An $\Omega(n^2 \log n)$ Lower Bound to the Shortest Paths Problem^{††}

Andrew C. Yao Computer Science Department, Stanford University

David M. Avis Department of Operations Research, Stanford University

> Ronald L. Rivest Laboratory for Computer Science, M.I.T.

Summary.

Let P be a polyhedron with f_s s-dimensional faces. We show that $\Omega(\log f_s)$ linear comparisons[†] are needed to determine if a point lies in P. This is used to establish an $\Omega(n^2 \log n)$ lower bound to the all-pairs shortest path problem between n points.

1. Introduction.

Let G be an undirected complete graph on n vertices $\{\mathbf{v}_1,\mathbf{v}_2,\ldots\mathbf{v}_n\}$, with a non-negative weight w_{ij} (i < j) assigned to each edge (v_i, v_j) . The n×n shortest distance matrix for G is $D = (d_{ij})$ where $d_{ii} = 0$ and d_{ij} (i \neq j) is the minimum weighted path length between v, and v,. Several ingenious algorithms have been invented to solve the all-pairs shortest path problem, in which D is to be computed. The classical methods of Dijkstra [2] and Floyd [4] both require cn³ running time in the worst case, and more recently Fredman [5] gave an algorithm with a worst-case bound $0(n^{3}(\log \log n)^{1/3}/(\log n)^{1/3})$, which is $o(n^3)$. It is likely that substantially better algorithms (say, $O(n^{2} \cdot 2))$ do not exist,

but no lower bound better than cn^2 is known [8] for general algorithms with branching instructions. (For a straight-line computation with two operations "+" and "min", Kerr [7] showed that cn^3 steps are needed.)

In this paper we prove that $\Omega(n^2 \log n)$ comparisons between linear functions of edge weights are meeded in the decision tree model. In fact, $\Omega(n^2 \log n)$ comparisons are required to <u>verify</u> that $D = (d_{ij})$ is the shortest distance matrix for a graph G with $\{w_{ij}\}$. In the process we shall show that $\Omega(\log f_s)$ linear comparisons are necessary to determine if a point is in a polyhedron with f_ss-dimensional faces (see Section 2 for definitions). This general theorem is of interest in itself since (1) it relates the complexity of polyhedral decision problems (e.g. Rabin [9]) to some classical aspect of polyhedrons studied by mathematicians (the number of vertices, faces, etc.), and (2) it is potentially possible to derive from it

Research Supported by NSF Grants #'s: MCS 72-06336 A04, MCS72-03752 A03 and MCS75-14294

Ŧ

 $[\]Omega(g(x))$ means $\geq cg(x)$ for some positive constant c.

non-linear lower bounds for other computational problems, e.g. constructing minimum-cost spanning trees (although Tarjan's result [15] suggests that a non-linear lower bound on minimum-cost spanning trees may be difficult to obtain).

2. Definitions and Notations

(1) Complexity of finding shortest paths. Consider the all-pairs shortest path problem for a graph with n vertices and weights $\{w_{ij}\}$. We are interested in the linear decision tree model. An algorithm is a ternary tree with each internal node representing a test of the form $"\Sigma\lambda_{ij}w_{ij}$:c", and each leaf containing a set of linear functions $\{f_{ij}, 1 \le i, j \le n\}$ on n(n-1)/2 variables. For any input, the algorithm proceeds by moving down the tree, testing and then branching according to the test result, until a leaf is reached. At that point, the shortest distance matrix $D = (d_{ii})$ is given by $d_{ij} = f_{ij}(\vec{w})$. The cost of an algorithm is the height of the tree, and the complexity L is defined to be the minimum cost for any algorithm.

(2) Polyhedral Decision Problems.

A set P in \mathbb{R}^{N} is a <u>polyhedron</u> if $P = \{\vec{x} | \vec{x} \in \mathbb{R}^{N}, \ell_{1}(\vec{x}) \leq 0, i = 1, 2, ..., m\}$, where m is an integer, $\vec{x} = (x_{1}, x_{2}, ..., x_{N})$, and $\ell_{1}(\vec{x}) = \sum_{1 \leq j \leq n} c_{ij} x_{j}$ for some real numbers c_{ij} . We remark that we are restricting attention to <u>homogeneous</u> polyhedra, i.e. cones. The <u>polyhedral decision problem</u> B(P) is to determine whether $\vec{x} \in P$ for an input \vec{x} . Here we are also interested in the linear decision tree model (each internal node representing a test $\Sigma \lambda_{i} x_{i}$:c), with a "yes" or "no" decision at every leaf. The <u>complexity</u> of B(P) is the minimum height of any decision tree, and is denoted by C(P) .

