An $\Omega\left(n^{2} \log n\right)$ Lower Bound to the Shortest Paths Problem ${ }^{\dagger \dagger}$

Andrew C. Yao
Computer Science Department, Stanford University

David M. Avis
Department of Operations Research, Stanford University

Ronald L. Rivest
Laboratory for Computer Science, M.I.T.

Summary.
Let P be a polyhedron with f_{s} s-dimensional faces. We show that $\Omega\left(\log f_{s}\right)$ linear comparisons ${ }^{\dagger}$ are needed to determine if a point lies in P. This is used to establish an $\Omega\left(n^{2} \log n\right)$ lower bound to the all-pairs shortest path problem between n points.

1. Introduction.

Let G be an undirected complete graph on n vertices $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{n}}\right\}$, with a non-negative weight $w_{i j}(i<j)$ assigned to each edge $\left(v_{i}, v_{j}\right)$. The $n \times n$ shortest distance matrix for G is $D=\left(d_{i j}\right)$ where $d_{i i}=0$ and $d_{i j}(i \neq j)$ is the minimum weighted path length between v_{i} and v_{j}. Several ingenious algorithms have been invented to solve the all-pairs shortest path problem, in which D is to be computed. The classical methods of Dijkstra [2] and Floyd [4] both require cn^{3} running time in the worst case, and more recently Fredman [5] gave an algorithm with a worst-case bound $0\left(n^{3}(\log \log n)^{1 / 3} /(\log n)^{1 / 3}\right)$, which is $o\left(n^{3}\right)$. It is likely that substantially better algorithms (say, $0\left(n^{2}{ }^{2}\right)$) do not exist,
but no lower bound better than cn^{2} is known [8] for general algorithms with branching instructions. (For a straight-1ine computation with two operations " + " and "min", Kerr [7] showed that cn^{3} steps are needed.)

In this paper we prove that $\Omega\left(\mathrm{n}^{2} \log \mathrm{n}\right)$ comparisons between linear functions of edge weights are needed in the decision tree model. In fact, $\Omega\left(n^{2} \log n\right)$ comparisons are required to verify that $D=\left(d_{i j}\right)$ is the shortest distance matrix for a graph G with $\left\{\mathrm{w}_{\mathrm{ij}}\right\}$. In the process we shall show that $\Omega\left(\log \mathrm{f}_{\mathrm{s}}\right)$ linear comparisons are necessary to determine if a point is in a polyhedron with f_{s} s-dimensional faces (see Section 2 for definitions). This general theorem is of interest in itself since (1) it relates the complexity of polyhedral decision problems (e.g. Rabin [9]) to some classical aspect of polyhedrons studied by mathematicians (the number of vertices, faces, etc.), and (2) it is potentially possible to derive from it
 Research Supported by NSF Grants \#'s: MCS 72-06336 A04, MCS72-03752 A03 and MCS75-14294
non-linear lower bounds for other computational problems, e.g. constructing minimum-cost spanning trees (although Tarjan's result [15] suggests that a nem-linear lower bound an minimum-cost spanning trees may be difficult to obtain).

2. Definitions and Notations

(1) Complexity of finding shortest paths.

