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Typical Iterated hashing

f f f fh-1 h0 h1 h2 hL-1hL-2
H(M)

M0 M1 ML-1M2

Message extended with 10* & length (MD)
f is  compression function.
h-1 is  initialization vector (IV)
hi is i-th chaining variable
Last chaining variable hL-1 is hash output H(M)



Dean/Kelsey/Schneier Attacks

f f f fh-1 h0 h1 h2 hL-1hL-2
H(M)

M0 M1 ML-1M2

Assumes one can find fixpoint h for f,M*:
h = f(h,M*)

Can then have message expansion attacks that find 
second preimage by
– Finding many fixpoint pairs (h,M)
– Finding a fixpoint h in actual chain for given message
– Finding another shorter path from h0 to some chaining variable
– Creating second preimage with this new starting path using 

message expansion to handle Merkle-Damgard strengthening



Dithering
Make hash function round dependent 
on round index i as well as hi-1 and Mi
Dithering: include dither input di to 
compression function:

hi = f(hi-1,Mi,di)



Iterated hashing with dithering

How to choose dither input di? 
– Could choose  di = i
– Could choose  di = ri (pseudo-random)
– Main idea: use square-free sequence di

(repetition-free sequence; no repeated 
symbols or subwords.)

f f f fh-1 h0 h1 h2 hL-1hL-2

M0 M1 ML-1M2

H(M)

d0 d1 d2 dL-1



Square-Free Sequence
A sequence is square-free if it 
contains no two equal adjacent 
subwords.
Examples: 

abracadabra is square-free
hobbit is not (repeated “b” )
banana is not (repeated “an” )

Dithering with a square-free sequence 
prevents message expansion attacks. 
(Would need fixpoint that works for 
all dither inputs.)



Infinite square-free sequences
There exists infinite square-free 
sequences over 3-letter alphabet.
Start with parity sequence:

0110100110010110…
i-th element is parity of integer i.
This (Prouhet-Thue-Morse, or PTM) 
sequence is only cube-free, but…
Sequence of inter-zero gap lengths in 
PTM is square-free:

2102012101202102012021…



Generating infinite sf sequences

Or:
– Take two copies of PTM sequence; 

shift second one over by one, 
then code vertical pairs:
A = 00, B = 01, C = 10, D = 11:
0 1 1 0 1 0 0 1 1 0 0 1 0 1 …
- 0 1 1 0 1 0 0 1 1 0 0 1 0 …
- C D B C B A C D B A C B C …

Result is also square-free.



Towers of Hanoi Sequence
X Y Z

Optimal play moves small disk on odd moves 
cyclically X->Y->Z->X->Y->Z…; even moves are 
then forced.
Code moves with six letters as 
A[X->Y], B[X->Z],C[Y->X],D[Y->Z],E[Z->X],F[Z->Y]
Optimal sequence is square-free! (Shallit &c)



Towers of Hanoi Sequence
X Y Z

Code moves with six letters as 
A[X->Y], B[X->Z],C[Y->X],D[Y->Z],E[Z->X],F[Z->Y]
Optimal play:

A DB A E FAB D C…
Easy to generate sequence for infinitely many 
disks…



Abelian square-free sequences
An even stronger notion of “repetition-
free” than (ordinary) square-free.
A sequence is abelian square-free if it 
contains no two adjacent subwords yy’ 
where y’  is a permutation of y  (possibly 
identity permutation).
Example:
abelianalien

is square-free but not abelian square-free, 
since “alien”  is a permutation of “elian”.



Infinite ASF sequences exist
Thm (Keränen).  There exists infinite 
ASF sequences on four letters.
Keränen’s sequence based on “magic 
sequence” S of length 85:    
abcacdcbcdcadcdbdabacabadbabc
bdbcbacbcdcacbabdabacadcbcdca
cdbcbacbcdcacdcbdcdadbdcbca
Let σ(w) denote word  w with all 
letters shifted one letter cyclically:
σ(abcacd) = bcdbda



Generating infinite asf sequence(I)
Start with Keränen’s magic sequence 

S = abcac…dcbca (length 85)
Apply morphism:

a → S = abcac…dcbca
b → σ(S) = bcdbd…adcdb
c → σ2(S) = cdaca…badac
d → σ3(S) = dabdb…cbabd

simultaneously to all letters.
Repeat to taste (each sequence is prefix 
of next, and of infinite limit sequence).



Generating infinite asf sequence(II)

Count i = 0 to infinity in base 85
Apply simple four-state machine to 
base-85 representation of i  
(high-order digit processed first).
Output  a/b/c/d is last state.
Requires constant (amortized) time per 
output symbol.



Dithering with ASF sequence
Since Keränen’s ASF sequence on 
four letters is so easy to generate 
efficiently, we propose using it to 
dither an iterated hash function.
This add negligible computational 
overhead, and only two new bits of 
input to compression function.  