(3) <u>Faces of a Polyhedron</u>. Let $P = \{\vec{x} | \hat{k}_i(\vec{x}) \le 0, i = 1, 2, ..., m\}$ be a polyhedron in \mathbb{R}^N . To each subset H (maybe Ø) of $\{1, 2, ..., m\}$, we define a set $F_H(P) \le \mathbb{R}^N$ by $F_H(P) = \{\vec{x} | \hat{k}_i(\vec{x}) < 0$ for each $i \in H$,

 $l_i(x) = 0$ for each $i \notin H$. We say that $F_{H}(P)$ is a <u>face</u> of dimension s if the smallest subspace of R^N containing F_u(P) has dimension s. The empty face has dimension -1 by convention. Let $F_{e}(\mathbf{P})$ be the set of faces of dimension s of P. Note that no two elements of $F_{s}(P)$ overlap. The set of faces $F_{s}(P)$ is independent of the choice of $l_i(x)$. That is, if $P = {\vec{x} \mid \hat{l_i(x)} \leq 0, i = 1, 2, \dots, m'}$, the set $F_{s}(P)$ constructed using $\{\ell_{i}(\vec{x})\}$ is the same as the one constructed using $\{l_i(\vec{x})\}$. For an intrinsic definition of faces, see for example [6,10]. A face of dimension 1 is called an edge, as it is part of a line (agreeing with intuition).

(4) <u>Open Polyhedron</u>. A non-empty set Q in $\mathbb{R}^{\mathbb{N}}$ is called an <u>open polyhedron</u> if $Q = \{\vec{x} \mid \boldsymbol{\ell}_{1}(\vec{x}) < 0, i = 1, 2, ..., m\}$. The concepts of faces and set of faces are defined identically as for polyhedra. More precisely, let $P = \{\vec{x} \mid \boldsymbol{\ell}_{1}(\vec{x}) \leq 0, i = 1, 2, ..., m\}$, then $F_{\mathrm{H}}(Q) = F_{\mathrm{H}}(P), F_{\mathrm{S}}(Q) = F_{\mathrm{S}}(P)$.

3. Lower Bounds for Polyhedral Decision Problems.

Let T be a polygon on the plane. Suppose we are asked to decide if a given point x is inside T by making a series of tests of the form " $\vec{\lambda} \cdot \vec{x}$:c". It is easy to see that about

12

log v tests are necessary if T has v vertices. The following thereom is a generalization:

<u>Theorem 1</u>. Let $P = {\vec{x} | l_j(\vec{x}) \le 0 \text{ for } i = 1,2,...m}$ be a polyhedron in \mathbb{R}^N . Then for each s,

 $2^{C(P)} \cdot {C(P) \choose N-s} \ge |F_s(P)|$. Corollary. $C(P) \ge 1/2 \log |F_s(P)|$.

Theorem 1 relates the complexity of B(P) to certain "static" combinatorial properties of the polyhedron P. Informally, if a polyhedron P has many edges (or faces), then the theorem says it is difficult to decide whether a point lies in P. The rest of this section is devoted to proving Theorem 1. Note that the corollary follows from Theorem 1 since $\binom{C(P)}{N-s} \leq 2^{C(P)}$.

We first show that we can assume that in an optimal algorithm each query " $\Sigma \lambda_i x_i$:c" has c = 0. Let T be a decision tree for B(P). A node v is said to be inhomogeneous if the associated query " $\Sigma \lambda_{i} \mathbf{x}_{i}$:c" has c $\neq 0$. Without loss of generality, we shall assume c > 0since we can always ask an equivalent query $\Sigma(-\lambda_i)x_i:(-c)$ otherwise. We shall remove inhomogeneous nodes from T by performing the following operation for each inhomogeneous node v: eliminate v, the ">", and "=" branches of the subtree rooted at v; connect the "<" branch directly to the father of v. The resulting tree T' clearly has a height no greater than the original tree T , and has no inhomogeneous nodes. It remains to show that T' is a decision tree algorithm for