Consider the all-pairs shortest path problem for a graph with n vertices and weights $\left\{w_{i j}\right\}$. We are interested in the linear decision tree model. An algorithm is a ternary tree with each internal node representing a test of the form " $\Sigma \lambda_{i j} W_{i j}: c$ ", and each leaf containing a set of linear functions $\left\{f_{i j}, 1 \leq i, j \leq n\right\} \quad$ on $n(n-1) / 2$ variables. For any input, the algorithm proceeds by moving down the tree, testing and then branching according to the test result, until a leaf is reached. At that point, the shortest distance matrix $D=\left(d_{i j}\right)$ is given by $d_{i j}=f_{i j}(\vec{w})$. The cost of an algorithm is the height of the tree, and the complexity L_{n} is defined to be the minimum cost for any algorithm.
(2) Polyhedral Decision Problems.
A set P in R^{N} is a polyhedron if
$P=\left\{\overrightarrow{\mathrm{x}} \mid \overrightarrow{\mathrm{x}} \in \mathrm{R}^{N}, \ell_{i}(\overrightarrow{\mathrm{x}}) \leq 0, i=1,2, \ldots, m\right\}$, where m is an integer, $\vec{x}=\left(x_{1}, x_{2}, \ldots x_{N}\right)$, and $\ell_{i}(\vec{x})=\sum_{1 \leq j \leq n} c_{i j} x_{j}$ for some real numbers $c_{i j}$. We remark that we are restricting attention to homogeneous polyhedra, i.e. cones. The polyhedral decision problem $B(P)$ is to determine whether $\overrightarrow{\mathbf{x}} \in P$ for an input $\overrightarrow{\mathbf{x}}$. Here we are also interested in the linear decision tree model (each internal node representing a test $\Sigma \lambda_{i} x_{i}: c$), with a "yes" or "no" decision at every leaf. The complexity
of $B(P)$ is the minimum height of any decision tree, and is denoted by $C(P)$.
(3) Faces of a Polyhedron. Let $P=\left\{\vec{x} \mid \ell_{i}(\vec{x}) \leq 0, i=1,2, \ldots, m\right\} \quad$ be a polyhedron in R^{N}. To each subset H (maybe \emptyset) of $\{1,2, \ldots, m\}$, we define a set $F_{H}(P) \subseteq R^{N}$ by $F_{H}(P)=\left\{\vec{x} \mid \ell_{i}(\vec{x})<0\right.$ for each $i \in H$, $\ell_{i}(x)=0$ for each $\left.i \notin H\right\}$. We say that $F_{H}(P)$ is a face of dimension s if the smallest subspace of R^{N} containing $F_{H}(P)$ has dimension s. The empty face has
dimension -1 by convention. Let $F_{S}(P)$ be the set of faces of dimension s of P. Note that no two elements of $F_{s}(P)$ overlap. The set of faces $F_{s}(P)$ is independent of the choice of $\ell_{i}(x)$. That is, if $P=\left\{\vec{x} \mid \ell_{i}^{\prime}(\vec{x}) \leq 0, i=1,2, \ldots, m^{\prime}\right\}$, the set $F_{S}(P)$ constructed using $\left\{\ell_{i}(\vec{x})\right\}$ is the same as the one constructed using $\left\{\ell_{i}(\vec{x})\right\}$. For an intrinsic definition of faces, see for example $[6,10]$. A face of dimension 1 is called an edge, as it is part of a line (agreeing with intuition).
(4) Open Polyhedron. A non-empty set Q in R^{N} is called an open polyhedron if $Q=\left\{\vec{x} \mid \ell_{i}(\vec{x})<0, i=1,2, \ldots, m\right\}$. The concepts of faces and set of faces are defined identically as for polyhedra. More precisely, let $P=\left\{\vec{x} \mid \ell_{i}(\vec{x}) \leq 0, i=1,2, \ldots, m\right\}$, then $\mathrm{F}_{\mathrm{H}}(\mathrm{Q})=\mathrm{F}_{\mathrm{H}}(\mathrm{P}), F_{\mathrm{S}}(\mathrm{Q})=F_{\mathrm{S}}(\mathrm{P}) \quad$.

3. Lower Bounds for Polyhedral Decision Problems.

Let T be a polygon on the plane. Suppose we are asked to decide if a given point x is inside T by making a series of tests of the form $\overrightarrow{\|} \vec{\lambda} \cdot \vec{x}: c$ ". It is easy to see that about
$\log v$ tests are necessary if T has v vertices. The following thereom is a generalization:

Theorem 1. Let $P=\left\{\vec{x} \mid \ell_{i}(\vec{x}) \leq 0\right.$ for $\left.i=1,2, \ldots m\right\}$ be a polyhedron in R^{N}. Then for each s,

$$
2^{C(P)} \cdot\binom{C(P)}{N-s} \geq\left|F_{s}(P)\right|
$$

Corollary. $\quad \mathrm{C}(\mathrm{P}) \geq 1 / 2 \log \left|F_{\mathbf{S}}(\mathrm{P})\right|$.

Theorem 1 relates the complexity of $B(P)$ to certain "static" combinatorial properties
of the polyhedron P. Informally, if a polyhedron P has many edges (or faces), then the theorem says it is difficult to decide whether a point lies in P. The rest of this section is devoted to proving Theorem 1. Note that the corollary follows from Theorem 1 since $\binom{C(P)}{N-S} \leq 2^{C(P)}$.