Specific very efficient proposal

16 bits (two bytes) dither input/block
Last block:  a  =  1, other bits encode 
number msg bits in this (partial) block.
Other blocks:  a  =  0,  b  = Keränen
sequence,  c  =  counter mod 213;  b  only 
changes when  c  rolls over.
Dither input still abelian square free!



Open Questions
Can Dean/Kelsey/Schneier attacks be 
adapted to defeat use of ASF sequences in 
hash function?
Does ASF really add anything over SF?
Are there generalizations of ASF that could 
be used?  (“Even more” pattern-free?)
Where else in cryptography can ASF 
sequences be used?



Conclusions
Abelian square-free sequences are a 
very inexpensive way to prevent 
repetitive inputs from causing 
vulnerabilities in hash functions.
Thanks to Jeff Shallit and Veikko
Keränen for teaching me about 
square-free and abelian square-free 
sequences.



(The End)



Iterated hashing

f f f f

Recoding

g

M1 M2 ML

h0 h1 h2 h3 hL’hL’-1

M’1 M’2 M’3 M’L’

H(M)



Iterated hashing with dithering

f f f f

Recoding

g

M1 M2 ML

h0 h1 h2 h3 hL’hL’-1

M’1 M’2 M’3 M’L’

H(M)

d1 d2 d3 dL’
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Abstract. We present a novel way of “dithering” the operation of an
iterated hash function, based on the notion of square-free sequences (se-
quences containing no consecutive repeated subsequences) and on their
generalization to abelian square-free sequences, as a means of defeating
some “message expansion” attacks recently proposed by Dean and of
Kelsey and Schneier [Dea99,KS05].

1 Introduction

This work is motivated by the thesis of Dean [Dea99] and the more recent paper
of Kelsey and Schneier [KS05] on certain message-expansion methods that yield
surprisingly efficient second-preimage attacks on iterated hash functions.

We begin here with a general overview of iterated hashing, to set the stage
and define notation. A hash function is given as input a message M of some
arbitrary nonnegative length L over some fixed alphabet Σ. That is,

M = M0M1 . . .ML−1

where each Mi is an element of Σ. The hash function H is to produce as output a
value H(M) drawn from some finite set R; typically R consists of the set {0, 1}n

of all strings of some fixed length n. The range R does not depend on the length
L of the input message.

In some formulations, the hash function takes as an auxiliary input a key K,
in which case we have a family H = {HK} of hash functions. We denote the set
of possible keys by K. The key may or may not be kept secret from an adversary.

The hash function should be efficiently computable: given K and M it should
be possible to compute HK(M) in polynomial time. Since hash functions are
often used on very long messages, it is desirable that the hash function be com-
putable in linear time (i.e. time O(L)).

Since it may be desired that a hash function be computable by devices with
limited storage, it is furthermore generally desirable that a hash function be
computable not only in linear time, but also in an on-line manner: the compu-
tation of H(M) should process each input symbol Mi in turn. This captures the



idea of an iterated hash algorithm, an idea that first appeared in the seminal
works of Rabin [Rab78,Rab79]. (Rabin used successive message blocks as keys
to an iterated encryption operation using a block cipher.)

The most common approach for designing an iterated hash algorithm, used
in many practical hash function designs, such as MD5 and SHA1, is the “Merkle-
Damgard” framework [Mer90,Dam90], which constructs a collision-resistant hash
function that processes arbitrary-sized inputs by iterating a collision-resistant
“compression function” f that takes fixed-sized inputs. The collision-resistance
of the hash function so constructed follows from the collision-resistance of the
compression function.

Definition 1 (Iterated hash algorithm). An iterated hash algorithm takes
as input a key K ∈ K and a message M = M0M1 . . .ML−1 of length L ≥ 0 over
some finite alphabet Σ, and produces an output H(M) from some finite set R,
in the following manner:

1. Set initial state. An initial state h−1 = h−1(K) is determined; this value
h−1 is called the initialization vector, or IV.

2. Recode input The input M is recoded to

M ′ = M ′
0M

′
1 . . .M ′

L′−1

where each symbol M ′
i is from some alphabet Σ′. In practice, such recoding

generally involves just appending a one and then some zeros (to get the length
to be a suitable length) and then appending the length of M in bits (this is
Merkle-Damg̊ard strengthening).

3. Process each symbol of recoded input. For each i, 0 ≤ i < L′, the next
state is computed:

hi = f(hi−1,M
′
i) (1)

where f is some function (called a compression function) The state values
h−1, h0, h1, . . .hL′−1 are also called chaining variables.

4. Produce output For some output function g, the output value HK(M) is
computed as g(K, hL′−1). (Sometimes the output function g is just the iden-
tity function.)

