The 2016 Cybersecurity Speaker Series

On the Growth of Cryptography

Ronald L. Rivest, PhD
Professor, Electrical Engineering and Computer Science
Computer Science and Artificial Intelligence Laboratory (CSAIL)
Massachusetts Institute of Technology

Sponsored by:

STRATEGY IS THE BEST SECURITY.
The Executive Master in Cybersecurity

On the growth of cryptography ${ }^{1}$

Ronald L. Rivest
Institute Professor
MIT, Cambridge, MA

Cybersecurity Seminar Series
Brown University
April 14, 2016

${ }^{1}$ many slides from my MIT Killian award lecture

Outline

Some pre-1976 context
Invention of Public-Key Crypto and RSA
Early steps
The cryptography business
Crypto policy
Attacks
More New Directions
Crypto Wars 2.0
What Next?
Conclusions

Outline

Some pre-1976 context
Invention of Public-Key Crypto and RSA
Early steps
The cryptograp hy business
Crypto policy
Attacks
More New Directions
Crypto Wars 2.0
What Next?
Conclusions

Euclid - 300 B.C.

There are infinitely many primes:

$$
2,3,5,7,11,13, \ldots
$$

Euclid - 300 B.C.

There are infinitely many primes:

$$
2,3,5,7,11,13, \ldots
$$

The greatest common divisor of two numbers is easily computed (using "Euclid's Algorithm"):
$\operatorname{gcd}(12,30)=6$

Greek Cryptography - The Scytale

An unknown period (the circumference of the scytale) is the secret key, shared by sender and receiver.

Pierre de Fermat (1601-1665)
Leonhard Euler (1707-1783)

Fermat's Little Theorem (1640):
For any prime p and any $a, 1 \leq a<p$:

$$
a^{p-1}=1 \quad(\bmod p)
$$

Pierre de Fermat (1601-1665)
Leonhard Euler (1707-1783)

Fermat's Little Theorem (1640):
For any prime p and any $a, 1 \leq a<p$:

$$
a^{p-1}=1 \quad(\bmod p)
$$

Euler's Theorem (1736):
If $\operatorname{gcd}(a, n)=1$, then

$$
a^{\phi(n)}=1 \quad(\bmod n),
$$

where $\phi(n)=\#$ of $x<n$ such that $\operatorname{gcd}(x, n)=1$.

Carl Friedrich Gauss (1777-1855)

Published Disquisitiones Aritmeticae at age 21

Carl Friedrich Gauss (1777-1855)

Published Disquisitiones Aritmeticae at age 21
"The problem of distinguishing prime numbers from composite numbers and of resolving the latter into their prime factors is known to be one of the most important and useful in arithmetic. ... the dignity of the science itself seems to require solution of a problem so elegant and so celebrated."

William Stanley Jevons (1835-1882)

Published The Principles of Science (1874)

William Stanley Jevons (1835-1882)

Published The Principles of Science (1874)
Gave world's first factoring challenge:
"What two numbers multiplied together will produce 8616460799 ? I think it unlikely that anyone but myself will ever know."

William Stanley Jevons (1835-1882)

Published The Principles of Science (1874)
Gave world's first factoring challenge:
"What two numbers multiplied together will produce 8616460799 ? I think it unlikely that anyone but myself will ever know."

Factored by Derrick Lehmer in 1903. (89681 * 96079)

World War I - Radio

- A marvelous new communication technology-radio (Marconi, 1895)—enabled instantaneous communication with remote ships and forces, but also gave all transmitted messages to the enemy.

World War I - Radio

- A marvelous new communication technology-radio (Marconi, 1895)—enabled instantaneous communication with remote ships and forces, but also gave all transmitted messages to the enemy.
- Use of cryptography soars.

World War I - Radio

- A marvelous new communication technology-radio (Marconi, 1895)—enabled instantaneous communication with remote ships and forces, but also gave all transmitted messages to the enemy.
- Use of cryptography soars.

Decipherment of
Zimmermann Telegram by British made American involvement in World War I inevitable.

Alan Turing (1912-1954)

Developed foundations of theory of computability (1936).

Still learning about Turing's contributions

World War II - Enigma, Purple, JN25, Naval Enigma

- Cryptography performed by (typically, rotor) machines.

World War II - Enigma, Purple, JN25, Naval Enigma

- Cryptography performed by (typically, rotor) machines.
- Work of Alan Turing and others at Bletchley Park, and William Friedman and others in the USA, on breaking of Axis ciphers had great success and immense impact.

World War II - Enigma, Purple, JN25, Naval Enigma

- Cryptography performed by (typically, rotor) machines.
- Work of Alan Turing and others at Bletchley Park, and William Friedman and others in the USA, on breaking of Axis ciphers had great success and immense impact.
- Cryptanalytic effort involved development and use of early computers (Colossus).