We first show that we can assume that in an optimal algorithm each query " $\Sigma \lambda_{i} x_{i}: c$ " has $c=0$. Let T be a decision tree for $B(P)$. A node v is said to be inhomogeneous if the associated query " $\Sigma \lambda_{i} x_{i}: c$ " has $c \neq 0$. Without loss of generality, we shall assume $c>0$ since we can always ask an equivalent query $\Sigma\left(-\lambda_{i}\right) x_{i}:(-c)$ otherwise. We shall remove inhomogeneous nodes from T by performing the following operation for each inhomogeneous node $v:$ eliminate v, the $">"$, and $"="$ branches of the subtree rooted at v; connect the "<" branch directly to the father of v. The resulting tree $T^{\text {- }}$ clearly has a height no greater than the original tree T, and has no inhomogeneous nodes. It remains to show that T^{\prime} is a decision tree algorithm for
$B(P)$. Let $a=\min \left\{c \mid \Sigma \lambda_{i} x_{i}: c \quad\right.$ is associated with some inhomogeneous node in $T\}$, and let $b=\max \left\{\left|\lambda_{i}\right|\right\}$ be similarly defined. Then, for each $\vec{x}_{\mathrm{x}}^{\mathrm{f}} \mathrm{D}=\left\{\overrightarrow{\mathrm{x}}| | \mathbf{x}_{\mathrm{i}} \mid<a / \mathrm{Nb} \forall \mathrm{i}\right\}$, the decision tree T always branches to the "<" path at each inhomogeneous node. Hence, the tree T ^ also works correctly for $x \in D$. But this implies that T^{\prime} also works for all $\overrightarrow{\mathrm{x}}$, as all the comparisons in T^{\wedge} are homogeneous and the problem $B(P)$ is homogeneous. We have thus proved that we can assume all queries are of the form $" q(\vec{x}): 0$ " where $q(\vec{x})=\Sigma \lambda_{i} x_{i}$.

We will assume in what follows that P is of dimension N, i.e. that $\{P\}=F_{N}(P)$. The following informal argument demonstrates that this can be done without loss of generality. Suppose that $\operatorname{dim}(P)=N^{-}<N$. Let $S \subseteq \mathbb{R}^{N}$ be the smallest subspace of R^{N} containing all of P; thus $\operatorname{dim}(S)=N^{-}$. Now every test $\sum \lambda_{i} x_{i}: c$ in R^{N} either corresponds to a linear test $\Sigma \lambda_{i} x_{i}^{\prime}: c$ in S (where $\vec{x}^{\text {- }}$ is, for $\overrightarrow{\mathbf{x}} \in S, \quad \overrightarrow{\mathbf{x}}$ expressed in a basis for S having the same origin as \mathbf{R}^{N}), or else (if $\left\{\overrightarrow{\mathbf{x}} \in \mathrm{R}^{N} \mid \Sigma \lambda_{i} \mathrm{x}_{\mathbf{i}}=c\right\} \cap \mathrm{S}=\varnothing$) the test $\Sigma \lambda_{i} \mathrm{x}_{\mathrm{i}}: c$ is useful only for determining if $\vec{x} \in S$, and not for telling if $\overrightarrow{\mathbf{x}} \in \mathrm{P}$ under the assumption that $\vec{x} \in S$. Therefore the complexity of determining if an $\vec{x} \in R^{N}$ is in P is at least as great as the complexity of determining if an $\vec{x} \in S$ is in P. Since $\operatorname{dim}(S)=\operatorname{dim}(P)$ we are finished with our demonstration. In any case we should also like to remark that for our application of Theorem 1 to the complexity of the shortest paths problem, this assumption holds.

We shall employ an "Oracle" to help our proof. The following lemma is essential to the construction of the oracle:

Lemma 1: Let $Q=\left\{\left.\vec{x}\right|_{p_{i}}(\vec{x})<0, i=1,2, \ldots, t\right\}$ be an open polyhedron, $\mathrm{q}(\overrightarrow{\mathrm{x}})=\sum_{i=1}^{N} \lambda_{i} x_{i}$ a linear
form, $Q_{1}=Q \cap\{\vec{x} \mid q(\vec{x})<0\}$, and $\left.Q_{2}=\left.Q \cap \overrightarrow{\mathrm{x}}\right|_{\mathrm{q}}(\overrightarrow{\mathrm{x}})>0\right\}$. Then for each s , there exists a $j \in\{1,2\}$ such that Q_{j} is non-empty, and $\left|F_{s}\left(Q_{j}\right)\right| \geq 1 / 2\left|F_{s}(Q)\right|$.