Section 2 discusses the general notion of dithering an iterated hash func-
tion. Section 3 briefly reviews another framework, based on recoding. Section 4
then reviews the notions of square-free words and abelian square-free sequences,
and shows that they can be efficiently generated. Section 5 discusses how an
abelian square-free sequence can be used to dither an iterated hash function.
Section 6 gives a concrete proposal for dithering an iterated hash function. Sec-
tion 7 presents efficient ways of generating square-free and abelian square-free
sequences. Section 8 gives a couple of miscellaneous facts about square-free se-
quences. Section 9 concludes with some discussion and open problems.



Fig. 1. The structure of an iterated hash function. The message M = M0M1 . . . ML−1

is first recoded, yielding M ′ = M ′
0M

′
1 . . . M ′

L′−1. An initialization vector h−1 = IV

is chosen. Each recoded message element M ′
i in turn is combined with the previous

chaining variable hi−1 using the compression function f to yield the next chaining

variable hi. The final output, the hash H(M) of the input M , is obtained by applying

an output function g to the final chaining variable.

2 Hash function dithering

In this section we discuss the notion of hash function dithering.
Dithering provides opportunities for improvements that defeat some known

and some recently suggested attacks on hash functions. In particular, it rather
simply defeats attacks [Dea99,KS05] based on message block repetition and gen-
eralizations thereof.

The word “dithering” derives from image-processing, where a variety of gray
or colored values can be represented by mixing together pixels of a small number
of basic shades or colors; this is done in a random or pseudo-random manner to
prevent simple visual patterns from being visible. We adapt the term dithering
here to refer to the process of adding an additional “dithering” input to a se-
quence of processing steps, to prevent an adversary from causing and exploiting
simple repetitive patterns in the input.

The Ph.D. thesis of Dean [Dea99], and the more recent paper of Kelsey and
Schneier [KS05], show how an adversary might be able to employ message block
repetition to advantage. Their attacks take advantage of fixpoints of the com-
pression function to derive second pre-images in a surprisingly efficient manner.
A fixpoint is defined as a pair (hi−1,M

′
i) such that (referring to equation (1))

hi = hi−1 = f(hi−1,M
′
i) .

Finding a fixpoint allows an adversary to repeat a given message block an arbi-
trary number of times, leaving the chaining variable unchanged; this allows the
adversary to defeat Merkle-Damgard strengthening, since the adversary can use
the fixpoint to expand the message appropriately, and thus more easily find a
second message of the same length as the first message having the same hash
value.



Fig. 2. The structure of an iterated hash function with dithering. Compare with Fig-

ure 1. The compression function f now takes an additional “dither” input di. For

example, we may have a dither sequence d = d0d1 · · · = z = abcacdcbcdcadcdb . . .,

Keränen’s abelian square-free sequence.

These attacks allow an adversary to find a second pre-image in time

t2n/2+1 + 2n−t+1

given an n-bit hash value for a first message of length 2t blocks.
One can view these attacks as providing support for the hypothesis that the

adversary (choosing the message) has too much control over the message.
How might one employ dithering to defeat such message expansion attacks?

Several possibilities come to mind:

– [Dithering with a counter] One could dither by using the index i as the
dither value:

di = i . (2)

This was suggested by Kelsey and Schneier. This should work, but requires
that the compression function f accept an arbitrarily large input i (since we
don’t wish to bound the size of the message input M , i can grow arbitrarily
large). One would like the dithering elements to be elements from some small
finite alphabet.
It is not terribly difficult to design a compression function to take as an
additional input a large (e.g. 160-bit) dither input, in which case the counter-
based approach of equation (2) can be used directly, even for very long
messages.
Nonetheless, we feel that it is valuable to explore what can be accomplished
using only a small finite alphabet for the dither input. Making the dither
input more compact may also yield improvements in efficiency, compared to
the counter-based approach.
Note that Biham [Bih] proposes using the number of bits processed so far
as an auxiliary input, rather than the index i of the block. This removes the



need for Merkle-Damg̊ard strengthening, but requires even more input bit
positions for this counter into the compression function.

– [Dithering with a pseudorandom sequence] One could dither by uti-
lizing some pseudo-random sequence r0, r1, . . .:

di = ri .

This only provides weak protection against message block repetition. As the
message grows longer and longer, we expect to see longer blocks of repetitions
among the di’s. It is possible to do better.

– [Dithering with alternating 0’s and 1’s] One could dither by utilizing
a sequence of alternating 0’s and 1’s:

di =
{

0 if i is even
1 otherwise.

This protects against repetition of single message blocks, but doesn’t protect
against repetition of pairs of blocks, since the dither input now has period
two. One would wish to have protection against repetitions of any segment of
message blocks, since an adversary might find fixpoints based on repeating
an arbitrary number of message input blocks.

If the goal is to prevent the adversary from repeating certain inputs (or
certain input sequences), then the best approach may be, as sugested here, to
use square-free sequences. These are aperiodic sequences over a finite alphabet
with the property that no subword is repeated.

