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ABSTRACT When open addressing IS used to resolve collisions in a hash table, a given set of keys may be 
arranged in many ways, typically this depends on the order in which the keys are inserted It is shown that 
arrangements minimizing either the average or worst-case number of probes required to retrieve any key in 
the table can be found using an algorithm for the assignment problem. The worst-case retrieval time can be 
reduced to O(log2(M)) with probablhty 1 - e(M) when storing Mkeys In a table of size M, where ~(M)~ 0 
as M ~ ~ We also examine insertion algorithms to see how to apply these ideas for a dynamically changing 
set of keys 
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"Spread the table and contention will cease "' Old English proverb [11, #¢272 6] 

1. Introduction 

We cons ider  s chem es  to op t imize  the  p l acemen t  of  keys in a hash table  w h e n  o p e n  
address ing  is used to resolve  coll is ions.  M o r e  precisely ,  we begin wi th  the  obse rva t ion  

that  a given set  of  keys may be  inse r ted  in to  a hash  table  in many  d i f fe ren t  o rde r s ,  
y te ldmg a r r a n g e m e n t s  of  the  keys in the  table  of  varying eff iciency.  Typically,  the  user  
has no  cont ro l  over  the  o r d e r  in which the  keys are inser ted ;  he  must  accept  t hem in 
the  o r d e r  in which they  arr ive.  H o w e v e r ,  the  prev ious  obse rva t ion  that  the re  exist 
many  d i f fe ren t  a r r a n g e m e n t s  of  the  given set  of  keys raises the  fol lowing ques t ions :  

(1) H o w  can one  d e t e r m i n e  that  a r r a n g e m e n t  which minimizes  e i the r  the  average  or  
wors t -case  n u m b e r  of  p r o b e s  to re t r ieve  a key m the  table?  In Sect ion 2 we show that  
this p r o b l e m  is an ins tance  of  the  we l l -known " a s s i g n m e n t  p r o b l e m , "  for  which eff ic ient  

a lgor i thms exist .  
(2) W h a t  is the  e x p e c t e d  value of  the  wors t -case  n u m b e r  of  p r o b e s  requxred to 

re t r ieve  a key f rom a full table  that  has  b e e n  opt imal ly  a r r anged  using the  ass ignment  
a lgor i thm? In Sect ion 3 it is p roved  that  this value is O(logz(M))  for  a table  of  size M 
conta in ing  M keys.  The  p r o o f  is m o d e l e d  on a result  by E r d o s  and  Reny i  [2] conce rn ing  
the p e r m a n e n t  of  a r a n d o m  matr ix ,  This resul t  d e m o n s t r a t e s  that  we  can 

use hashing  to achieve " g o o d "  (i .e.  O( log2(M)) )  wors t -case  p e r f o r m a n c e  if we take  the  
t ime to op t imize  the  a r r a n g e m e n t  of  the  keys m the  table .  Tradi t ional ly  h a s h mg  has 
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been viewed as excellent on the average, but horrible in the worst case. We see 
therefore that this need not be so. 

(3) The results mentioned above require that an M × M  assignment problem be 
solved to optimize the placement of M keys in a table of size M. A natural question to 
ask is, "Is it possible to solve the assignment problem efficiently ' incrementally, '  so that 
the new keys can be added to the table in such a way that the optimality of the 
overall arrangement is maintained?" In Section 4 th~s problem is studied and it is 
shown that for table densities less than approximately 0.415, it is possible to insert a 
key and maintain overall optimality by solving an assignment problem no larger than 
1 0 x l 0 ,  whereas for larger densihes the entire M x M  assignment problem must 
apparently be solved. 

Overall, we view the contribution of th~s paper to be the introduction of the 
assignment algorithm for the placement of keys in a hash table, and the demonstration 
that efficient worst-case retrieval can be achieved thereby, even in a full table. 