Claude Shannon (1916-2001)

- "Communication Theory of Secrecy Systems" Sept 1945 (Bell Labs memo, classified).

Claude Shannon (1916-2001)

- "Communication Theory of Secrecy Systems" Sept 1945 (Bell Labs memo, classified).
- Information-theoretic in character-proves unbreakability of one-time pad. (Published 1949).

Kahn - The Codebreakers

In 1967 David Kahn published
The Codebreakers—The Story of Secret Writing.
A monumental history of cryptography.
NSA attempted to suppress its publication.

DES - U.S. Data Encryption Standard (1976)

DES Designed at IBM; Horst Feistel supplied key elements of design, such as ladder structure. NSA helped, in return for keeping key size at 56 bits.(?)

Computational Complexity

- Theory of Computational Complexity started in 1965 by Hartmanis and Stearns; expanded on by Blum, Cook, and Karp.
- Key notions: polynomial-time reductions; NP-completeness.

Outline

Some pre-1976 contextInvention of Public-Key Crypto and RSA
Early steps
The cryptography business
Crynto nolicy
Attacks
More New Directions
Crypto Wars 2.0
What Next?
Conclusions

Invention of Public Key Cryptography

- Ralph Merkle, and independently Marty Hellman and Whit Diffie, invented the notion of public-key cryptography.

Invention of Public Key Cryptography

- Ralph Merkle, and independently Marty Hellman and Whit Diffie, invented the notion of public-key cryptography.
- In November 1976, Diffie and Hellman published New Directions in Cryptography, proclaiming
"We are at the brink of a revolution in cryptography."

Public-key encryption (as proposed by Diffie/Hellman)

- Each party A has a public key $P K_{A}$ others can use to encrypt messages to A :

$$
C=P K_{A}(M)
$$

Public-key encryption (as proposed by Diffie/Hellman)

- Each party A has a public key $P K_{A}$ others can use to encrypt messages to A :

$$
C=P K_{A}(M)
$$

- Each party A also has a secret key $S K_{A}$ for decrypting a received ciphertext C :

$$
M=S K_{A}(C)
$$

Public-key encryption (as proposed by Diffie/Hellman)

- Each party A has a public key $P K_{A}$ others can use to encrypt messages to A :

$$
C=P K_{A}(M)
$$

- Each party A also has a secret key $S K_{A}$ for decrypting a received ciphertext C :

$$
M=S K_{A}(C)
$$

- It is easy to compute matching public/secret key pairs.

Public-key encryption (as proposed by Diffie/Hellman)

- Each party A has a public key $P K_{A}$ others can use to encrypt messages to A :

$$
C=P K_{A}(M)
$$

- Each party A also has a secret key $S K_{A}$ for decrypting a received ciphertext C :

$$
M=S K_{A}(C)
$$

- It is easy to compute matching public/secret key pairs.
- Publishing $P K_{A}$ does not compromise $S K_{A}$! It is computationally infeasible to obtain $S K_{A}$ from $P K_{A}$. Each public key can thus be safely listed in a public directory with the owner's name.

Digital Signatures (as proposed by Diffie/Hellman)

- Idea: sign with $S K_{A}$; verify signature with $P K_{A}$.

Digital Signatures (as proposed by Diffie/Hellman)

- Idea: sign with $S K_{A}$; verify signature with $P K_{A}$.
- A produces signature σ for message M

$$
\sigma=S K_{A}(M)
$$

Digital Signatures (as proposed by Diffie/Hellman)

- Idea: sign with $S K_{A}$; verify signature with $P K_{A}$.
- A produces signature σ for message M

$$
\sigma=S K_{A}(M)
$$

- Given $P K_{A}, M$, and σ, anyone can verify validity of signature σ by checking:

$$
M \stackrel{?}{=} P K_{A}(\sigma)
$$

Digital Signatures (as proposed by Diffie/Hellman)

- Idea: sign with $S K_{A}$; verify signature with $P K_{A}$.
- A produces signature σ for message M

$$
\sigma=S K_{A}(M)
$$

- Given $P K_{A}, M$, and σ, anyone can verify validity of signature σ by checking:

$$
M \stackrel{?}{=} P K_{A}(\sigma)
$$

- Amazing ideas!

Digital Signatures (as proposed by Diffie/Hellman)

- Idea: sign with $S K_{A}$; verify signature with $P K_{A}$.
- A produces signature σ for message M

$$
\sigma=S K_{A}(M)
$$

- Given $P K_{A}, M$, and σ, anyone can verify validity of signature σ by checking:

$$
M \stackrel{?}{=} P K_{A}(\sigma)
$$

- Amazing ideas!
- But they couldn't see how to implement them...

RSA (Ron Rivest, Adi Shamir, Len Adleman, 1977)

RSA (Ron Rivest, Adi Shamir, Len Adleman, 1977)

- Shamir and Adleman in Math dept.; Rivest in EECS.