We note that the “dither input” might also be used for other purposes, such
as to distinguish the computation of the last block. See Section 6 for an example.
This usage makes the sequence of inputs prefix-free, which has beneficial effects
(see [CDMP05]).

3 Recoding

We briefly discuss recoding, which provides an alternative avenue for incorpo-
rating variability.

Recoding should be efficient in an “on-line” sense, although Definition 1
doesn’t specify any such restriction, to allow approaches that may be somewhat
less efficient, but attractive from a security viewpoint.

To ensure that recoding isn’t carrying the burden of achieving one-wayness
or collision-resistance, we require that recoding be one-to-one and efficiently
invertible without knowledge of any secret key.

Recoding can serve a number of purposes.
One such purpose may be to recode the message so that its length in bits

becomes a multiple of some desired block size (say by appending to the message
first a 1 and then sufficiently many 0’s to make its length such a multiple).

A second purpose is often to defeat various message extension attacks by
appending a length count (as in Merkle-Damgard strengthening) [Mer90,Dam90].



A third such purpose may be to provide a minimum distance property, so
that a small change in the message M is guaranteed to produce a large change in
the recoded message M ′. This may be accomplished using error-correcting codes.
We do not explore this direction further here, but refer the reader to e.g. Knudsen
and Preneel’s recent paper [KP02] for some treatment of error-correction in hash
functions. We note that the message expansion in SHA-1 [NIS93] is an example
of such minimum-distance recoding.

A fourth such purpose, presented in section 2, is to introduce some time-
dependent variability during recoding, so that the way in which the input mes-
sage M is converted into the recoded message M ′ changes and evolves as the
input message is processed. We call this high-level recoding concept dithered mes-
sage recoding. However, for the purposes of this paper we shall assume a more
straightforward approach of having separate dithering inputs to the compression
function; the functionality obtained is equivalent.

4 Square-free and abelian square-free words

We next give an overview of square-free sequences, and give an example of an
infinite square-free word: the Thue sequence. We then examine a stronger form:
abelian square-free sequences, and given an example of an infinite abelian square-
free word: the Keränen sequence.

Although these sequences can be easily generated efficiently, we defer the
discussion of such efficient generation until Section 7.

We prefer the use of abelian square-free sequences for our application, as they
are just as easy to generate, and are “repetition-free” in a stronger sense than
ordinary square-free sequences.
Basic definitions

A word is a (finite or infinite) sequence of letters over some finite alphabet.
A word w is a square if it is of the form yy for some finite nonempty word y.
If a word w can be written in the form xyz for words x, y, and z (where y is
nonempty, but x and/or z may be empty), then we say that y is a subword of
w. Some authors prefer to say that y is a factor of w.
Square-free words

A word w is said to be square-free if it contains no repeated subword: not
only does w contain no repeated letters, but it contains no repeated subword of
any (finite nonzero) length. Square-free words are thus nonrepeating and non-
periodic in a strong way.

Definition 2 (Square-free words). A word w is said to be square-free if it
contains no squares; that is, if w contains no subword of the form yy where y is
finite and nonempty.

Thus, tomato is square-free but banana (double an) is not.
It is easy to show that no square-free words of length greater than three exist

over a binary alphabet.



An easy-to-generate infinite square-free sequence u over three letters is due
to Thue (see Section 7.2):

u = 210201210120210201202101210201210120 . . . . (3)

Abelian square-free words
Although a square-free sequence meets our original design goal of no repe-

titions of single symbols or of longer subwords, there are sequences meeting a
stronger requirement—that of being abelian square-free—that are no harder to
generate. The notion of being abelian square-free is stronger in that every abelian
square-free sequence is also square-free in the ordinary sense. Because abelian
square-free sequences are even more “repetition-free” than ordinary square-free
sequences, and because they are no harder to generate, we recommend the use
of abelian square-free sequences for dithering iterated hash functions.

Definition 3 (Abelian square-free words). A word w is said to be abelian
square-free if it can not be written in the form w = xyy′z for words x,y,y′, z,
where y is not the empty word and where y′ is a permutation of y.

For example, abcdcbda is square-free but not abelian square-free, since the
subword bcd is followed by its permutation cbd. Clearly every sequence that is
abelian square-free is also square-free, since the permutation relating y′ to y may
be the identity permutation.

T. C. Brown [Bro71] provides a survey of known (in 1971) results on abelian
square-free words, and gives as an open research problem to find an infinite se-
quence on a finite alphabet that is abelian square-free. Pleasants [Ple70] provided
the first proof that infinite abelian square-free words exist over a finite (5-letter)
alphabet.

Keränen [Ker92,Ker03] provides an elegant solution to the problem of finding
an infinite abelian square-free sequence over a four-letter alphabet; this easy-to-
generate sequence begins (see Section 7.8):

z = z0, z1, . . . = abcacdcbcdcadcdbdabacabadbabcbdbcba . . . . (4)

(See also Figure 7.)