We proceed now to define our terminology and to introduce the "standard" algorithm 
for inserting a key into a hash table. Let K = {K1, K2 . . . . .  KN} be a set of N keys, and 
let an array T, for 1 _< i -< M be a set of M memory locations (the hash table) which 
will be used to store ,9/'. Each table position may hold either a single key or the special 
symbol empty. We assume N -< M. When open addressing is used to resolve collisions a 
"hashing function" h : U x {1, 2 . . . . .  M} ~ {1, 2 . . . .  , M} is used, mapping the set U of 
all possible keys (that is, ~ may be any N-subset of U) and probe numbers into the set 
of memory locations. We assume for any key K E U that the sequence h(K, 1), h(K, 2), 
... , h(K, M) is a permutation of {1, 2, .. , M} To store the key K m the table using 
the standard insertion algorithm the locatzons Th<K,1), Th(K,Z), .. are successwely examined 
until an empty location is found or until K Is found already present in the table. The 
following program makes this precise. 

THE "STANDARD" INSERTION ALGORITHM 

Input' A key K, a hash table T, a hash function h 
Output None T is modified to contain K, unless K is already present 
Procedure 

I '=0, 
repea l /  = 1  + 1, 

z = h ( K , l ) ,  

if T, = empty then T, = K 
until T, = K, 

Note that T must contain at least one empty location if K ~s not already in the table, 
if the loop is to terminate properly The value of j at termination, which Is the number  
of probes required to insert K, ~s taken to be the cost of inserting K. 

A s~mdar procedure searches for the presence of a key K m T (replace the assignment 
statement "T, := K" by "return (K not present)") If the r e p e a t  loop terminates 
normally then T, contains the previously stored key K. The value o f j  at termination ~s 
taken to be the cost of searching for K. 

Knuth [6] studies hashing algorithms in detail, gwmg alternanve methods for handling 
"colhslons" (the case when h(K,, 1) = h(K~, 1) for K, ¢ Kj) and several open-addressing 
hash functions h. The reader who is unfamihar with hashing algorithms should fred it 
profitable to consult his text. 

2 Opttmal Arrangements 

In this section we give precise definitions of when an arrangement mimmizes the 
average or worst-case retrieval nine,  and then show that there always exists some 
ordering such that if the keys had been inserted by the standard algorithm in that 
order, the opnmal arrangement results Then ~t ~s shown that the assignment algorithm 
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can be used to arrange the keys so as to minimize either the average or worst-case 
retrieval t ime. 

The arrangement of the keys X in the hash table depends on the order  m which they 
were inserted, if the standard insertion algorithm is used. For  example ,  let U be the set 
of natural  numbers and let h(K, j) be the j th  decimal digit of K. Inserting the set ~" = 
{1423, 1234, 3412, 2341} into an empty table in that order  results m the arrangement  

Loeanon: 1 2 3 4 
Contents: 1423 1234 3412 2341 

whereas inserting them m the order  1234, 2341, 1423, 3412 results in c~': 

Locanon' 1 2 3 4 
Contents 1234 2341 3412 1423 

Let a : ~  ~ {1, 2 . . . . .  M} be called an arrangement; o~(K~) = j means that Tj = K~. Of 
course a must be one-to-one.  Let  A(Yf, M) denote the set of all arrangements  of ~ in 
T, . . . . .  TM. 

Let p(K, a) denote  the number  of probes required to retrieve a key K under  
arrangement  a ;  the average avg(a)  = ( l / N )  ~ K ~  p(K, a) and worst-case wc(a)  = 
max{p(K, a) lK ~ Y{} number  of probes to retrieve any key in T are then definable.  We 
have avg(a)  = 7/4, wc(a)  = 3, avg (a ' )  = s/4, and w c ( a ' )  = 2 in the above examples.  

Define an arrangement  c~ E A(Y(, M) to be valid if all the positions h(K, 1), h(K, 2), 
. . . .  h(K, p (K, a) - 1) are nonempty for every key K in Yr. An  arrangement  is valid lff 
every key K in ~ ~s retr ievable using the search algorithm of Section 1 Similarly define 
an arrangement  to be feastble if it is the result of inserting the keys in ~ into an empty 
table sequentially in some order ;  necessarily every feasible arrangement  is vahd. 