RSA (Ron Rivest, Adi Shamir, Len Adleman, 1977)

- Shamir and Adleman in Math dept.; Rivest in EECS.
- Offices co-located in Laboratory for Computer Science (545 Tech. Square).

RSA (Ron Rivest, Adi Shamir, Len Adleman, 1977)

- Shamir and Adleman in Math dept.; Rivest in EECS.
- Offices co-located in Laboratory for Computer Science (545 Tech. Square).
- Adi I and proposed many methods; Len broke most of them.

Shamir's mysterious "Ski method"

Shamir's mysterious "Ski method"

- R, S, A went skiing in February 1977.

Shamir's mysterious "Ski method"

- R, S, A went skiing in February 1977.
- Shamir remembers "solving the PK problem" while skiing.

Shamir's mysterious "Ski method"

- R, S, A went skiing in February 1977.
- Shamir remembers "solving the PK problem" while skiing.
- Unfortunately, at the bottom of the run, he could no longer recall the solution...

"Almost there"-cycle with trapdoor period

- f is one-way permutation with unknown (trapdoor) period p

"Almost there"-cycle with trapdoor period

- f is one-way permutation with unknown (trapdoor) period p
- Choose t, u so that $t+u=p$

"Almost there"-cycle with trapdoor period

- f is one-way permutation with unknown (trapdoor) period p
- Choose t, u so that $t+u=p$
- f^{t}, f^{u} easily computed

"Almost there"-cycle with trapdoor period

- f is one-way permutation with unknown (trapdoor) period p
- Choose t, u so that $t+u=p$
- f^{t}, f^{u} easily computed
- Encrypt: $c=f^{t}(m)$

"Almost there"-cycle with trapdoor period

- f is one-way permutation with unknown (trapdoor) period p
- Choose t, u so that $t+u=p$
- f^{t}, f^{u} easily computed
- Encrypt: $c=f^{t}(m)$
- Decrypt: $m=f^{u}(c)$

Seder

- Seder dinner April 1977 at home of Anni Bruss.

Seder

- Seder dinner April 1977 at home of Anni Bruss.
- "In vino veritas" (Pliny \approx AD 50)

Seder

- Seder dinner April 1977 at home of Anni Bruss.
- "In vino veritas" (Pliny \approx AD 50)

- Manichewitz wine + permutation polynomials + factoring...

RSA method

- Security relies (in part) on inability to factor product n of two large primes p, q.

RSA method

- Security relies (in part) on inability to factor product n of two large primes p, q.
- $P K=(n, e)$ where $n=p q$ and $\operatorname{gcd}(e, \phi(n))=1$

RSA method

- Security relies (in part) on inability to factor product n of two large primes p, q.
- $P K=(n, e)$ where $n=p q$ and $\operatorname{gcd}(e, \phi(n))=1$
- $S K=d$ where $d e=1 \bmod \phi(n)$

RSA method

- Security relies (in part) on inability to factor product n of two large primes p, q.
- $P K=(n, e)$ where $n=p q$ and $\operatorname{gcd}(e, \phi(n))=1$
- $S K=d$ where $d e=1 \bmod \phi(n)$
- Encryption/decryption (or signing/verify) are simple:

$$
\begin{aligned}
C & =P K(M)=M^{e} \quad \bmod n \\
M & =S K(C)=C^{d} \quad \bmod n
\end{aligned}
$$

Martin Gardner column and RSA-129 challenge

- Described public-key and RSA cryptosystem in his Scientific American column, Mathematical Games

Martin Gardner column and RSA-129 challenge

- Described public-key and RSA cryptosystem in his Scientific American column, Mathematical Games
- Offered copy of RSA technical memo.

Martin Gardner column and RSA-129 challenge

- Described public-key and RSA cryptosystem in his Scientific American column, Mathematical Games
- Offered copy of RSA technical memo.
- Offered \$100 to first person to break challenge ciphertext based on 129-digit product of primes.
(Our) estimated time to solution: 40 quadrillion years

Publication of RSA memo and paper

 us; we must ensure that two imporkint properies of
the current -pperer nair' sytuem are preserved: (a) mesages aro privive, and (b) mescrages can be riged We demonstrate in this paper how to build bese
cappubilites into an electronic mail system. At the heart of our propocal is a new encryption

 vated our reserant, sisise beyy presemed the cosecp
but not any practical implementation of such a y shem.