5 Dithering using abelian square-free sequences

Keränen’s sequence z can be used directly as a dither sequence. The compres-
sion function f needs to be designed to take as an additional input the two-bit
“dither” input di from the Keränen sequence. The compression function f may
treat the dither input essentially as if they were additional message input bits.

Another approach can be used if the one-way compression function is built
around a tweakable block cipher [LRW02,BCS05,HL05]: one can use the dithering
input to the compression function as the “tweak” input to the block cipher.

In the next section, we give a concrete proposal for dithering based on
Keränen’s abelian square-free sequence.



6 A concrete proposal for dithering iterated hash
functions

We now give a concrete proposal for dithering iterated hash functions, to exem-
plify further our ideas and give some ideas for efficient dithering.

The scheme utilizes the abelian square-free sequence z over four letters due to
Keränen, which can be efficiently generated as shown in Section 7. Each symbol
of this sequence will be encoded as a two-bit value b, with the natural encoding:
a→ 00, b→ 01, c→ 10, d→ 11.

Each dither input d consists of three values (a, b, c). The dither input contains
a mod-213 block counter c, and the element b of the Keränen sequence is only
advanced once every 213 blocks. The last block is treated specially: the last-block
flag bit a is set to 1, the other dither input bits (b and c combined) indicate how
many valid message bits are present in this block, and unused message input
bits are set to zero.

This scheme thus has the following advantages:

1. The abelian square-free sequence is only generated at “rate 1/8192”; usually
the dither input is just obtained from the previous dither input by incre-
menting the counter c. Only when c “overflows” does the abelian-square
free sequence need to be advanced. Even though Keränen’s sequence can be
generated very efficiently, the approach here makes dither input generation
exceptionally fast (usually just a counter increment). Including the mod-213

counter as part of the dither input maintains the property that the dither
input sequence is square-free.

2. The use of a special last-block flag bit a makes the input encoding effec-
tively prefix-free. Knowing the hash output for a message M thus does not
allow anyone to compute the hash output for an extension of M . Coron et
al. [CDMP05] prove that such prefix-free encodings are effective at improving
hash function security.

3. The use of the special last-block flag allows one to eliminate the need for
Merkle-Dam̊ard strengthening. That is, there is now no need to “pad” the
message by adding a one, some zeros, and the length of the message. The use
of the dither input for the last block to indicate the number of valid message
bits in that last block allows one to handle messages of arbitrary bit-length,
even though the compression function may only take a fixed-length message
input.

To be precise, each dither input di, i ≥ 0, is two bytes (16 bits) in length,
and consists of (see Figure 3):

1. A one-bit last-block flag bit a. This bit is normally 0, but is 1 for the last
block processed.

2. A two-bit value b that is normally the bi/8192c-th element zi of the Keränen
sequence, for the i-th message block, i ≥ 0. For the last block, b and c form
a 15-bit value indicating the number of valid message bits in this block.



3. A 13-bit counter c which is normally i (mod 8192) for the i-th message
block, i ≥ 0. For the last block, b and c form a 15-bit value indicating the
number of valid message bits in this block.

For the last block, the value indicated by the 15-bit combined value bc must be
positive, unless the last block is also the first block and the total message has
length 0 bits, in which case bc = 0. In any case, unused compression function
message input bits must be zero.

Some free C code for generating this proposed dither sequence is available
on my web site [Riv05].

This proposal would need revision if the compression function took as input
a message block of more than 215−1 = 32767 bits; the value c could be expanded
by a byte or two in a natural manner in that case. However, most compression
functions today only take 512-bit input message blocks.

-� -� -�

a b b c c c c c c c c c c c c c

Fig. 3. A two-byte dither input with a as the high-order bit of the first byte. For
block i, i ≥ 0, other than the last block, a is 0, b encodes the

⌊
i/213

⌋
-th element

of Keränen’s sequence, and c is i (mod 213). For the last block, a = 1, and bits
bc form a 15-bit unsigned integer giving the number of message bits processed
in this block.

Existing hash function designs such as MD5 or SHA-nnn can easily be modi-
fied to accommodate a dither input. Instead of breaking the message into 512-bit
(64 byte) blocks, it is instead broken into 62-byte blocks, and the two-byte dither
input is appended to the end of each 62-byte block. Including the dither input
as two bytes of the message input block entails a small performance loss of
approximately 3.2%.

7 Efficient Generation of Square-Free and Abelian
Square-Free Sequences

We now show that square-free and abelian square-free sequences can be gen-
erated efficiently. (This is perhaps not so terribly important, at least in the
context of the concrete proposal of Section 6, where the next symbol needs to
be generated only once per every 8192 message blocks.)

The material in this section is generally a restatement of material already in
the literature; for more information see Allouche and Shallit [AS03], as well as
papers cited in their on-line bibliography [AS]. The results on abelian square-free
sequences are due to Keränen [Ker92,Ker03].