Vahd arrangements which are not feasible are possible; consider the following 
arrangement  using the hash function h from our previous example:  

LocaUon" 1 2 3 4 
Contents' empty empty 4321 3412 

The number  of feasible arrangements  depends on ~ and h.  It is no larger than N! (the 
number  of ways to enter  the keys), but may be as low as 1 if no colhslons occur. 
Similarly the number  of vahd arrangements  can vary between 1 and N!.  For  example ,  
only one valid arrangement  exists if no collisions occur and h(K,, 1) =k h(K,  2) for all 
K,, Kj in ~ .  The upper  bound of N! on the number  of valid arrangements  is obtained 
by reduction on N,  using the fact that p(K, a) -< N for any vahd arrangement  and all 
keys K ~ ~ .  We may store Ks in any of N positions h(KN, i) for 1 _< i -< N; if we then 
delete KN from ~ and h(KN, t) from the probe sequence h(K~, 1) . . . . .  h(K3, M) for 
every j < N we see that every valid arrangement  of ~ induces a vahd arrangement  of 
~-{KN} m locatmns {/I 1 --< ! --< M a n d j  4 h(Ks, i)} using the modified probe sequences. 

We define an arrangement  a ( ~ ,  M) to be optimal if ei ther avg(a)  or wc(a)  is 
minimal over all arrangements  m A ( ~ ,  M); the terms average-optimal  and worst-case- 
optimal will distinguish these cases. 

PROPOSITION 1. A feastble optimal arrangement always exists. 
PROOF If a minimal arrangement  a is not feasible,  then there exists a set {K, o, Kz~, 

. . . .  K~_~} of keys, none of which can be entered first since they form a "blocking 
cycle": There is a set of  integers t~ for 0 _< j <_ r - 1 such that h(K,j, p(K,j, c~)) = 
h(K~j . . . . .  d ~, to+l)mod r) and t~ < p(K,j, a) for 0 _< j _< r - 1. But clearly p(K,j, cO can be 
reduced by setting a(K,j) to h(K,,, t~) for 0 _< j _< r - 1. Since avg(a)  strictly decreases,  
a feasible optimal arrangement  can always be found after a finite number  of blocking 
cycles have been removed in this fashmn. [] 

Proposmon 1 suggests an algorithm for finding opnmal  arrangements:  enumerat ing 
all feasible arrangements;  however,  bet ter  methods exist. 

O~: 
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PROPOSmON 2 Optimal arrangements can be found by usmg an algorithm for the 
assignment problem 

PROOF. The assignment problem [7] can be stated as follows. 
Let N and M be given, with N -< M, and let {a,jI 1 -< i -< N, 1 --< ] --< M} be a matrix of 

nonnegative real numbers.  The classic example specifies for each of M men and N jobs, 
the "inefficiency" a,3 of man]  in job t. The objective is to find an assignment t ~ a(i) of 
jobs to men such that the sum ~J_~,~N a,.~(o is minimized, subject to the constraint that 
no man is assigned to more than one lob. 

We can apply this directly to the problem of finding average-optimal arrangements 
by letting a,~ be the integer such that h(K,, a,j) = ], denoting the cost of assigning K, to 
T r The average number  of probes reqmred to retrieve a key in the optimized table is 
then just the total "inefficiency" divided by N We observe that if the various keys have 
assocmted retrieval probabilities, then the arrangement that minimizes the expected 
retrieval cost can be found in the same manner;  we need only multiply each a u by the 
probability that K, will be retrieved. 

Similarly, we can minimize the worst-case cost by choosing a~j to be N t, where l is the 
integer such that h(K,, l) = j. Since the key with highest cost determines the order of 
the total cost, minimizing the total cost here minimizes the worst-case cost. [] 

Having observed that our problem can be formulated as an instance of the assignment 
problem, it is of interest to know how quickly a solution can be determined. The 
general N x M  assignment problem can be solved in time O(NM 2) [8]; the space 
required is O(N + M) if the matrix entries a,~ can be computed in constant time from 
K,, h, and j .  When all the matrix entries are small integers (as when we are finding the 
average-optimal arrangement),  it may be possible to improve this time bound somewhat, 
but the author was unable to find a more efficient procedure. 