II. Public-Key Cryptanywems

In a "publickey cryptosysem" each wer places in pubbice file is a direrotory giving the encaytion provedure of each user. The user kepps secter the details of
his correspondiat decryption procedure D. Tese pro ectures have the following four properites:
(a) Deciphering the enciphered form of a message M
yelcas M. Formally.
$\mathrm{P}(\mathrm{E}(\mathrm{M}))$ - M .
(b) Both E and D are casy wo campure.
(c) By putbidy revealing E the user does not revel an engy way lo compute D. This mesnst that in prastiox oefy be can dectypt mesages encripted with E, o
compute D (d) If ampute D efficientily.
(d) If a message M is first deciphered and then enci-
phered, M is the result. Formally. $\mathrm{E}(\mathrm{D}(\mathrm{M}))=\mathrm{M}$.
An encryption (or decription) procedure typically consstst of aghesol method asd an encroption key. The general method, usber cuntrol of the key, enciphers 2
message M to obtain the enciphered form of the messege, called the e iph heresert C. Everomene can use the same grnerol method; the security of s given procedure
will rest on the security of the key. Reveling th
 When the user reverats E he reveals avery inefficient
method of computign D(C) testing all possible mes. method My computing D(C): esting al possible mes

 way founction, "if it allos satifices (d) it is a - rap-door
one-way permulation." Diffie and Hellman II intro-one-way permulation." Diffie and Hellman (1) intro-
duxed the concopt of trap-door one-way functions berr

LCS-82 Technical Memo (April 1977) CACM article (Feb 1978)

Alice and Bob (1977, in RSA paper)

Alice and Bob (1977, in RSA paper)

Alice and Bob (1977, in RSA paper)

Alice and Bob now have a life of their own-they appear in hundreds of crypto papers, in xkcd, and even have their own Wikipedia page:

Independent Invention of Public-Key Revealed

In 1999 GCHQ announced that James Ellis, Clifford Cocks, and Malcolm Williamson had invented public-key cryptography, the "RSA" algorithm, and "Diffie-Hellman key exchange" in the 1970's, before their invention outside.

Outline

Some pre-1976 contextInvention of Public-Key Crypto and RSA
Early steps
The cryptography business
Crypto policy
Attacks
More New Directions
Crypto Wars 2.0
What Next?
Conclusions

Loren Kohnfelder - Invention of Digital Certificates

- Loren Kohnfelder's B.S. thesis (MIT 1978, supervised by Len Adleman), proposed notion of digital certificate-a digitally signed message attesting to another party's public key.

RSA on a chip (1980)

FIGURE 3. The RSA chip contains $\mathbf{4 0 , 0 0 0}$ transistors and measures 5.5 mm by 8 mm

- MIT started VLSI effort.

RSA on a chip (1980)

FIGURE 3. The RSA chip contains $\mathbf{4 0 , 0 0 0}$ transistors and measures 5.5 mm bY $\mathbf{8} \mathbf{~ m m}$.

LAMBDA Fourth Quaster 10501

- MIT started VLSI effort.
- R, S, A designed "RSA chip" and fabbed prototype:

RSA on a chip (1980)

FIGURE 3. The RSA chip contains $\mathbf{4 0 , 0 0 0}$ transistors and measures 5.5 mm bY $\mathbf{8} \mathbf{~ m m}$.

LAMBDA Fourth Quaster 10501

- MIT started VLSI effort.
- R, S, A designed "RSA chip" and fabbed prototype:
- 512-bit bignum processor

RSA on a chip (1980)

FIGURE 3. The RSA chip contains $\mathbf{4 0 , 0 0 0}$ transistors and measures 5.5 mm bY $\mathbf{8} \mathbf{~ m m}$.

LAMBDA Fourth Quaster 10501

- MIT started VLSI effort.
- R, S, A designed "RSA chip" and fabbed prototype:
- 512-bit bignum processor
- RSA key generation (including prime-finding)

RSA on a chip (1980)

FIGURE 3. The RSA chip contains $\mathbf{4 0 , 0 0 0}$ transistors and measures 5.5 mm bY $\mathbf{8} \mathbf{~ m m}$.

- MIT started VLSI effort.
- R, S, A designed "RSA chip" and fabbed prototype:
- 512-bit bignum processor
- RSA key generation (including prime-finding)
- Pollard's "rho" factorization method

RSA on a chip (1980)

FIGURE 3. The RSA chip contains $\mathbf{4 0 , 0 0 0}$ transistors and measures 5.5 mm bY $\mathbf{8} \mathbf{~ m m}$.

LAMBDA Fourth Quester $1050 \quad 17$

- MIT started VLSI effort.
- R, S, A designed "RSA chip" and fabbed prototype:
- 512-bit bignum processor
- RSA key generation (including prime-finding)
- Pollard's "rho" factorization method
- 40,000 transistors; $5.5 \mathrm{~mm} \times 8 \mathrm{~mm}$ chip.

