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S ummary. 

Let P be a polyhedron with f 
s 

s-dimensional faces. We show that ~(log fs ) 

• t 
linear comparlsons are needed to determine if 

a point lies in P. This is used to establish 

an ~(n 2 log n) lower bound to the all-pairs 

shortest path problem between n points. 

1. Introduction• 

Let G be an undirected complete graph on 

n vertices {Vl,V2,...v n} , with a non-negative 

weight w•. (i < j) assigned to each edge 
13 

(vi,vj). The n×n shortest distance matrix 

for G is D = (dij) where dii = 0 and 

dij (i # j) is the minimum weighted path 

length between v. and v.. Several 
l 3 

~ngenious algorithms have been invented to solve 

the all-pairs shortest path problem, in which D 

is to be computed. The classical methods 

of Dijkstra [2] and Floyd [4] both require 

cn 3 running time in the worst case, and more 

recently Fredman [5] gave an algorithm with a 

but no lower bound better than cn 2 is 

known [8] for general algorithms with branching 

instructions. (For a straight-line computation 

with two operations "+" and "m_in", Kerr [7] 

showed that cn 3 steps are needed.) 

In this paper we prove that ~(n 2 log n) 

comparisons between linear functions of edge 

weights are.,needed in the decision tree model. 

In fact, ~(n 2 log n) comparisons are 

required to verify that D = (dij) is the 

shortest distance matrix for a graph G 

with {wij} . In the process we shall 

show that ~(log fs ) linear comparisons are 

necessary to determine if a point is in a 

polyhedron with f s-dimensional faces 
s 

(see Section 2 for definitions). This 

general theorem is of interest in itself 

since (i) it relates the complexity of 

polyhedral decision problems (e.g. Rabin [9]) 

to some classical aspect of polyhedrons 

studied by mathematicians (the number of 

vertices, faces, etc.), and (2) it is 

worst-case bound O(n3(log log n)i/3/(log n)i/3), 

which is o(n3). It is likely that substantially 

better algorithms (say, 0(n2"2)) do not exist, 

potentially possible to derive from it 

t 
~(g(x)) means e cg(x) for some positive constant c. 
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non-linear lower bounds for other computational of B(P) is the minimum height of any decision 

problems, e.g. constructing minimum-cost spanning tree, and is denoted by C(P) . 

trees (although Tarjan's result [15] suggests 

that a n~-linear lower bound ~n mi~imum-cQst 

spanning trees may be difficult to obtain). 

2. Definitions and Notations 

(i) Complexity of finding shortest paths. 

Consider the all-pairs shortest path problem 

for a graph with n vertices and weights {wij}. 

We are interested in the linear decision tree 

(3) Faces of a Polyhedron. Let 

P = {~IZi(~) N 0, i = 1,2 ..... m} be a polyhedron 

in R N . To each subset H (maybe ~) of 

{1,2 .... ,m} , we define a set FH(P) i R N by 

FH(P) = {~I£i(~) < 0 for each icH, 

~.(x) = 0 for each i~H} . We say 
1 

that FH(P) is a face of dimension s if the 

smallest subspace of R N containing FH(P ) 

has dimension s. The empty face has 

model. An algorithm is a ternary tree with each 

internal node representing a test of the form 

"Elijwij:c", and each leaf containing a set of 

linear functions {f.., 1 ~ i, j N n} on 
13 

n(n-l)/2 variables. For any input, the algorithm 

proceeds by moving down the tree, testing and 

then branching according to the test result, 

until a leaf is reached. At that point, the 

shortest distance matrix D = (dij) is given 

by dij = fij(~) . The cost of an algorithm is 

the height of the tree, ~md the complexity L 
n 

is defined to be the minimum cost for any 

dimension -i by convention. Let F (P) be 
S 

the set of faces of dimension s of P. 

Note that no two elements of F (P) overlap. 
S 

The set of faces Fs(P ) is independent of the 

choice of ~i(x) That is, if 

P {~l " + = ~i(x) ~ 0, i = 1,2,...,m'} , the set 

Fs(P) constructed using {£~(~)} is the same 

as the one constructed using {£i(x)} For 

an intrinsic definition of faces, see for 

example [6,10]. A face of dimension 1 is 

called an edge, as it is part of a line (agreeing 

with intuition). 

algorithm. 

(2) Polyhedral Decision Problems. 