Worst-case optimal arrangements can be determined in time O(BM(M,  N).log2(N)), 
where BM(M, N) is the time required to solve an M x N  bipartite matching problem. 
The procedure, pointed out to the author by Vulllemln, is to use binary search on the 
worst-case cost: It is possible to test if the optimal worst-case cost is less than or equal 
to a given value w by solving the corresponding maximal matching problem. The graph 
used has N vertices x,, M vertices y~, and an edge (x,  yj) lff ao -< w. Intuitively, there is 
an edge from x, to y~ if and only if table position Tj is one of the first w positions in the 
probe sequence for K,. There will be a matching of size N in this graph if and only if 
there is an arrangement of the keys in the table such that every key can be retrieved 
with no more than w probes. Since BM(M, M) = O(M 25), we obtain an O(M 25 log(M)) 
algorithm for the case N -- M. 

3 Efficiency o f  the Worst-Case Optimal Arrangements 

In this section we prove that even if the hash table is full (N = M), we can expect the 
worst-case optimal arrangement to have a worst-case cost of O(log(M)) with a probability 
approaching one very rapidly as M ~ ~. Although a worst-case cost of O(log(M)) can 
obviously not be guaranteed (since there is a finite chance that all keys have the same 
probe sequence, for example), the odds are overwhelming that with a random hash 
function and a random set of keys, there is some arrangement of those keys yielding a 
worst-case cost of O(log(M)). This compares favorably with standard techniques such as 
binary search trees which also require O(logz(N)) time to retrieve a key, especially in 
situations where the set of keys is static (since updating an optimized hash table can be 
expensive). 

The proof is modeled very closely after a similar result of Erdos and Renyi [2], who 
show that a random n×n matrix of O's and l ' s  containing N(n) l ' s  has a nonzero 
permanent with probablhty approaching 1 as n ~ ~ if llmn_~=(N(n) - log(n))/n = ~. 
The permanent of an n x n  matrix {ao} 1s defined to be ~al,~a2~2 "'" an~, where the 
summation is over all permutations (il, ... , in) of {1, ... , n}. The permanent  of a 0-1 
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matrix {a~j} is the number  of matchings of size n in a bipartite graph whose adjacency 
matrix is {a~} Ryser [10] discusses the permanent  in some detail 

Let M(M, N, w) denote the set of all 0-1 matrices with M columns, N rows, and 
exactly w l ' s  per row. Obviously I~(M, N, w)[ = (~)N. We say a matrix {m,~} E ~ ( M ,  
N, w) contains N independent  l ' s  iff there exists a function ct:{1, ... , N} ~ {1 . . . . .  M} 
such that a(z) =k a(j) for z ~ j and m,~,~ = 1 for 1 _< i -< N. Let P(M, N, w) denote the 
probability that a matrix in dE(M, N, w) contains N independent  ones. 

The interpretation to matrices of ~ ( M ,  N, w) ~s as follows. Each such matrix has N 
rows (corresponding to a set of N keys) and M columns (one for each position in the 
hash table) Position t, 1 will be a 1 tff key t can be stored in posmon j with a retrieval 
cost of w or less. Therefore each row has exactly w l ' s  Such a matrix is the adjacency 
matrix of one of the bipartite graphs described in the last paragraph of Section 2 A 
matrix m 2t(M, N, w) will have N independent  ones lff its corresponding bipartite 
graph has a matching of size N. This wdl happen iff there exists an arrangement of the 
keys so that every one can be retrieved with w probes or less. 