Proof of Lemma 1.

If $Q_{2}=\emptyset$, then $Q \subseteq\{\vec{x} \mid q(\vec{x}) \leq 0\}$.
Since Q is an open set, we must have
$Q \subseteq\{\vec{x} \mid q(\vec{x})<0\}$. Therefore, $Q_{1}=Q$, and
$\mathbf{j}=1$ satisfies the requirements. Similarly, for the case $Q_{1}=\emptyset$ we can choose $j=2$.

It remains to prove the lemma when both Q_{1} and Q_{2} are non-empty. We shall accomplish this by constructing a $1-1$ mapping ψ from $F_{S}(Q)$ into $F_{s}\left(\mathrm{Q}_{1}\right) \cup F_{\mathrm{s}}\left(\mathrm{Q}_{2}\right)$. This then implies that $\left|F_{s}(Q)\right| \leq\left|F_{s}\left(Q_{1}\right)\right|+\left|F_{s}\left(Q_{2}\right)\right|$. We can then choose a j such that $\left|F_{S_{s}}\left(Q_{j}\right)\right| \geq 1 / 2\left|F_{S}(Q)\right|$.

$$
\text { Now we construct } \psi \quad \text { Let } F_{H}(Q) \in F_{S}(Q)
$$

Define

$$
\begin{aligned}
& A_{1}=F_{H}(Q) \cap\left\{\left.\vec{x}\right|_{q(\vec{x})}<0\right\} \\
& A_{2}=F_{H}(Q) \cap\left\{\left.\vec{x}\right|_{q}(\vec{x})>0\right\} \\
& A_{3}=F_{H}(Q) \cap\left\{\left.\vec{x}\right|_{q(\vec{x})}=0\right\}
\end{aligned}
$$

Case 1) $A_{1} \cup A_{2}=\emptyset:$ In this case
$F_{H}(Q) \subseteq\{\vec{x} \mid q(\vec{x})=0\}$. Let us write
$Q_{1}=\left\{\vec{x} \mid p_{i}(\vec{x})<0, i=1,2, \ldots, t+1\right\}$, with
$p_{t+1}(\vec{x})=q(\vec{x}) \quad$ Clearly
$F_{H}\left(Q_{1}\right)=F_{H}(Q) \cap\{q(\vec{x})=0\}=F_{H}(Q)$
Define $\psi\left(F_{H}(Q)\right)=F_{H}\left(Q_{1}\right)$.

Case 2) $\quad A_{1} \cup A_{2} \neq \varnothing$: Assume that $A_{1} \neq \emptyset$; the case $A_{2} \neq \emptyset$ can be similarly treated. Write as before
$Q_{1}=\left\{\vec{x} \mid p_{i}(\vec{x})<0, i=1,2, \ldots, t+1\right\}$ with
$p_{t+1}(\vec{x})=q(\vec{x})$. Define $H^{-}=H \cup\{t+1\}$.
Clearly, $\quad F_{H^{-}}\left(Q_{1}\right)=F_{H}(Q) \cap\{\vec{x} \mid q(\vec{x})<0\}$
is non-empty and is an s-dimensional face
of Q_{1}.
Define $\psi\left(F_{H}(Q)\right)=F_{H}-\left(Q_{1}\right)$.
It remains to show that the ψ constructed is an 1-1 mapping. It is easily seen that
$\psi\left(F_{H}(Q)\right) \subseteq F_{H}(Q)$. Since all the $F_{H}(Q)$ in $F_{S}(Q)$ are disjoint, it follows that all the $\psi\left(F_{H}(Q)\right)$ are disjoint, hence distinct. This completes the proof of Lemma 1.