RSA on a chip (1980)

FIGURE 3. The rSA chip contains $\mathbf{4 0 , 0 0 0}$ transistors and measures 5.5 mm by $\mathbf{8} \mathbf{~ m m}$.
LAMBDA Fourth Quaster 105017

- MIT started VLSI effort.
- R, S, A designed "RSA chip" and fabbed prototype:
- 512-bit bignum processor
- RSA key generation (including prime-finding)
- Pollard's "rho" factorization method
- 40,000 transistors; $5.5 \mathrm{~mm} \times 8 \mathrm{~mm}$ chip.
- Fabrication was buggy/unreliable.

IACR—International Assn. for Cryptologic Research

- Established 1982 by David Chaum, myself, and others, to promote academic research in cryptology.
- Sponsors three major conferences/year (Crypto, Eurocrypt, Asiacrypt) and four workshops; about 200 papers/year, plus another 600/year posted on web. Publishes J. Cryptography
- Around 1600 members, (25% students), from 74 countries, 54 Fellows.

Theoretical Foundations of Security

- "Probabilistic Encryption" Shafi Goldwasser, Silvio Micali (1982) (Encryption should be randomized!)

Theoretical Foundations of Security

- "Probabilistic Encryption" Shafi Goldwasser, Silvio Micali (1982) (Encryption should be randomized!)
- "A Digital Signature Scheme Secure Against Adaptive Chosen Message Attacks" Goldwasser, Micali, Rivest (1988) (Uses well-defined game to define security objective.)

RC4 stream cipher (Rivest, 1987)

- RC4 is the most widely used software stream cipher

RC4 stream cipher (Rivest, 1987)

- RC4 is the most widely used software stream cipher
- Not public-key; xors stream of pseudo-random bytes with plaintext to derive ciphertext.

RC4 stream cipher (Rivest, 1987)

- RC4 is the most widely used software stream cipher
- Not public-key; xors stream of pseudo-random bytes with plaintext to derive ciphertext.
- Extremely simple and fast: uses array $S[0.255]$ to keep a permutation of $0 . .255$, initialized using secret key, and uses two pointers i, j into S.
To output a pseudo-random byte:

```
i = (i + 1) mod 256
j = (j + S[i]) mod 256
swap S[i] and S[j]
Output S[(S[i] + S[j]) mod 256]
```


RC4 stream cipher (Rivest, 1987)

- RC4 is the most widely used software stream cipher
- Not public-key; xors stream of pseudo-random bytes with plaintext to derive ciphertext.
- Extremely simple and fast: uses array $S[0.255]$ to keep a permutation of $0 . .255$, initialized using secret key, and uses two pointers i, j into S.
To output a pseudo-random byte:

```
i = (i + 1) mod 256
j = (j + S[i]) mod 256
swap S[i] and S[j]
Output S[(S[i] + S[j]) mod 256]
```

- Used in: WEP, BitTorrent, SSL, Kerberos, PDF, Skype, ...

RC4 stream cipher (Rivest, 1987)

- RC4 is the most widely used software stream cipher
- Not public-key; xors stream of pseudo-random bytes with plaintext to derive ciphertext.
- Extremely simple and fast: uses array $S[0.255]$ to keep a permutation of $0 . .255$, initialized using secret key, and uses two pointers i, j into S.
To output a pseudo-random byte:

```
i = (i + 1) mod 256
j = (j + S[i]) mod 256
swap S[i] and S[j]
Output S[(S[i] + S[j]) mod 256]
```

- Used in: WEP, BitTorrent, SSL, Kerberos, PDF, Skype, ...
- Showing its age (statistical attacks)...

Spritz - RC4 replacement (w/ J. Schuldt, 2014)

RC 4()
$1 \quad i=i+1$
$2 \quad j=j+S[i]$
$3 \quad \operatorname{SWAP}(S[i], S[j])$
$4 \quad z=S[S[i]+S[j]]$
$5 \quad$ return z

Spritz()

$$
\begin{array}{ll}
1 & i=i+1 \\
2 & j=k+S[j+S[i]] \\
3 & k=i+k+S[j] \\
4 & \operatorname{SWAP}(S[i], S[j]) \\
5 & z=S[j+S[i+S[z+k]]] \\
6 & \text { return } z
\end{array}
$$

- Spritz code found by computer search.
- About 50\% longer and 4X slower (unoptimized).
- Uses new register k as well RC4 registers i, j; output register z also used in feedback.
- 2^{81} samples seem necessary to distinguish Spritz-256 from random. (Compare: 2^{41} for RC4.)

MD5 Cryptographic Hash Function (Rivest, 1991)

- MD5 proposed as pseudo-random function mapping files to 128 -bit fingerprints. (variant of earlier MD4; ARX-style)
- Collision-resistance was a design goal - it should be infeasible to find two files with the same fingerprint.
- Many, many uses (e.g. in digital signatures) - very widely used, and a model for many other later hash function designs.