We identify P(M, N, w) with the probability that a random set of N keys can be 
arranged m a hash table of size M so that the worst-case retrieval cost ~s at most w. This 
will be accurate if every set of w locations is equally likely to be the set of w locations 
first probed for a random key k This will happen, for example, if every permutation of 
{1, . , M} is equally likely to be a probe sequence. Each matrix in ~ ( M ,  N, w) then 
corresponds m a natural fashion to the characteristic matrix describing, for a random 
set of N keys, which locations are usable ff the worst-case cost is constrained to be at 
most w The existence of N independent  l ' s  corresponds to the existence of an 
arrangement with worst-case cost of at most w; and by Proposition 1 the existence of a 
feasible, valid arrangement with worst-case cost at most w is thereby implied. 

We have P(M, N, w) -> P(M, M, w) for 1 _< N -< M since the first N rows of a matrix 
in ~ ( M ,  M, w) which contains M independent  l ' s  must contain N independent  l ' s .  We 
therefore proceed to show the following. 

PROPOSITION 3. hmM~P(M, M, 4 log(M)) = 1. 
PROOF. This result says that we can expect to fred an arrangement of M keys m a 

table of size M such that no key reqmres more than 4 log(M) probes to be retrieved. By 
the theorems of Frobenius [3] and Komg [7], 1 - P(M, M, w) is equal to the 
probability that a matrix in ~ ( M ,  M, w) has k rows (or columns) and M - k - 1 
columns (or rows) that contain all the l ' s ,  for some k, 0 --< k -< M - 1. (The result of 
Frobenius and K6nig says that m an M×M matrix of O's and l ' s  the minimal number  of 
lines (i.e. rows or columns) which contain all the l ' s  is equal to the size of the 
maximum set of l ' s  which can be found which are pairwlse independent  (no two m the 
same line).) Thus 1 - P(M, M, w) is the probability that there are M - 1 or fewer lines 
which contain all the l ' s .  

Let Qk(M, N, w) denote the probability that a matrix in ~ ( M ,  N, w) has k rows (or 
columns) and N - k - 1 columns (or rows) containing all the l ' s ,  and k is the least 
such number  for 0 _< k -< M/2. Then 

[M/21 

1 -  P(M,N,w) = ~ Qk(M,N,w). 
k = o  

We show that for all k, 0 --< k -< [m/2J, if w -> 4 logz(M) then Qk(M, M, w) --> O. To 
do this we divide Qk into two parts, 

Q~(M, M, w) = fk(m, M, w) + gk(m, M, w), 

wherefk is the probabdity that k rows and M - k - 1 columns cover all the l ' s  and gk 
is the probability that k columns and M - k - 1 rows cover all the l ' s  (k is each case 
being minimal). 

Case 1. k r o w s  and M -  k - 1 co lumnscon tam all the l ' s ,  for some k-< M/2. 
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Those matrices in ~ ( M ,  M, w) having a minimal number  k of rows and M - k - 1 
columns containing all the l ' s  can be displayed as in Figure 1, after an appropr ia te  
permutat ion of the rows and columns Each row of submatrix B must contain two l ' s  
under our assumption that k is minimal (if not, we could include the column, and 
exclude the row, of  the 1 in matrix B which is in a row of  B containing no other l 's). The 
f racuonf i (M,  M, w) of  matrices of  this type is less than 

( ( ~ / )  ( k  + M 1 ) ( M - : -  1) M-k ((wM) - ( M - :  - 1) 

1 k M M 

whose logarithm is bounded above by 

[(2k + 1) - w(M - k)] log(M) + w(M - k)log(M - k - 1) 
- k log(k) - (k + 1)log(k + 1) _< (2k + 1)log(M) - w(k + 1)/2. 

Thus if w -> 4 log(M), Qk(M, M, w) ~ 0 as M --> oo. 
Case 2 k columns and M - k - 1 rows contain all the l ' s ,  for some k -< M/2 

(Figure 2). 
The fraction gk(M, M, w) of matrices of this type is less than 

+ W] ' 

whose logarithm is bounded above by 

(2k + 1)log(M) - w(k + 1)log(w), 

so that gk(M, M, w) ~ 0 with M if w = 2 log(M). Since Qk(M, M, w) = fk(M, M, w) + 
gk(M, M, w), we are finished with the proof. [] 

This result says that in a full table arranged so as to minimize the worst-case retrieval 
t ime, the worst-case retrieval time should be O(log(M)). This follows from Proposit ion 
3 since the existence of a set of M independent  l ' s  in a matrix in P(M, M, w) 
corresponds to an arrangement of M keys in a table of size M with worst-case retrieval 
time no more than w. This result is the best possible (up to a constant multiplicative 
factor) due to a result of Gonnet  [4]: The worst-case retrieval time must be at least 
ln(M) + O(1). 