The Oracle:

The Oracle shall specify a way to answer questions with the help of a sequence of open polyhedra $\mathrm{V}_{0}, \mathrm{~V}_{1}, \ldots$. Initially, $\mathrm{V}_{0}=\mathrm{Q}$. where $Q=\left\{\vec{x} \mid \ell_{i}(\vec{x})<0, i=1,2, \ldots, m\right\}$. At the time of the j th query $q_{j}(\vec{x}): 0$, the oracle has constructed $V_{0}, V_{1}, \ldots, V_{j-1}$. The oracle decides the answer for the query in the following way:
let $Q_{1}=V_{j-1} \cap\left\{\left.\vec{x}\right|_{q_{j}}(\vec{x})<0\right\}$, $\left.Q_{2}=V_{j-1} \cap \vec{x} \mid q_{j}(\vec{x})>0\right\} ;$ by Lemma 1 , there is an i such that Q_{i} is non-empty, and
$\left|F_{\mathrm{s}}\left(\mathrm{Q}_{\mathrm{i}}\right)\right| \geq 1 / 2\left|F_{\mathrm{s}}\left(\mathrm{V}_{\mathrm{j}}-1\right)\right| ;$
The oracle's answer is then: $q_{j}<0$ if $i=1$, and

$$
q_{j}>0 \quad \text { if } i=2
$$

The oracle then defines V_{j} to be Q_{i}.

Analysis of the Oracle.

$$
\text { Let } q_{, j}(\vec{x}): 0 \quad(j=1,2, \ldots, t) \text { be the }
$$

entire sequence of queries asked by the algorithm under the above oracle, and let $\varepsilon_{j} q_{j}(\vec{x})<0$ be the results of the queries $\left(\varepsilon_{j}= \pm 1\right)$. Then,

$$
\begin{align*}
& v_{t}=\left.\overrightarrow{\{x}\right|_{i}(\vec{x})<0, \quad i=1,2, \ldots, m \\
& \left.\varepsilon_{j} q_{j}(\vec{x})<0, j=1,2, \ldots, t\right\} \neq \emptyset \tag{1}
\end{align*}
$$

and

$$
\begin{align*}
& \left|F_{\mathrm{s}}\left(\mathrm{~V}_{\mathrm{t}}\right)\right| \geq 1 / 2\left|F_{\mathrm{s}}\left(\mathrm{~V}_{\mathrm{t}-1}\right)\right| \geq 1 / 2^{2}\left|F_{\mathrm{s}}\left(\mathrm{~V}_{\mathrm{t}-2}\right)\right| \geq \\
& \ldots \geq 1 / 2^{\mathrm{t}}\left|F_{\mathrm{s}}\left(\mathrm{~V}_{0}\right)\right| \\
& \quad\left|F_{\mathrm{s}}\left(\mathrm{~V}_{\mathrm{t}}\right)\right| \geq 1 / 2^{\mathrm{t}}\left|F_{\mathrm{s}}(\mathrm{Q})\right| \tag{2}
\end{align*}
$$

For each $\vec{x} \in V_{t}$, the same leaf in the tree T is reached and the algorithm must say "yes, $\overrightarrow{\mathrm{x}} \in \mathrm{P}^{\prime \prime}$. Since the algorithm only knows that $\overrightarrow{\mathrm{x}} \in\left\{\overrightarrow{\mathrm{x}} \mid \varepsilon_{j} q_{j} \overrightarrow{(\vec{x})}<0, j=1,2, \ldots, t\right\}$, we have

$$
\left\{\left.\vec{x}\right|_{\varepsilon_{j} q_{j}}(\vec{x})<0, j=1,2, \ldots, t\right\} \subseteq P
$$

As Q is the "largest" open set contained in P, we have

$$
\begin{aligned}
& \left\{\vec{x} \mid \varepsilon_{j} q_{j}(\vec{x})<0, j=1,2, \ldots t\right\} \subseteq Q= \\
& \left\{\vec{x} \mid \ell_{i}(\vec{x})<0, i=1,2, \ldots, m\right\}
\end{aligned}
$$

Therefore, (1) can be written as

$$
\begin{equation*}
V_{t}=\left\{\vec{x} \mid \varepsilon_{j} q_{j} \overrightarrow{(x)}<0, j=1,2, \ldots, t\right\} \tag{3}
\end{equation*}
$$

As there are only t linear functions in (3), there can be at most $\left(\begin{array}{c}\mathrm{t} \\ \mathrm{N}-\mathrm{s}\end{array}\right.$) s-dimensional faces of V_{t}. Therefore,

$$
\left(\begin{array}{c}
\mathrm{t} \tag{4}
\end{array}\right) \geq\left|F_{\mathrm{s}}\left(\mathrm{~V}_{\mathrm{t}}\right)\right|
$$

(2) and (4) lead to $2^{t} \cdot\left({ }_{N-s}^{t}\right) \geq\left|F_{s}\left(V_{t}\right)\right|$.