Outline

The cryptography business
Crypto policy
Attacks
More New Directions
Crypto Wars 2.0
What Next?
Conclusions

U.S. Patent 4,405,829

Filed December 1977 (MIT TLO) Issued September 1983

RSA the company (1983)

RSA the company (1983)

- Jim Bidzos joined in 1986

RSA the company (1983)

- Jim Bidzos joined in 1986
- Lotus (1987), Motorola, Apple, Novell, Netscape, Microsoft, ...

RSA the company (1983)

- Jim Bidzos joined in 1986
- Lotus (1987), Motorola, Apple, Novell, Netscape, Microsoft, ...
- RSA Conference series (1991)

RSA the company (1983)

- Jim Bidzos joined in 1986
- Lotus (1987), Motorola, Apple, Novell, Netscape, Microsoft, ...
- RSA Conference series (1991)
- Verisign spun out in 1995
1.3 billion certificate status checks/day

65 billion DNS requests/day (DNSSEC coming)

RSA the company (1983)

- Jim Bidzos joined in 1986
- Lotus (1987), Motorola, Apple, Novell, Netscape, Microsoft, ...
- RSA Conference series (1991)
- Verisign spun out in 1995
1.3 billion certificate status checks/day

65 billion DNS requests/day (DNSSEC coming)

- RSA acquired by Security Dyamics in 1996, now part of EMC.

World Wide Web (Sir Tim Berners-Lee, 1990)

- Just as radio did, this new communication medium, the World-Wide Web, drove demand for cryptography to new heights.
- Cemented transition of cryptography from primarily military to primarily commercial.

Outline

Some pre-1976 context
Invention of Public-Key Crypto and RSA
Farly stens
The cryptography business
Crypto policy
Attacks
More New Directions
Crypto Wars 2.0
What Next?
Conclusions

U.S. cryptography policy evolves

- U.S. government initially tried to control and limit public-sector research and use of cryptography
- Attempt to chill research via ITAR (1977)
- MIT "Changing Nature of Information" Committee (1981; Dertouzos, Low, Rosenblith, Deutch,Rivest,...)

MIT Committee Seeks Cryptography Policy

Questions of who should do research on cryptography and how results should be disseminated are the first order of business

[^0]quences for individuals and for society if computers continue to be connected, as they are now, according to local deci-
easy to send computer programs between connected machines and to instruct a program to search for, select,

U.S. cryptography policy evolves

- U.S. government tried to mandate availability of all encryption keys via "key escrow" and/or "Clipper Chip" (1993)

U.S. cryptography policy evolves

- U.S. government tried to mandate availability of all encryption keys via "key escrow" and/or "Clipper Chip" (1993)

U.S. cryptography policy evolves

- U.S. government tried to mandate availability of all encryption keys via "key escrow" and/or "Clipper Chip" (1993)

- With defeat of "Clipper Chip", it seemed "crypto wars" were over; strong crypto was recognized as necessary for commerce and for national security...

U.S. cryptography policy evolves

- U.S. government tried to mandate availability of all encryption keys via "key escrow" and/or "Clipper Chip" (1993)

- With defeat of "Clipper Chip", it seemed "crypto wars" were over; strong crypto was recognized as necessary for commerce and for national security...
- Recently, this issue has re-surfaced...

Outline

> Some pre-1976 context
> Invention of Public-Key Crypto and RSA
> Farly stens
> The cryptography business
> Crypto policy

Attacks

More New Directions
Crypto Wars 2.0
What Next?
Conclusions

Factorization of RSA-129 (April 1994)

- RSA-129 =

11438162575788886766923577997614661201021829
67212423625625618429357069352457338978305971 23563958705058989075147599290026879543541

Factorization of RSA-129 (April 1994)

- RSA-129 =

11438162575788886766923577997614661201021829
67212423625625618429357069352457338978305971 23563958705058989075147599290026879543541

- Derek Atkins, Michael Graff, Arjen Lenstra, Paul Leyland: RSA-129 =

34905295108476509491478496199038981334177646 38493387843990820577 x
32769132993266709549961988190834461413177642 967992942539798288533

Factorization of RSA-129 (April 1994)

- RSA-129 =

$$
\begin{aligned}
& 11438162575788886766923577997614661201021829 \\
& 67212423625625618429357069352457338978305971 \\
& 23563958705058989075147599290026879543541
\end{aligned}
$$

- Derek Atkins, Michael Graff, Arjen Lenstra, Paul Leyland: RSA-129 =

$$
\begin{aligned}
& 34905295108476509491478496199038981334177646 \\
& 38493387843990820577 \text { x } \\
& 32769132993266709549961988190834461413177642 \\
& 967992942539798288533
\end{aligned}
$$

- 8 months work by about 600 volunteers from more than 20 countries; 5000 MIPS-years.