A study of the related question of the expected value of the average number  of 
probes required to retrieve a key in a full table which is average-optimal  is given in [5]. 
(Less than two probes per key are required.)  

4. Insertion Algorithms Which Maintain Optimality 

We now turn our attention to the problem of maintaining the optimality of an 
arrangement as new keys are inserted into a table. The main result of this section is 
that if the table is not too densely filled, then a new key can be inserted into the table 

M ,ow, { 

M columns 

A B 

C 0 

M-k-I k+l 

Flo 1 F[o 2 

M columns 
.A .  

f 
F 

k / A C M-k - I  
M rows 

M-k 8 0 k+l  

k M-k 
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and the new optimal arrangement computed by solving a small (e.g 10× 10) assignment 
problem. This result is obtained by a rather complicated analysis using generating 
functions. 

We first examine an insertion algorithm due to Brent [1] and demonstrate that it 
does not maintain optimality. Of course, Brent only intended his algorithm to be a 
good heuristic, a means of inserting each new key in such a fashion that the increase in 
average retrieval cost ~s kept reasonably low 

Brent's algorithm works as follows. Let K denote the new key being inserted, and 
suppose positions h(K, 1) . . . . .  h(K, s) are already occupied with keys K1, K2 . . . . .  Ks, 
and that Th(g,s+l) ~S empty. Let r~ denote the number of probes required to retrieve K,, 
so that h(K,, r,) = h(K, i). Furthermore, let s, denote min{jlTh(K,~) = empty}, the 
number of probes required to retrieve K, if we move it to position h(K,, s,). Then (t + 
(s, - r,))/(N + 1) is the increase in the average retrieval cost caused by moving K, to 
position h(K,, s,) and storing K in position h(K, i). Brent chooses between storing K in 
position h(K, s + 1) and moving that K which minimizes t + (st - r,) by comparing (s + 
1) to mln,{l + s, - r,}. 

In fact, the following example demonstrates that no algorithm which only moves keys 
forward in their probe sequence (that is, moves K from h(K, l) to h(K, i') for i '  > i) can 
always arrwe at the optimal arrangement. Consider the following arrangement (using 
the hash funcnon of our prewous examples), which is both average and worst-case 
optimal: 

Locatton 1 2 3 4 5 6 7 
Contents 1273456 1234567 3456712 4567123 5671234 6712345 empty 

If the key 2345671 is now inserted, the only way to maintain optimahty is to move 
1273456 to location 7, move 1234567 (backward) to position 1, and then store 
2345671 in position 2 

Since Brent's algorithm is the only published algorithm which moves previously 
inserted keys when inserting a new key, we see that no existing insertion algorithm can 
maintain optimality for arbitrary hash functions. It is interesting to note, however, that 
for certain open-addressing colhsion-resolution schemes the standard insertion algorithm 
maintains average-optimality. We say that a hash function h exhibits prtmary clustering 
if h(K,, j) = h(K,,l' ) implies that h(K,, j + l) = h(K,,, j '  + l) for 0 _< 1 <-- M - mm(j, j ' )  
for any K,, K,,. Linear probing (h(K, i) ~ h(K, 1) + (l - 1), mod M) is perhaps the 
best-known example of a collls~on-resolution scheme exhibiting primary clustering, and 
all primary clustering schemes are in fact isomorphic to linear probing in a natural 
manner 

PROPOSITION 4. If h exhibtts primary clustering, then the usual msertton algorithm 
maintains average-opttmahty 

PROOF. This theorem is due to Peterson [9]; the proof is also given m Knuth [6, p. 
531]. Knuth also remarks that if the keys have associated retrieval probabilities, then 
the average-optimal arrangement can be achieved by using the standard insertion 
routine to insert the keys one by one into the table, in order of decreasing request 
probabilities. [] 

In spite of the fact that for linear probing the standard insertion algorithm maintains 
average-optimahty, other hashing schemes are to be preferred, since the expected 
retrieval cost m the average-optimal scheme for a primary-clustering hashing function 
generally exceeds the expected cost for other schemes, even if average-optimality is not 
maintained. 