We start with a presentation of the Prouhet-Thue-Morse (PTM) sequence t,
which is cube-free but not square-free (Section 7.1). We move on to the Thue
sequence u, which is derived from t and which is square-free (Section 7.2). In
Section 7.3 we explain how infinite sequences can be defined as a limiting fixpoint
of a homomorphism. Section 7.4 then shows how the i-th element of such an
infinite sequence can be computed by running a finite automaton over the binary
(or k-ary) representation of i. Section 7.5 explains how each successive symbol in
such a sequence can be produced in amortized constant time–this is really little
more than the corresponding observation that incrementing a k-ary counter can
be done in constant amortized time. Section 7.6 describes an alternative way
of generating square-free sequences. In Section 7.7 we present the “Towers of
Hanoi” infinite square-free sequence due to Shallit, which is interesting because
each symbol can easily be generated in worst-case constant time. Finally, in
Section 7.8, we carefully define Keränen’s infinite abelian square-free sequence,
and show that it can be generated efficiently.

7.1 Prouhet-Thue-Morse sequence

In this subsection we define the famous Prouhet-Thue-Morse (PTM) sequence
t; it is also called the Thue sequence or the Thue-Morse sequence.

Although it is not square-free, it is cube-free, and can be used to construct
square-free sequences in several ways. This sequence t is defined over the binary
alphabet {0, 1}:

t = t0, t1, . . . ,= 011010011001011010010110011010011001011001101001...

The i-th bit ti of t can be defined in many ways; perhaps the simplest is in terms
of the parity function applied to the binary representation of i, for i = 0,1, . . . :

ti =
{

0 if the binary representation of i has an even number of ones
1 otherwise. (5)

7.2 Thue sequence

In 1906, Axel Thue exhibited an infinite square-free word u over a ternary al-
phabet. It begins:

u = u0, u1, . . . = 210201210120210201202101210201210120 . . . (6)

The i-th element of this sequence, for i ≥ 0, can be defined as the number of ones
occurring between the i-th and i + 1-st zeros in the PTM sequence (where t0 is
the 0-th zero). Since t is cube-free, the number of times a one can be repeated
is at most two, so that u is defined over the ternary alphabet {0, 1, 2}.



7.3 Morphisms

In this subsection we define the general notion of a morphism, which can be used
to define various square-free words. Let Σ be some fixed finite alphabet, let Σ∗

denote (as usual) the set of all finite-length strings over Σ, and let ε denote the
empty string.

A morphism (short for homomorphism) is a mapping τ from Σ to Σ∗, ex-
tended to a mapping from Σ∗ to Σ∗ by defining τ(ε) = ε, and defining

τ(xy) = τ(x)τ(y)

for nonempty words x, y. A morphism is said to be k-uniform if |τ(a)| = k for all
a ∈ Σ. A morphism is said to be non-erasing if τ(a) is nonempty for all a ∈ Σ.

Consider the 2-uniform morphism

τ(0) = 01, τ(1) = 10 . (7)

Then we see that iterating this morphism starting with 0

0
τ−→ 01

τ−→ 0110
τ−→ 01101001

τ−→ 0110100110010110
τ−→ . . .

τ−→ τ∞(0) = t

defines the infinite PTM sequence t in the limit as the infinite fix-point of the
mapping τ beginning with 0. In general, if τ is non-erasing, and for some a ∈ Σ,
τ(a) begins with a, then there exists an infinite word τ∞(a) that is the unique
fixpoint of τ that begins with a.

As another example, the Thue’s square-free sequence u can be defined by
starting with the 2-uniform morphism

τ(A) = AB, τ(B) = CA, τ(C) = CD, τ(D) = AC

over the alphabet Σ = {A, B, C, D}. This has a unique fixpoint starting with A:

τ∞(A) = ABCACDABCDACABCA . . . ,

and then applying to this result the morphism

µ(A) = 2, µ(B) = 1, µ(C) = 0, µ(D) = 1 .

7.4 Finite automata

There is a close relationship between the two representations we have given above
for the PTM sequence t—as the limit of the morphism (7) and the definition (5)
in terms of parity of binary representations. Suppose a string v is defined as
the limit point τ∞(a) of the k-uniform morphism τ over the alphabet Σ. Then
the i-th element vi of v can be defined as the result of running a simple finite
automaton on the k-ary representation of the integer i (high-order digit first).

The state set of the automaton is the alphabet Σ, and the start state is the
symbol a. The input alphabet is the set {0, 1, . . . , k−1}. The transition function



from state a on input j, for 0 ≤ j < k, is just the j-th symbol in the string
τ(a) (using 0-origin indexing of strings). The output vi of the finite automaton
is some function µ of the final state reached after the least-significant k-ary digit
of the integer i is processed.