B(P). Let $a = \min\{c \mid \Sigma \lambda_i x_i: c$ is associated with some inhomogeneous node in T}, and let $b = \max\{|\lambda_i|\}$ be similarly defined. Then, for each $\vec{x} \in D = \{\vec{x} \mid |x_i| < a/Nb \forall i\}$, the decision tree T always branches to the "<" path at each inhomogeneous node. Hence, the tree T' also works correctly for $x \in D$. But this implies that T' also works for all \vec{x} , as all the comparisons in T' are homogeneous and the problem B(P) is homogeneous. We have thus proved that we can assume all queries are of the form "q(\vec{x}):0" where $q(\vec{x}) = \Sigma \lambda_i x_i$.

We will assume in what follows that P is of dimension N, i.e. that $\{P\} = F_N(P)$. The following informal argument demonstrates that this can be done without loss of generality. Suppose that dim(P) = N' < N. Let $S \subseteq R^N$ be the smallest subspace of R^N containing all of P; thus dim(S) = N⁻. Now every test $\Sigma \lambda_i \mathbf{x}_i$:c in R^N either corresponds to a linear test $\Sigma \lambda_i x_i$:c in S (where \vec{x} is, for $\dot{\mathbf{x}} \in \mathbf{S}$, $\dot{\mathbf{x}}$ expressed in a basis for S having the same origin as \mathbf{R}^{N}), or else (if $\{\vec{\mathbf{x}} \in \mathbb{R}^{N} | \Sigma \lambda_{i} \mathbf{x}_{i} = c\} \cap S = \emptyset$ the test $\Sigma \lambda_{i} \mathbf{x}_{i} : c$ is useful only for determining if $\vec{x} \in S$, and not for telling if $\vec{x} \in P$ under the assumption that $\vec{x} \in S$. Therefore the complexity of determining if an $\overrightarrow{x} \in \mathbb{R}^{N}$ is in P is at least as great as the complexity of determining if an $\mathbf{x} \in S$ is in P. Since dim(S) = dim(P) we are finished with our demonstration. In any case we should also like to remark that for our application of Theorem 1 to the complexity of the shortest paths problem, this assumption holds. We shall employ an "Oracle" to help our proof. The following lemma is essential to the construction of the oracle:

Lemma 1: Let $Q = \{\vec{x} | p_i(\vec{x}) < 0, i = 1, 2, ..., t\}$ be an open polyhedron, $q(\vec{x}) = \sum_{\substack{j=1 \ i \ i}}^{N} \lambda_j x_i$ a linear form, $Q_1 = Q \cap \{\vec{x} | q(\vec{x}) < 0\}$, and $Q_2 = Q \cap \{\vec{x} | q(\vec{x}) > 0\}$. Then for each s, there exists a $j \in \{1, 2\}$ such that Q_j is non-empty, and $|F_s(Q_j)| \ge 1/2 |F_s(Q)|$.

Proof of Lemma 1.
If
$$Q_2 = \emptyset$$
, then $Q \subseteq \{\hat{\mathbf{x}} | q(\hat{\mathbf{x}}) \leq 0\}$.
Since Q is an open set, we must have
 $Q \subseteq \{\hat{\mathbf{x}} | q(\hat{\mathbf{x}}) < 0\}$. Therefore, $Q_1 = Q$, and
 $j = 1$ satisfies the requirements. Similarly,
for the case $Q_1 = \emptyset$ we can choose $j = 2$.
It remains to prove the lemma when both Q_1 and Q_2
are non-empty. We shall accomplish this by
constructing a 1-1 mapping ψ from $F_s(Q)$
into $F_s(Q_1) \cup F_s(Q_2)$. This then implies
that $|F_s(Q)| \leq |F_s(Q_1)| + |F_s(Q_2)|$. We can
then choose a j such that $|F_s(Q_1)| \geq 1/2|F_s(Q)|$.