A set P in R N is a polyhedron if 

~ N 
P = {xlxEK ,£i(X) ~ 0, i = 1,2 ..... m} , 

+ 

where m is an integer, x = (Xl,X2,...XN) , 

÷ E for some real numbers and £i (x) = l~j~n cijx j 

cij. We remark that we are restricting attention 

to homogeneous polyhedra, i.e. cones. The 

(4) Open Polyhedron. A non-empty set Q 

in R N is called an open polyhedron if 

Q = {~I£i(I) < 0, i = 1,2 ..... m} . The concepts 

of faces andset of faces are defined 

identically as for polyhed@a. More precisely, 

let P = {~I£i(~ ) ~ 0, i = 1,2 ..... m}, then 

FH(Q) = FN(P), Fs(Q) = Fs(P ) 

polyhedral decision problem B(P) is to 

+ 
determine whether ~¢P for an input x . 

Here we are also interested in the linear 

decision tree model (each internal node 

representing a test Zllxi:c), with a "yes" or 

"no" decision at every leaf. The complexity 

3. Lower Bounds for PolyhedralDeclsio n Problems. 

Let T be a polygon on the plane. Suppose 

we are asked to decide if a given point x is 

inside T by making a series of tests of the 

form "~.~:c". It is easy to see that about 
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log v tests are necessary if T has v 

vertices. The following thereom is a general- 

ization: 

= {~I~(~) <- 0 for i -- 1,2 .... m} Theorem i. Let P 

be a polyhedron in R N . Then for each s, 

• (C(P)~ > IFs(P) I 2C (P) "N-s J 

Corollary. C(P) > 1/2 log IEs(P) I o 

Theorem 1 relates the complexity of B(P) 

to certain "static" combinatorial properties 

of the polyhedron P. Informally, if a 

polyhedron P has many edges (or faces), then 

the theorem says it is difficult to decide 

whether a point lles in P. The rest of this 

section is devoted to proving Theorem i. 

Note that the corollary follows from Theorem 1 

since ~C(P)~ < 2C(P) 
~N-s J - 

We first show that we can assume that in 

an optimal algorithm each query "lllxi:c" has 

c = 0 . Let T be a decision tree for B(P). 

A node v is said to be inhomo~eneous if the 

associated query "El x "c" has c ~ 0 Without 
i i" 

loss of generality, we shall assume c > 0 

since we can always ask an equivalent query 

7 (-li)x i: (-c) otherwise. We shall remove 

i~homogeneous nodes from T by performing the 

following operation for each inhomogeneous 

node v: eliminate v, the " >", and "=" 

branches of the subtree rooted at v; connect 

the "<" branch directly to the father of v. 

The resulting tree T ~ clearly has a height 

no greater than the original tree T , and 

has no inhomogeneous nodes. It remains to 

show that T ~ is a decision tree algorithm for 

B(P) . Let a = min(clElixi:c is associated 

with some inhomogeneous node in T}, and let 

b = max{ II i I} be similarly defined. Then, 

for each x~D = {~I Ixil < a/Nb ~i} , the 

decision tree T always branches to the "<" 

path at each inhomogeneous node. Hence, the 

tree T ~ also works correctly for xED. 

+ 

But this implies that T" also works for all x , 

as all the comparisons in T" are homogeneous 

and the problem B(P) is homogeneous. We have 

thus proved that we can assume all queries 

+ :0" are of the form "q(x) where q(~) = Zl.x. 
ll 

We will assume in what follows that P is 

of dimension N, i.e. that {P} = FN(P ). 

The following informal argument demonstrates 

that this can be done without loss of generality. 

Suppose that dim(P) = N" < N. Let S c R N 

be the smallest subspace of R N containing 

all of P; thus dim(S) = N" . Now every test 

El.x.:c in R N either corresponds to a 
1 1 

linear test Z%I xi:c in S (where 5" is, for 

xcS, x expressed in a basis for S having 

the same origin as R N), or else (if 

{~RNIElix i = c} o S = 6) the test El x :c 
ii 

-> 

is useful only for determining if x~S, and 

not for telling if ~P under the assumption 

÷ 
that xcS. Therefore the complexity of 

determining if an ~ER N is in P is at least 

as great as the complexity of determining if an 

xES iS in P. Since dim(S) = dim(P) we are 

finished with our demonstration. In any case 

we should also like to remark that for our 

application of Theorem i to the complexity of 

the shortest paths problem, this assumption holds• 
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We shall employ an "Oracle" to help our 

proof. The following lemma is essential to the 

construction of the oracle: 

Lemma i: Let Q = {xlPi(X) < 0, i = 1,2,...,t} 
N 

be an open polyhedron, q(~) = 7 ~ x a linear 
i=lii 

form, Q1 = Q n {xlq(x) < 0} , and 

Q2 = Q n {xlq(x) > 0} . Then for each s , 

there exists a jE{I,2} such that Qj is 

non-empty, and IFs(Qj) I > 1/21Fs(Q) I • 

Proof of Lemma i. 

If Q2 = 4, then Q c_ {~lq(~) _< 0} . 