Figure 4 illustrates this approach for generating the Thue’s infinite square-
free sequence u; for this sequence there is a separate output function. One can
generate the i-th element of the sequence (6) by running the binary representa-
tion for i (high-order bit first) through the automaton of Figure 4, and taking
the output associated with the final state.

state ↓ input → 0 1

A A B

B C A

C C D

D A C

state output

A 2

B 1

C 0

D 1

Fig. 4. The next-state and output functions for a finite automaton useful in
producing the infinite square-free Thue sequence 2102012 . . . of equation (6).
The start state is A. The automaton accepts the bits of the binary representation
of the integer i, i ≥ 0, high-order bit first. The output associated with the final
state is the i-th element of the Thue sequence u.

7.5 Constant-time (amortized) generation

Using the above approach, and with a little extra care, each successive element
of a sequence defined as the limit point of a nonerasing k-uniform morphism can
be produced in constant time in an amortized sense (see [CLRS01, Chapter 17]
and Appendix A of this paper). We now show how each output symbol can be
produced in constant amortized time.

Let (. . . , c3, c2, c1, c0) denote the k-ary representation of the integer i:

i =
∑
j≥0

cjk
j .

Let (. . . , s3, s2, s1, s0) denote the states the finite automaton is in; sj is the
sequence after processing cj . See Figure 5 for efficient pseudocode.

7.6 Jensen et al.’s method

Jensen et al. [JKS04] have presented some alternative approaches for generating
square-free sequences from the Prouhet-Thue-Morse sequence t. For example,
they show that the sequence of pairs (ti, ti+δ), for i ≥ 0, is square-free over a
four-letter alphabet, whenever δ is odd. Note that the case δ = 1 is particularly
easy for implementation.



Gen()

1 � Increment k-ary counter c by one.
2 j = 0
3 while cj = k − 1
4 do cj = 0
5 j = j + 1
6 cj = cj + 1
7 � Now update state variables for changed digits.
8 while j ≥ 0
9 do sj = τ(sj+1)[cj ]

10 j = j − 1
11 � return function µ of final state
12 return µ(s0)

Fig. 5. Pseudo-code for producing a sequence defined as the successive outputs
when running a finite-state automaton on the successive k-ary representations
of the integers. This pseudocode runs amortized constant time per symbol gen-
erated.

7.7 Towers of Hanoi sequence

Another cute approach (suggested by Jeff Shallit) for generating an infinite
square-free sequence, on a a six-letter alphabet, is to solve optimally the “Towers
of Hanoi” with d disks on 3 pegs, recording each peg to peg move. Let us call the
pegs X, Y , and Z. There are six possible moves. The optimal sequence moves
the smallest disk on each odd-numbered move cyclically from peg X to Y to Z
to X etc.; the even-numbered moves are then forced. See Figure 6. The resulting
sequence

ABDAEFABDC . . . (8)

is square-free; this result has been proven by Allouche et al. [AARS94]; see also
Allouche and Shallit [AS03]. It is easy to produce an implementation for large
(essentially infinite) d.

The Towers of Hanoi sequence is interesting from an implementation view-
point, since it is the only square-free sequence I know of that allows each output
symbol to be easily produced in worst-case constant time. The other sequences
seem much more difficult to produce in amortized constant time per output sym-
bol. Perhaps there are optimization techniques I have overlooked that allow each
output symbol to be easily produced in worst-case constant-time for these other
sequences as well. Of course, the fact that a constant amortized cost procedure
exists implies that a worst-case cost procedure exists as well, but the buffering
and scheduling required are not simple.



Move Peg X Peg Y Peg Z

Start state 54321 - -

A (X→Y) 5432 1 -

B (X→Z) 543 1 2

D (Y→Z) 543 - 21

A (X→Y) 54 3 21

E (Z→X) 541 3 2

F (Z→Y) 541 32 -

A (X→Y) 54 321 -

B (X→Z) 5 321 4

D (Y→Z) 5 32 41

C (Y→X) 52 3 41

. . . . . . . . . . . .

Fig. 6. The square-free sequence ABDAEFABDC . . . describing optimal “Towers of
Hanoi” play. The pegs are labelled X, Y , and Z. The disks are labelled from 1
(smallest) to 5 (largest); a disk may never be placed on top of a smaller disk.
Here A represents a move from peg X to peg Y , B: X → Z, C: Y → X, D: Y → Z,
E: Z → X, and F: Z → Y .

7.8 Keränen’s infinite abelian square-free sequence

Keränen’s sequence (see Figure 7) is very easy to generate efficiently (constant
time on the average per output symbol), as explained in Figure 7, and also in
the code in Appendix A.