Now we construct ψ . Let $F_{H}(Q) \in F_{s}(Q)$. Define

$$A_{1} = F_{H}(Q) \cap \{\vec{x} | q(\vec{x}) < 0\},$$

$$A_{2} = F_{H}(Q) \cap \{\vec{x} | q(\vec{x}) > 0\},$$

$$A_{3} = F_{H}(Q) \cap \{\vec{x} | q(\vec{x}) = 0\}.$$

Case 1)
$$A_1 \cup A_2 = \emptyset$$
: In this case
 $F_H(Q) \subseteq \{\vec{x} \mid q, \vec{x}\} = 0\}$. Let us write
 $Q_1 = \{\vec{x} \mid p_1(\vec{x}) < 0, i = 1, 2, \dots, t+1\}$, with
 $p_{t+1}(\vec{x}) = q, \vec{x}\}$. Clearly
 $F_H(Q_1) = F_H(Q) \cap \{q, \vec{x}\} = 0\} = F_H(Q)$
Define ψ ($F_H(Q)$) = $F_H(Q_1)$.

Case 2) $A_1 \cup A_2 \neq \emptyset$: Assume that $A_1 \neq \emptyset$; the case $A_2 \neq \emptyset$ can be similarly treated. Write as before

 $\begin{aligned} & Q_1 = \{ \vec{x} \mid p_1(\vec{x}) < 0, i = 1, 2, \dots, t+1 \} & \text{with} \\ & p_{t+1}(\vec{x}) = q(\vec{x}). & \text{Define } H' = H \cup \{t+1\} \\ & \text{Clearly, } F_{H'}(Q_1) = F_H(Q) \cap \{ \vec{x} \mid q(\vec{x}) < 0 \} \\ & \text{is non-empty and is an s-dimensional face} \\ & \text{of } Q_1. \\ & \text{Define } \psi(F_H(Q)) = F_{H'}(Q_1) . \end{aligned}$

It remains to show that the ψ constructed is an 1-1 mapping. It is easily seen that $\psi(F_H(Q)) \subseteq F_H(Q)$. Since all the $F_H(Q)$ in $F_s(Q)$ are disjoint, it follows that all the $\psi(F_H(Q))$ are disjoint, hence distinct. This completes the proof of Lemma 1.

The Oracle:

The Oracle shall specify a way to answer questions with the help of a sequence of open polyhedra V_0, V_1, \ldots . Initially, $V_0 = Q$, where $Q = \{\vec{x} \mid k_i(\vec{x}) < 0, i = 1, 2, \ldots, m\}$. At the time of the jth query $q_j(\vec{x}):0$, the oracle has constructed $V_0, V_1, \ldots, V_{j-1}$. The oracle decides the answer for the query in the following way:

let $Q_1 = V_{j-1} \cap \{\vec{x} | q_j(\vec{x}) < 0\}$, $Q_2 = V_{j-1} \cap \{\vec{x} | q_j(\vec{x}) > 0\}$; by Lemma 1, there is an i such that Q_i is non-empty, and $|F_s(Q_i)| \ge 1/2 | F_s(V_i-1) |$;

The oracle's answer is then: $q_j < 0$ if i = 1, and $q_j > 0$ if i = 2.

The oracle then defines V_j to be Q_i .

Analysis of the Oracle.

Let $q_j(\vec{x}):0$ (j = 1,2,...,t) be the entire sequence of queries asked by the algorithm under the above oracle, and let $\varepsilon_j q_j(\vec{x}) < 0$ be the results of the queries $(\varepsilon_j = \pm 1)$. Then,

and

$$|F_{s}(V_{t})| \geq 1/2 |F_{s}(V_{t-1})| \geq 1/2^{2} |F_{s}(V_{t-2})| \geq \dots \geq 1/2^{t} |F_{s}(V_{0})| \quad .$$
$$|F_{s}(V_{t})| \geq 1/2^{t} |F_{s}(Q)| \quad . \tag{2}$$

For each $\vec{x} \in V_t$, the same leaf in the tree T is reached and the algorithm must say "yes, $\vec{x} \in P$ ". Since the algorithm only knows that $\vec{x} \in \{\vec{x} \mid \epsilon_j q_j(\vec{x}) < 0, j = 1, 2, ..., t\}$, we have $\{\vec{x} \mid \epsilon_i q_j(\vec{x}) < 0, j = 1, 2, ..., t\} \subseteq P$.