Factorization of RSA-129 (April 1994)

- RSA-129 =

$$
\begin{aligned}
& 11438162575788886766923577997614661201021829 \\
& 67212423625625618429357069352457338978305971 \\
& 23563958705058989075147599290026879543541
\end{aligned}
$$

- Derek Atkins, Michael Graff, Arjen Lenstra, Paul Leyland: RSA-129 =

$$
\begin{aligned}
& 34905295108476509491478496199038981334177646 \\
& 38493387843990820577 \text { x } \\
& 32769132993266709549961988190834461413177642 \\
& 967992942539798288533
\end{aligned}
$$

- 8 months work by about 600 volunteers from more than 20 countries; 5000 MIPS-years.
- secret message:

The Magic Words Are Squeamish Ossifrage

Factoring Records

Digits

Factoring on a Quantum Computer?

In 1994, Peter Shor invented a fast factorization algorithm that runs on a (hypothetical) quantum computer and works by determining multiplicative period of elements mod n.

Factoring on a Quantum Computer?

In 1994, Peter Shor invented a fast factorization algorithm that runs on a (hypothetical) quantum computer and works by determining multiplicative period of elements $\bmod n$.

- In 2001, researchers at IBM used this algorithm on a (real) quantum computer to factor $15=3 \times 5$.

Factoring on a Quantum Computer?

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

In 1994, Peter Shor invented a fast factorization algorithm that runs on a (hypothetical) quantum computer and works by determining multiplicative period of elements mod n.

- In 2001, researchers at IBM used this algorithm on a (real) quantum computer to factor $15=3 \times 5$.
- Recently (Dattani, 2014): 291311 = 557×523

Factoring on a Quantum Computer?

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

In 1994, Peter Shor invented a fast factorization algorithm that runs on a (hypothetical) quantum computer and works by determining multiplicative period of elements mod n.

- In 2001, researchers at IBM used this algorithm on a (real) quantum computer to factor $15=3 \times 5$.
- Recently (Dattani, 2014): 291311 = 557×523
- Dark clouds on horizon for RSA?

Hash Function Attacks

- In 2004 Xiaoyun Wang and colleagues found a way to produce collisions for MD5:

$$
\operatorname{MD} 5(\text { file1 })=\operatorname{MD} 5(\text { file2 }) \quad!!!
$$

Also for SHA-1 and many other hash functions. Major break!!

Hash Function Attacks

- In 2004 Xiaoyun Wang and colleagues found a way to produce collisions for MD5:

$$
\operatorname{MD} 5(\text { file1 })=\operatorname{MD5}(\text { file2 }) \quad!!!
$$

Also for SHA-1 and many other hash functions. Major break!!

- So NIST ran a competition for new hash function standard (SHA-3 = Keccak).

Outline

Some pre-1976 contextInvention of Public-Key Crypto and RSAFarly stensThe cryptography businessCrypto policy
Attacks

More New Directions

Crypto Wars 2.0
What Next?
Conclusions

Many new research problems and directions

- secret-sharing
- anonymity
- commitments
- multi-party protocols
- elliptic curves
- crypto hardware
- key leakage
- proxy encryption
- crypto for smart cards
- password-based keys
- random oracles
- oblivious transfer
- \ldots
- zero-knowledge proofs
- payment systems
- voting systems
- homomorphic encryption
- lattice-based crypto
- private information retrieval
- public-key infrastructure
- concurrent protocols
- randomness extractors
- tweakable encryption
- differential cryptanalysis
- identity-based encryption
- ...

Many new research problems and directions

- secret-sharing
- anonymity
- commitments
- multi-party protocols
- elliptic curves
- crypto hardware
- key leakage
- proxy encryption
- crypto for smart cards
- password-based keys
- random oracles
- oblivious transfer
- \ldots
- zero-knowledge proofs
- payment systems
- voting systems
- homomorphic encryption
- lattice-based crypto
- private information retrieval
- public-key infrastructure
- concurrent protocols
- randomness extractors
- tweakable encryption
- differential cryptanalysis
- identity-based encryption
- ...

Zero-Knowledge Proofs

Zero-Knowledge Proofs

I can convince you

Zero-Knowledge Proofs

I can convince you
I know a solution
to a hard problem

Zero-Knowledge Proofs

I can convince you
I know a solution
to a hard problem
while telling you nothing
about my solution

Zero-Knowledge Proofs

I can convince you
I know a solution
to a hard problem
while telling you nothing
about my solution
even if you are very skeptical!
Goldwasser, Micali, Rackoff (1985)
Goldreich, Micali, Wigderson (1986)

Zero-Knowledge Proofs

I can convince you
I know a solution
to a hard problem
while telling you nothing
about my solution
even if you are very skeptical!
Goldwasser, Micali, Rackoff (1985)
Goldreich, Micali, Wigderson (1986)
An enormously useful capability!

Payment Systems

- Probabilistic payments (Micali and Rivest, 2001). "Peppercoin" payments. Paying you ten cents is like paying you one dollar with probability 1/10.