As the left-hand side of (5) is an increasing function of t, and $C(P) \geq t$, we have proved the lemma.

General discussions of the maximal number of faces of dimension s that a polyhedron can have are given in [6] and [12]. We now turn our attention to the polyhedron associated with the all-points shortest-paths problem.

4. The Shortest Paths Problem.

In this section we make use of results derived in the previous section to obtain an $\Omega\left(n^{2} \log n\right)$ lower bound for the shortest paths problem. Theorem 1 can not be directly applied to the shortest paths problem, as the latter is not a polyhedral decision problem. The shortest paths problem is, however, closely related to the following polyhedral decision problem, which is a special case of the verification problem for finding shortest paths.

Verifying the Triangle Inequalities:

Let $P^{(n)}$ be the polyhedron in $R^{n(n-1) / 2}$ defined as follows: A vector $w \in R^{n(n-1) / 2}$ is written as
$w=\left(w_{12}, w_{13}, \ldots, w_{1 n}, w_{23}, \ldots w_{2 n}, \ldots w_{n-1, n}\right) ;$
$P^{(n)}=\left\{\left.\vec{W}\right|_{W_{i k}}>0, \quad \ell_{i j k}(\vec{w})>0\right.$ for
$i<k, i \neq j \neq k\}$
where $\quad \ell_{i j k}(\vec{w})=w_{i k}-w_{i j}{ }^{-w_{j k}}$. The problem $B\left(P^{(n)}\right)$ is to determine if $\overrightarrow{\mathrm{w}} \in \mathrm{P}^{(\mathrm{n})}$, i.e. whether all the $W_{i j}$'s are positive and all the triangle inequalites are satisfied by ($w_{i j}$).

The following lemma relates the complexity for shortest paths L_{n} to the complexity of $B\left(P^{(n)}\right):$

Lemma 2: $\quad L_{n} \geq C\left(P^{(n)}\right)-n(n-1) / 2$

Proof: Let T be an optimal decision tree algorithm for computing the shortest distance
matrix $\left(d_{i j}\right)$ from the input matrix ($w_{i j}$). The height of T is L_{n}, by definition of L_{n}. We can obtain a decision tree T^{\prime} for the problem $B\left(P^{(n)}\right)$ by modifiying T as follows. Replace each leaf of T by a sequence of $n(n-1) / 2$ distinct tests of the form "Is $d_{i j}=w_{i j}$?" Since at each leaf of T
we have $d_{i j}=f_{i j}(\vec{w}), T^{\prime}$ is a linear decision tree. We construct T^{-}so that $\underset{\mathrm{w}}{\vec{~}}$ is accepted iff all of the newly added tests have "yes" answers. The correctness of T^{\dagger} is ensured by the fact [8, page 89] that a matrix is a shortest distance matrix iff it satisfies all the triangle inequalities and by the fact that if all the triangle inequalities are satisfied without equality the matrix is positive. Hence $L_{n}+n(n-1) / 2 \geq C\left(P^{(n)}\right)$. To obtain an explicit bound on L_{n}, we need a recent combinatorial result of Avis, which states that $P^{(n)}$ has a very large set of edges.

Lemma 3: There exists a positive constant c so that $\left|F_{1}\left(P^{(n)}\right)\right| \geq 2^{n^{2}(\log n-c \log \log n) / 4}$, for all n.

Proof: This counting argument is given in [1], and is omitted here due to its length.

Theorem 2: $\quad L_{n} \geq n(\log n-c \log \log n) / 4$, for some constant $c^{\wedge}>0$.

Proof: By Theorem 1 and Lemma 3 we know that

$$
\begin{aligned}
& C\left(P^{(n)}\right)+\log \binom{G\left(P^{(n)}\right)}{N-1} \\
& \geq n^{2}(\log n-c \log \log n) / 4,
\end{aligned}
$$

where $N=\binom{n}{2}$. Since $\binom{a}{b} \leq a^{b} / b!$, if x satisfies

$$
\begin{align*}
x & +(N-1) \log x-\log ((N-1)!) \\
& =n^{2}(\log n-c \log \log n) / 4 \tag{6}
\end{align*}
$$