As Q is the "largest" open set contained in P, we have

$$\{ \hat{\mathbf{x}} | \varepsilon_{j} q_{j}(\hat{\mathbf{x}}) < 0, j = 1, 2, \dots t \} \leq Q = \\ \{ \hat{\mathbf{x}} | \ell_{i}(\hat{\mathbf{x}}) < 0, i = 1, 2, \dots, m \}$$

Therefore, (1) can be written as

$$V_{t} = \{ \mathbf{x} \mid \varepsilon_{j} q_{j}(\mathbf{x}) < 0, \ j = 1, 2, \dots, t \} .$$
(3)

As there are only t linear functions in (3), there can be at most $\binom{t}{N-s}$ s-dimensional faces of V_t. Therefore,

$$\binom{t}{N-s} \ge |F_{s}(v_{t})|$$
 (4)

(2) and (4) lead to $2^{t} \cdot {t \choose N-s} \ge |F_{s}(V_{t})|$. (5)

As the left-hand side of (5) is an increasing function of t, and $C(P) \ge t$, we have proved the lemma.

General discussions of the maximal number of faces of dimension 's that a polyhedron can have are given in [6] and [12]. We now turn our attention to the polyhedron associated with the all-points shortest-paths problem.

4. The Shortest Paths Problem.

In this section we make use of results derived in the previous section to obtain an $\Omega(n^2 \log n)$ lower bound for the shortest paths problem. Theorem 1 can not be directly applied to the shortest paths problem, as the latter is not a polyhedral decision problem. The shortest paths problem is, however, closely related to the following polyhedral decision problem, which is a special case of the verification problem for finding shortest paths .

Verifying the Triangle Inequalities:

Let $P^{(n)}$ be the polyhedron in $R^{n(n-1)/2}$ defined as follows: A vector $w \in R^{n(n-1)/2}$ is written as

$$w = (w_{12}, w_{13}, \dots, w_{1n}, w_{23}, \dots, w_{2n}, \dots, w_{n-1,n});$$

$$p^{(n)} = \{\vec{w} | w_{ik} > 0, \quad \ell_{ijk}(\vec{w}) > 0 \text{ for}$$

$$i < k, i \neq j \neq k\}$$

where $\ell_{ijk}(\vec{w}) = w_{ik} - w_{ij} - w_{jk}$. The problem $B(P^{(n)})$ is to determine if $\vec{w} \in P^{(n)}$, i.e. whether all the w_{ij} 's are positive and all the triangle inequalites are satisfied by (w_{ij}) .

The following lemma relates the complexity for shortest paths L_n to the complexity of $B(P^{(n)})$:

<u>Lemma 2</u>: $L_n \ge C(P^{(n)}) - n(n-1)/2$

<u>Proof:</u> Let T be an optimal decision tree algorithm for computing the shortest distance

matrix (d_{ij}) from the input matrix (w_{ij}). The height of T is L_n , by definition of L_n . We can obtain a decision tree T' for the problem $B(P^{(n)})$ by modifying T as follows. Replace each leaf of T by a sequence of n(n-1)/2 distinct tests of the form "Is $d_{ij} = w_{ij}$?" Since at each leaf of T we have $d_{ij} = f_{ij}(\vec{w})$, T' is a linear decision tree. We construct T' so that \vec{w} is accepted iff all of the newly added tests have "yes" answers. The correctness of T' is ensured by the fact [8, page 89] that a matrix is a shortest distance matrix iff it satisfies all the triangle inequalities and by the fact that if all the triangle inequalities are satisfied without equality the matrix is positive. Hence $L_n + n(n-1)/2 \ge C(P^{(n)})$.

To obtain an explicit bound on L_n , we need a recent combinatorial result of Avis, which states that $P^{(n)}$ has a very large set of edges.

<u>Lemma 3</u>: There exists a positive constant c so that $|F_1(P^{(n)})| \ge 2^{n^2}(\log n - c \log \log n)/4$, for all n .

<u>Proof</u>: This counting argument is given in [1], and is omitted here due to its length.

<u>Theorem 2</u>: $L_n \ge n(\log n - c \log \log n)/4$,

for some constant c' > 0.