Since Q is an open set, we must have 

Q _c {xlq(x ) < 0} . Therefore, QI Q , and 

j = i satisfies the requirements. Similarly, 

for the case QI = ~ we can choose j = 2. 

It remains to prove the lemma when both QI and Q2 

are non-empty. We shall accomplish this by 

constructing a i-i mapping @ from Fs(Q) 

into Fs(QI) u Fs(Q2) . This then implies 

that IFs(Q) I < IFs(QI) I + IFs(Q2) I We can 

then choose a j such that IFs(Qj) I >- 1/2[Fs(Q) I. 

Now we construct ~ Let FH(Q)EFs(Q). 

Define 

A I = FH(Q) n {xlq(ix) < 0} , 

A 2 = FH(Q) n {~lq(-x) > 0} , 

A 3 = FH(Q) n {xiq(x) = 0} . 

Case i) A I u A 2 = ~ : In this case 

FH(Q) c_ {~lq &) = 0}. Let us write 

QI = {xlPi(X) < 0, i = 1,2 ..... t~-l} , with 

pt+l(~) = q (~) . Clearly 

FH(QI ) = FH(Q) n {q(E:) = 0} = FH(Q) 

Define @ (FH(Q)) = FH(QI). 

Case 2) A I u A 2 # 4: Assume that A I # 4; 

the case A 2 # ~ can be similarly treated. 

Write as before 

Q1 = {~IPi(~) < 0, i = 1,2 ..... t+l} With 

Pt+l(~) = q (~). Define H" = H u {t+l} 

Clearly, FH.(QI) = FH(Q) n {~lq(~) < 0} 

is non-empty and is an s-dimensional face 

of Ql" 

Define ~(FH(Q)) = FH.(Q I) • 

It remains to show that the ~ constructed is 

an i-i mapping. It is easily seen that 

@(FH(Q) ) c FH(Q) . Since all the FH(Q) in 

Fs(Q) are disjoint, it follows that all the 

~(FH(Q)) are disjoint, hence distinct. This 

completes the proof of Lemma i. 

The Oracle : 

The Oracle shall specify a way to answer 

questions with the help of a sequence of open 

polyhedra V o , V 1 , . . .  I n i t i a l l y ,  V 0 = Q . w h e r e  

Q = {~l~i(~) < 0, i = 1,2 .... gn}. At the time 

of the j th query qj (~):0 , the oracle has 

constructed V 0,V I,...,Vj_ 1 The oracle 

decides the answer for the query in the following 

way: 

let Q1 = vj-I n {~{qj(~) < 0} , 

Q2 = Vj-1 n {xlqj(x) > O} ; by Lemma l, there 

is an i such that Qi is non-empty, and 

IFs(Qi)l -> 1/21Fs(Vj-I) I; 

The oracle's answer is then: qj 

qj 

The oracle then defines 

< 0 if i " i, and 

>0 if i= 2. 

Vj to be Qi" 
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-Analysis of the Oracle. 

+ 

Let qj(x):0 (j = 1,2,...,t) be the 

entire sequence of queries asked by the 

algorithm under the above oracle, and let 

ejqj(~) < 0 be the results of the queries 

(ej = -+i). Then, 

: gi(x) v t {-~1 + < o ,  i = 1 , 2  . . . .  m, 

< o ,  j 1 , 2  . . . .  t }  # ejqj ( :~)  = . 

and 

( i )  

IFs(Vt) I ~ 1/21Fs(Vt_l~ ~ 1/22 IFs(Vt_2) I 

• -.e i/2tlF s(v O) I 

IFs(Vt) [ e 1/2 t IFs(Q) I (21 

For each ~¢Vt, the same leaf in the tree T 

is reached and the algorithm must say "yes , 

+ 

xE~' Since the algorithm only knows that 

+xE{x+l (~) < 0 j = 1,2 ..... t } we have ,ejqj , 

{llejqj(~) < 0, j = 1,2 ..... t} e P I 

As Q is the "largest" open set contained in 

P, we have 

{~Igjqj(~) < 0, j = 1,2 .... t} E Q = 

{xl£i(x) < 0, i = 1,2 ..... m} 

Therefore, (i) can be written as 

= {~Igjqj(~) < 0, j = 1,2 ..... t} . (3) V t 

As there are only t linear functions in (3), 

t 
there can be at most (N_s) s-dimensional faces 

of V Therefore, 
t 

(N-st) _> IFs(Vt) I (4) 

(2) and (4) lead to 2 t. (N_s)t e IFs(Vt) I. (5) 

As the left-hand side of (5) is an increasing 

function of t, and C(P) e t, we have proved 

the lemma. 