We now turn our attention to the task of finding an insertion algorithm that will 
maintain the optimality of an arrangement. In essence, we need an algorithm to solve 
the assignment problem "incrementally." 

One approach is to observe that if N / M  is small enough (how small this is we shall 
determine), then the number of keys already in the table which we need to consider 
moving might be reasonably small. Brent considers mowng only those keys on the 
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probe sequence of the new key K; if we also consider moving all of the keys on their 
probe sequences, and so on, we can determine the maximum set 5e of keys that might 
need to be moved. Similarly we let 5 r denote the set of locations that 5° might occupy in 
the optimized table; it suffices then to solve the assignment problem for placing 5e into 
3", rather than ~ U {K} into T. 

Define, for a given arrangement a,  the functions: 

~'(K) = min{/lh(K, j) = empty}, 
o-(K) = {K, I a(K,) = h(K, j) for some j < 7r(K)}, 
T(K) = {ilh(K,j) = i for some j  ~. ~-(K)}. 

Then 

5~(K) -- {K} U {OO(K,)I K, ~ o-(K)}, 
3-(K) = T(K) U {~(K,)IK, E o'(K)} 

define by means of their minimal solutions the sets ~ and ~ of keys and positions 
relevant to the insertion of K into an arrangement ~x 

Let/3 = N/M denote the "loading factor" of the existing arrangement a. In order to 
estimate the expected size ~(K),  we assume that the hashing function is uniform in the 
sense that every permutation of {1, . , M} is equally likely to be a probe sequence of 
some key K. We can then use the approximation Prob(Tr(K) = t) = (1 - /3)/3 '-1 

Let s, denote the probability that [~(K)I = t, and let 

S(z) = ~ s,z' 
t = l  

denote the corresponding generating function. We shall develop an equation for S(z) 
which depends on the generating function: 

P(z) = ~ p,z' 

(where p, is the probability that, for a key K'  already stored m T, ct(K') = h(K', l)). 
However, determining P(z) for optimized hash tables remains an open problem, so we 
shall approximate S(z) after we develop the correct defining equation. 

Let C(z) = ~=1 c,z' be the generating function with coefficients c, equal to the 
probability that the "contribution" of a key K' on the probe sequence of the new key K 
to S(K) is i keys. Therefore 

oo 

S(z) = ~'~ (1 - t)fl'[C(z)]"z, 
I = 0  

since there is a probability of (1 - /3)fl' that It(K) = t + 1 (that Is, there are t keys on 
the probe sequence for the new key K). The final z is for the key K itself. 

Similarly we can define 

C(z) = [,=~ P,(C(z))'-'] "[ ~=o(1- t)fl'(C(z))'] "z 

(or equivalently, 

(1 - tiC(z)).(C(z)) 2 = (1 - fl)P(C(z))z). 
The first term accumulates the contributions of those keys K" on the probe sequences 
of a key K' on the probe sequence for K, such that K" occurs before K'  in the probe 
sequence for K' The second term adjusts for those keys K" occurring after K' in the 
probe sequence for K' .  Finally, the third term z ~s for the key K' itself. 

The expected size of oW(K) is S'(1); and 

d f (1 - fl)z ~ ( 1 -  tiC(z))(1- fl) + ( 1 -  fl)z~C'(z) 
S'(z) = dz "\(1 -~- ~3~z))}" = (1 - tC(z)) 2 
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/3c'(1) 
S'(1) = 1 + (1 - fl)" 

(1 - /3C(z))2C(z)C'(z) - f lC'(z)(C(z)) 2 = (1 - f l)[P'(z)C'(z)z + P(C(z))] 

so we obtain 

and thus 

C'(1) = (1 - /3)/(2 - 3/3 - (1 - fl)P'(1)) 

s ' ( 1 )  = 1 + / 3 / ( 2  - 3/3 - (1 - / 3 ) P ' ( 1 ) ) .  

