L. Fredman, "New bounds on the complexity
of the shortest path problem," Siam J. on
Computing 5 (1976), 87-89.

B. G{~nbaum, Convex Polytopes, (Interscience,
New York, 1967).

L.R. Kerr, "The effect of algebraic
structure on the computational complexity
of matrix multiplications," Ph.D Thesis,
Cornell University, (1970).

E. Lawler, Combinatorial Optimization:
Networks and Matroids, (Holt, Rinehart
and Winston, New York 1976).

M.O. Rabin, "Proving simultaneous positivity
of linear forms," JCSS 6 (1972), 639-650.

R. Rockfellar, Convex Analysis, Princeton
University Press, 1970

P.M. Spira and A. Pan, "On finding and
updating spanning trees and shortest
paths," SIAM J. on Computin~ 4 (1975),
375-380.

[12]

[13]

[14]

[15]

R. Stanley, "The Upper Bound Conjecture and
Cohen-Macaulay Rings," Studies in Applied
Math. (Vol ~_, No. 2), (MIT, June 1975),
135-142.

R. Tarjan, "Applications of Path Compression
on Balanced Trees," Stanford Computer Science
Department Report STAN-CS-75-512, (August
1975).

A.C. Yao, "On the complexity Of comparison
problems using linear functions,"
Conference Record, IEEE 16th Annual
Symposium on Switching and Automata
Theory, 1975, 85-89.

A.C. Yao, "On Computing the Minlma of
Quadratic Forms," The 7th Annual ACM
Symposium on the Theory of Complexity,
1975, 23-26.

17