it must also satisfy $x \leq C\left(P^{(n)}\right)$. Now (6)
implies

$$
\begin{align*}
x & +\left(n^{2} / 2-n / 2-1\right) \log x \\
& =\left(5 n^{2} \log n\right) / 4-\left(c n^{2} \log \log n\right) / 4+0\left(n^{2}\right) \tag{7}
\end{align*}
$$

since $\log ((N-1)!)=(N-1 / 2) \log (N-1)$

$$
-(N-1) \log e+O(1)
$$

(Stirling's approximation), and
$\log (N-1)=\log \left(n^{2}\right)-0(1)$. The solution to
(7) is

$$
\begin{equation*}
x=\left(n^{2} \log n\right) / 4-\left(c n^{2} \log \log n\right) / 4+o\left(n^{2}\right) \tag{8}
\end{equation*}
$$

Using (8) and Lemma 2 we can conclude that

$$
\begin{aligned}
L_{n} & \geq C\left(P^{(n)}\right)-\binom{n}{2} \\
& \geq x-\binom{n}{2} \\
& \geq\left(n^{2} \log n\right) / 4-\left(n^{2} \log \log n\right) / 4-0\left(n^{2}\right) \\
& \geq\left(n^{2} \log \right) / 4-\left(c^{2} n^{2} \log \log n\right) / 4
\end{aligned}
$$

for some $c^{-}>c$.
5. Remarks.
(1) We have shown that
$L_{n} \geq\left(n^{2} \log n\right) / 4-(c \log \log n) / 4$, and a $\Omega\left(n^{2} \log n\right) \quad$ bound is the best we can obtain under this approach as
$\log \left|F_{s}(P)\right| \leq \mathrm{cn}^{2} \log n$ for all s .
The best upper bound know (Fredman [5]) is $\mathrm{L}_{\mathrm{n}} \leq \mathrm{cn}^{2} .5$. Hence a large gap still exists even in this decision tree model.
(2) The linear decision tree model has received considerable attention in the recent
literature ([3],[5],[7],[11],[14],[15]).
This model only counts the number of branchings,
and thus tends to underestimate the total
running time (for example, it is conceivable
that no shortest-paths algorithm can achieve
$c^{2} \cdot 5$ in total running time). Nevertheless,
the linear decision tree model enables us to
study non-trivial lower bounds, and Theorem 1
has added yet another useful device in this model.

References

[1] D.M. Avis, "Some Polyhedral Cones Related to Metric Spaces," Ph.D. Thesis, Department of Operations Research, Stanford University, (April 1977).
[2] E.W. Dijkstra, "A note on two problems in connection with graphs," Numer. Math., 1 (1959), 269-271.
[3] D.P. Dobkin, R.J. Lipton, and S.P. Reiss, "Excursions Into Geometry," Yale University Research Report'\# 71.
[4] R.W. Floyd, "Algorithm 97: Shortest path," C.ACM 5 (1962), p. 345.
[5] M.L. Fredman, "New bounds on the complexity of the shortest path problem," Siam J. on Computing 5 (1976), 87-89.
[6] B. Grünbaum, Convex Polytopes, (Interscience, New York, 1967).
[7] L.R. Kerr, "The effect of algebraic structure on the computational complexity of matrix multiplications," Ph.D Thesis, Cornell University, (1970).
[8] E. Lawler, Combinatorial Optimization: Networks and Matroids, (Ho1t, Rinehart and Winston, New York 1976).
[9] M.0. Rabin, "Proving simultaneous positivity of linear forms," JCSS 6 (1972), 639-650.
[10] R. Rockfellar, Convex Analysis, Princeton University Press, 1970
[11] P.M. Spira and A. Pan, "On finding and updating spanning trees and shortest paths," SIAM J. on Computing 4 (1975), 375-380.
[12] R. Stanley, "The Upper Bound Conjecture and Cohen-Macaulay Rings," Studies in Applied Math. (Vol LIV, No. 2), (MIT, June 1975), 135-142.
[13] R. Tarjan, "Applications of Path Compression on Balanced Trees," Stanford Computer Science Department Report STAN-CS-75-512, (August 1975).
[14] A.C. Yao, "On the complexity of comparison problems using linear functions," Conference Record, IEEE 16th Annual Symposium on Switching and Automata Theory, 1975, 85-89.
[15] A.C. Yao, "On Computing the Minima of Quadratic Forms," The 7th Annual ACM Symposium on the Theory of Complexity, 1975, 23-26.