Unfortunately,  P(z) is unknown. We observe,  however,  that S'(1) can be expected to 
remain fimte as long as P'(1) -< (2 - 3/3)/(1 - /3). Since P'(1) is the expected number  
of probes required to retrieve a key from an optimmed table,  it is bounded above by 
the expected number  of probes required to retrieve a key from a table organized with 
any open-addressing hashing method.  For  uniform probing (all probes sequences 
equally likely) we have [6] 

P '  (1) ~/3-1log(1/(1 - / 3 ) )  

approximately.  Substituting this into the final equation for S'(1) yields Figure 3; we see 
that the size of  the relevant assignment problem is reasonably small (say 10 keys or  
less) as long as /3 -< 0.4 roughly The function S'(1) has a pole /3 = 0.41466541; for 
loading densities less than this we can expect the number  of relevant keys to be finite. 
In practice we should expect to be able to handle even higher loading densities without 
much trouble,  since our formulas for S, C, and P explicitly ignore the probabil i ty of 
overlapping probe sequences Fur thermore ,  replacing P(z) by its correct definition 
(rather than the one for uniform probing) should yield a definite improvement .  
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The result  of  this ra ther  compl ica ted  analysis is that if the loading densi ty of  the  file 
is less than roughly 0.4 we can hope  to insert  a new key K into the table by solving a 
small assignment  p rob lem.  For  higher  densit ies the p rob lem is inherent ly  a global  one  
apparent ly ;  we must consider  for re locat ion a considerable  n u m b e r  of  keys.  

5. Dtscusslon and Conclusions 

In this paper  we have shown how to arrange a set of  keys in a hash table so as to 
mlmmlze  the expected  (or worst-case)  n u m b e r  of  probes  requ i red  to re t r ieve  a key.  
Our  analysis demons t ra tes  that the worst-case cost can be . reduced to O(log2(M)) in 
almost  all cases. (In pract ice it should be possible to achieve O(logz(M)) in all cases with 
very little work,  since a set of  keys which has an opt imized  cost that  IS too  large can,  by 
choosing another  hash funct ion randomly ,  be expec ted  to yield an O(log2(M)) cost.) 

Our  analysis assumes that  uniform hashing is used,  however ;  an open  p rob lem is to 
confirm this result  for the more  c o m m o n  techniques  such as double  hashing.  

We have also examined  briefly a t echnique  for insert ing a new key into an op t imized  
table so as to maintain opt imal i ty  of  the a r rangement .  Our  result  here  is that  as long as 
the loading factor  is less than 0.41 (approximate ly) ,  we can usually insert  a new key 
and maintain opt imali ty  by solving a small (approximate ly  10-e lement )  ass ignment  
p rob lem.  For  tables of higher  density one  must apparent ly  solve an ass ignment  p rob lem 
which mvolves  most  of  the keys previously s tored.  (By saving the pr imal  and dual  
variables  of  the previous solut ion,  one  can significantly speed up the solut ion of  the 
new prob lem,  but  the extra s torage requi red  might  be t te r  be used to s tore  the keys 
themselves ,  thereby reducing the overal l  densi ty.)  

The  reader  is encouraged  to consult  the excel lent  article by G o n n e t  and Munro  [5], 
which gives e x p h o t  listings of  a lgor i thms for opt imizing the a r r angemen t  of  keys in a 
hash table and tight results on the expec ted  n u m b e r  of probes  requ i red  to re t r ieve  a 
key f rom an average-opt imal  table.  

The  techniques  descr ibed here  should be most  useful when the hash table is re lat ively 
static, with the number  of  retr ievals  considerably exceeding the n u m b e r  of  insert ions 
Large  databases are often of  exactly this na ture ,  and f requent ly  ut lhze hashing 
techniques  
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