Proof: By Theorem 1 and Lemma 3 we know that

$$\begin{split} \mathsf{C}(\mathsf{P}^{(n)}) &+ \log \ {C(\mathsf{P}^{(n)}) \atop \mathsf{N-1}} \\ &\geq n^2(\log n - c \ \log \ \log n)/4 \ , \\ \end{split}$$
 where $\mathsf{N} = {n \choose 2} \ . \ Since \ {a \choose b} \leq a^b/b! \ , \ if x \ satisfies \end{split}$

$$x + (N-1) \log x - \log((N-1)!)$$

= n²(log n - c log log n)/4 (6)

it must also satisfy $x \leq C(P^{(n)})$. Now (6) implies

$$x + (n^{2}/2 - n/2 - 1) \log x$$

= (5n²log n)/4 ~ (cn²log log n)/4 + 0(n²)
(7)

since
$$\log ((N-1)!) = (N-1/2) \log (N-1)$$

-(N-1) $\log e + O(1)$
(Stirling's approximation), and
 $\log (N-1) = \log (n^2) - O(1)$. The solution to

(7) is

$$x = (n^2 \log n)/4 - (cn^2 \log \log n)/4 + O(n^2)$$
(8)

Using (8) and Lemma 2 we can conclude that

$$L_{n} \geq C(P^{(n)}) - {n \choose 2}$$

$$\geq x - {n \choose 2}$$

$$\geq (n^{2} \log n)/4 - (cn^{2} \log \log n)/4 - 0(n^{2})$$

$$\geq (n^{2} \log)/4 - (c^{2} \log \log n)/4$$

for some c' > c.

5. Remarks.

(1) We have shown that

 $L_n \ge (n^2 \log n)/4 - (c \log \log n)/4$, and a $\Omega(n^2 \log n)$ bound is the best we can obtain under this approach as

 $\log |F_{s}(P)| \leq cn^{2} \log n$ for all s.

The best upper bound know (Fredman [5]) is $L_n \leq cn^{2.5}$. Hence a large gap still exists even in this decision tree model.

(2) The linear decision tree model has received considerable attention in the recent

literature ([3],[5],[7],[11],[14],[15]).

This model only counts the number of branchings, and thus tends to underestimate the total running time (for example, it is conceivable that no shortest-paths algorithm can achieve $cn^{2.5}$ in total running time). Nevertheless, the linear decision tree model enables us to study non-trivial lower bounds, and Theorem 1 has added yet another useful device in this model.

References

- D.M. Avis, "Some Polyhedral Cones Related to Metric Spaces," Ph.D. Thesis, Department of Operations Research, Stanford University, (April 1977).
- [2] E.W. Dijkstra, "A note on two problems in connection with graphs," <u>Numer. Math.</u>, 1 (1959), 269-271.
- [3] D.P. Dobkin, R.J. Lipton, and S.P. Reiss, "Excursions Into Geometry," Yale University Research Report # 71.
- [4] R.W. Floyd, "Algorithm 97: Shortest path," <u>C.ACM</u> 5 (1962), p. 345.
- [5] M.L. Fredman, "New bounds on the complexity of the shortest path problem," <u>Siam J. on</u> <u>Computing</u> 5 (1976), 87-89.
- [6] B. Grünbaum, <u>Convex Polytopes</u>, (Interscience, New York, 1967).
- [7] L.R. Kerr, "The effect of algebraic structure on the computational complexity of matrix multiplications," Ph.D Thesis, Cornell University, (1970).
- [8] E. Lawler, <u>Combinatorial Optimization</u>: <u>Networks and Matroids</u>, (Holt, Rinehart and Winston, New York 1976).
- [9] M.O. Rabin, "Proving simultaneous positivity of linear forms," <u>JCSS</u> 6 (1972), 639-650.
- [10] R. Rockfellar, <u>Convex Analysis</u>, Princeton University Press, 1970
- [11] P.M. Spira and A. Pan, "On finding and updating spanning trees and shortest paths," <u>SIAM J. on Computing</u> 4 (1975), 375-380.

- [12] R. Stanley, "The Upper Bound Conjecture and Cohen-Macaulay Rings," Studies in Applied Math. (Vol <u>LIV</u>, No. 2), (MIT, June 1975), 135-142.
- [13] R. Tarjan, "Applications of Path Compression on Balanced Trees," Stanford Computer Science Department Report STAN-CS-75-512, (August 1975).
- [14] A.C. Yao, "On the complexity of comparison problems using linear functions," Conference Record, IEEE 16th Annual Symposium on Switching and Automata Theory, 1975, 85-89.
- [15] A.C. Yao, "On Computing the Minima of Quadratic Forms," The 7th Annual ACM Symposium on the Theory of Complexity, 1975, 23-26.