General discussions of the maximal number 

of faces of dimension's that a polyhedron 

can have are given in [6] and [12]. We now 

turn our attention to the polyhedron associated 

with the all-points shortest-paths problem. 

4. The Shortest Paths Problem. 

In this section we make use of results 

derived in the previous section to obtain an 

~(n 2 log n) lower bound for the shortest paths 

problem. Theorem 1 can not be directly 

applied to the shortest paths problem, as the 

latter is not a polyhedral decision problem. 

The shortest paths problem is, however, closely 

related to the following polyhedral decision 

problem, which is a special case of the 

verification problem for finding shortest paths . 

Verifying the Trian$1e Inequalities: 

Let p(n) be the polyhedron in R nCn-l) 12 

defined as follows: A vector w~R n~n-l)/2"'" 

is written as 

w = (w12,w13 ..... Wln,W23 .... W2n .... Wn_l,n); 

p(n) = {5 lWik > 0, £ijk(~) > 0 for 

i < k, i # j ~ k} 

where £ijk(W) = Wik-Wij-Wjk . The problem 

B(e(n))  + ~(n) is to determine if wc~ , i.e. 

whether all the w..'s are positive and all mJ 

the triangle inequalites are satisfied by (wij). 

The following lemma relates the complexity 

for shortest paths L to the complexity of 
n 

B(p (n)) : 

Lemma 2: L > C(p (n)) -n(n-l)/2 
n 

Proof: Let T be an optimal decision tree 

algorithm for computing the shortest distance 
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matrix (dij) from the input matrix (wij). 

The height of T is L , by definition of L 
n n 

We can obtain a decision tree T" for the 

problem B(P (n)) by modifiying T as follows. 

Replace each leaf of T by a sequence of 

n(n-l)/2 distinct tests of the form 

"Is dij = wij. Since at each leaf of T 

we have dij = fij(~), T" is a linear decision 

+ 

tree. We construct T" so that w is 

accepted iff all of the newly added tests have 

"yes" answers. The correctness of T" is 

ensured by the fact [8, page 89] that a matrix 

is a shortest distance matrix iff it satisfies 

all the triangle inequalities and by the fact 

that if all the triangle inequalities are 

satisfied without equality the matrix is 

positive. Hence L + n(n-l)/2 • C(P (n)) . 
n 

To obtain an explicit bound on L , we 
n 

need a recent combinatorial result of Avis, 

which states that p(n) has a very large set 

of edges. 

Lemma 3: There exists a positive constant c 

,ilFl(P(n))l > 2n2(l°g n - c log log n)/4 that SO 

for all n 

Proof: This counting argument is given in [i], 

and is omitted here due to its length. 

Theorem 2: L ~ n(log n - c log log n)/4, 
n 

for some constant C" > 0. 

Proof: By Theorem 1 and Lemma 3 we know that 

C(P (p)) + log fC(p(n))~ 
~N-I J 

n2(log n - c log log n)/4 , 

where N = (~) Since (~) ~ ?/b' , if 

x satisfies 

x + (N-I) log x - log((N-l) X) 

= n2(log n - c log log n)/4 (6) 

it must also satisfy x ~ C(P (n)) . Now (6) 

implies 

x + (n2/2 - n/2 - l) log x 

= (5n21og n)/4 - (cn21og log n)/4 + O(n 2) 

(7) 

since log ((N-I)]) = (N-I/2) log (N-l) 

-(N-l) log e + O(i) 

(Stirling's approximation), and 

log (N-l) = log (n 2) - O(i) . The solution to 

(7) is 

x = (n21og n)/4 - (cn21og log n)/4 + O(n 2) 

Using (8) and Lemma 2 we can conclude that 

L 
n 

for some 

(8) 

C(p (n)) rn% 

• x -  

> (n21og n)/4 - (cn21og log n)/4 - O(n 2) 

• (n21og)/4 - (c'n21og log n)/4 

C ~ > C . 

5. Remarks. 

(i) We have shown that 

L > (n21og n)/4 - (c log log n)/4 , and a 
n 

~(n21og n) bound is the best we can obtain 

under this approach as 

loglFs(P) I < cn 2 log n for all s, 

The best upper bound know (Fredman [5] ) is 

L n -< cn 2"5 Hence a large gap still exists 

even in this decision tree model. 

(2) The linear decision tree model has 

received considerable attention in the recent 
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literature ([3],[5],[7],[ii],[14],[15]). 

This model only counts the number of branchings, 

and thus tends to underestimate the total 

running time (for example, it is conceivable 

that no shortest-paths algorithm can achieve 

cn 2-5 in total running time). Nevertheless, 

the linear decision tree model enables us to 

study non-trlvlal lower bounds, and Theorem 1 

has added yet another useful device in this model. 
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