Payment Systems

- Probabilistic payments (Micali and Rivest, 2001). "Peppercoin" payments. Paying you ten cents is like paying you one dollar with probability 1/10.
- Bitcoin (Nakamoto, 2009). The "blockchain" for decentralized consensus.

Payment Systems

- Probabilistic payments (Micali and Rivest, 2001). "Peppercoin" payments. Paying you ten cents is like paying you one dollar with probability 1/10.
- Bitcoin (Nakamoto, 2009). The "blockchain" for decentralized consensus.
- Ethereum, Dogecoin, Litecoin, Zero-cash, ...

Voting Systems

New "end-to-end" cryptographic voting systems
(Chaum, Neff, Benaloh, Ryan, Rivest, Adida, ...):

- all ballots posted on web (encrypted)
- voters verify their votes are correct (while preventing vote-selling and coercion)
- anyone can verify final tally
- may be done with paper ballots

Cryptography increases transparency and verifiability!

Fully Homomorphic Encryption

- In 1978, Rivest, Adleman, and Dertouzos asked, "Can one compute on encrypted data, while keeping it encrypted?"

Fully Homomorphic Encryption

- In 1978, Rivest, Adleman, and Dertouzos asked, "Can one compute on encrypted data, while keeping it encrypted?"
- In 2009, Craig Gentry (Stanford,IBM) gave solution based on use of lattices. If efficiency can be greatly improved, could be huge implications (e.g. for cloud computing).

Outline

Some pre-1976 contextInvention of Public-Key Crypto and RSAEarly stepsThe cryptography businessCrypto policy
Attacks
More New Directions
Crypto Wars 2.0
What Next?
Conclusions

Crypto Wars 2.0

- Apple / FBI iphone debate...
- Should LE have ability to unlock any iPhone or encryption content?
- Read "Keys Under Doormats" report (Abelson et al. 2015)

Outline

Some pre-1976 context
Invention of Public-Key Crypto and RSA
Early steps
The cryptography business
Crypto policy
Attacks
More New Directions
Crypto Wars 2.0

What Next?
Conclusions

Challenges

- Make more crypto theory results practical

Challenges

- Make more crypto theory results practical
- Is factoring really hard?

Challenges

- Make more crypto theory results practical
- Is factoring really hard?
- Minimize assumptions; evaluate assumptions

Challenges

- Make more crypto theory results practical
- Is factoring really hard?
- Minimize assumptions; evaluate assumptions
- Show $P \neq N P$!

Challenges

- Make more crypto theory results practical
- Is factoring really hard?
- Minimize assumptions; evaluate assumptions
- Show $P \neq N P$!
- Is quantum computing practical?

Challenges

- Make more crypto theory results practical
- Is factoring really hard?
- Minimize assumptions; evaluate assumptions
- Show $P \neq N P$!
- Is quantum computing practical?
- Give Alice and Bob smartphones!

Challenges

- Make more crypto theory results practical
- Is factoring really hard?
- Minimize assumptions; evaluate assumptions
- Show $P \neq N P$!
- Is quantum computing practical?
- Give Alice and Bob smartphones!
- Ground crypto practice better in vulnerable computer systems; prepare better for worst-case scenarios.

Conclusions

- Cryptography is not the solution to all of our cybersecurity problems, but it is an essential component of any solution.

Conclusions

- Cryptography is not the solution to all of our cybersecurity problems, but it is an essential component of any solution.
- Research in cryptography is a fascinating blend of mathematics, statistics, theoretical computer science, electrical engineering, and psychology.

Conclusions

- Cryptography is not the solution to all of our cybersecurity problems, but it is an essential component of any solution.
- Research in cryptography is a fascinating blend of mathematics, statistics, theoretical computer science, electrical engineering, and psychology.
- While we have accomplished a lot in a few decades, much remains to be done.

Conclusions

- Cryptography is not the solution to all of our cybersecurity problems, but it is an essential component of any solution.
- Research in cryptography is a fascinating blend of mathematics, statistics, theoretical computer science, electrical engineering, and psychology.
- While we have accomplished a lot in a few decades, much remains to be done.
- Like Alice and Bob, cryptography is here to stay.

Conclusions

- Cryptography is not the solution to all of our cybersecurity problems, but it is an essential component of any solution.
- Research in cryptography is a fascinating blend of mathematics, statistics, theoretical computer science, electrical engineering, and psychology.
- While we have accomplished a lot in a few decades, much remains to be done.
- Like Alice and Bob, cryptography is here to stay.
- Cryptography is fun!

Thank You!

The 2016 Cybersecurity Speaker Series

Thank you for joining.

For more information, visit brown.edu/cybersecurity
STRATEGY IS THE BEST SECURITY.
The Executive Master in Cybersecurity 回回 BROWN

[^0]: Within the next 10 years, networks consisting of tens of thousands of computers will connect businesses, corpora-