Let sa denote the following magic sequence of length 85 over the alphabet
{a, b, c, d}:

sa = abcacdcbcdcadcdbdabacabadbabcbdbcbacbcdcacbabdabacadcbcdcacdbcbacbcdcacdcbdcdadbdcbca

Let sb, sc, and sd denote the result of applying a single, double, or triple cyclic
shift of the alphabet to sa:

sb = bcdbdadcdadbadacabcbdbcbacbcdcacdcbdcdadbdcbcabcbdbadcdadbdacdcbdcdadbdadcadabacadcdb

sc = cdacabadabacbabdbcdcacdcbdcdadbdadcadabacadcdbcdcacbadabacabdadcadabacabadbabcbdbadac

sd = dabdbcbabcbdcbcacdadbdadcadabacabadbabcbdbadacdadbdcbabcbdbcabadbabcbdbcbacbcdcacbabd

Then Keränen’s infinite sequence is obtained by beginning with the single
letter a, and then repeatedly applying the morphism τ defined by:

τ(a) = sa, τ(b) = sb, τ(c) = sc, τ(d) = sd

simultaneously to all letters. Because sa begins with an a, the sequence of words
a, τ(a), τ2(a), . . . , converges in the limit to an infinite abelian square-free
word z, whose initial 1700 symbols are given in Figure 7. It is rather amaz-
ing that no word shorter than 85 symbols on four letters can generate an infinite



abelian sequence in this way, although a 15-letter word on five letters can do
so [Ker03,Ple70].

In practice, an efficient generation procedure can be based around a pro-
cedure that counts modulo 85, and runs the resulting base-85 representation
through an appropriate finite-state automaton. See Appendix A.

A C implementation on an IBM T42p laptop (with a 1.8GHz Pentium M 745
processor) generates about 90M output values per second. This can be compared
with a SHA-1 processing rate of about 470K (64-byte) input blocks per second.

abcacdcbcdcadcdbdabacabadbabcbdbcbacbcdcacbabdabacadcbcdcacdbcbacbcdcacdcbdcdadbdcbca
bcdbdadcdadbadacabcbdbcbacbcdcacdcbdcdadbdcbcabcbdbadcdadbdacdcbdcdadbdadcadabacadcdb
cdacabadabacbabdbcdcacdcbdcdadbdadcadabacadcdbcdcacbadabacabdadcadabacabadbabcbdbadac
abcacdcbcdcadcdbdabacabadbabcbdbcbacbcdcacbabdabacadcbcdcacdbcbacbcdcacdcbdcdadbdcbca
cdacabadabacbabdbcdcacdcbdcdadbdadcadabacadcdbcdcacbadabacabdadcadabacabadbabcbdbadac
dabdbcbabcbdcbcacdadbdadcadabacabadbabcbdbadacdadbdcbabcbdbcabadbabcbdbcbacbcdcacbabd
cdacabadabacbabdbcdcacdcbdcdadbdadcadabacadcdbcdcacbadabacabdadcadabacabadbabcbdbadac
bcdbdadcdadbadacabcbdbcbacbcdcacdcbdcdadbdcbcabcbdbadcdadbdacdcbdcdadbdadcadabacadcdb
cdacabadabacbabdbcdcacdcbdcdadbdadcadabacadcdbcdcacbadabacabdadcadabacabadbabcbdbadac
dabdbcbabcbdcbcacdadbdadcadabacabadbabcbdbadacdadbdcbabcbdbcabadbabcbdbcbacbcdcacbabd
cdacabadabacbabdbcdcacdcbdcdadbdadcadabacadcdbcdcacbadabacabdadcadabacabadbabcbdbadac
abcacdcbcdcadcdbdabacabadbabcbdbcbacbcdcacbabdabacadcbcdcacdbcbacbcdcacdcbdcdadbdcbca
dabdbcbabcbdcbcacdadbdadcadabacabadbabcbdbadacdadbdcbabcbdbcabadbabcbdbcbacbcdcacbabd
cdacabadabacbabdbcdcacdcbdcdadbdadcadabacadcdbcdcacbadabacabdadcadabacabadbabcbdbadac
dabdbcbabcbdcbcacdadbdadcadabacabadbabcbdbadacdadbdcbabcbdbcabadbabcbdbcbacbcdcacbabd
bcdbdadcdadbadacabcbdbcbacbcdcacdcbdcdadbdcbcabcbdbadcdadbdacdcbdcdadbdadcadabacadcdb
dabdbcbabcbdcbcacdadbdadcadabacabadbabcbdbadacdadbdcbabcbdbcabadbabcbdbcbacbcdcacbabd
abcacdcbcdcadcdbdabacabadbabcbdbcbacbcdcacbabdabacadcbcdcacdbcbacbcdcacdcbdcdadbdcbca
bcdbdadcdadbadacabcbdbcbacbcdcacdcbdcdadbdcbcabcbdbadcdadbdacdcbdcdadbdadcadabacadcdb
abcacdcbcdcadcdbdabacabadbabcbdbcbacbcdcacbabdabacadcbcdcacdbcbacbcdcacdcbdcdadbdcbca

Fig. 7. The first 1700 symbols of Keränen’s abelian square-free sequence [Ker92]
z, arranged as 20 rows of 85 letters each. This sequence can be generated by
starting with the letter a, then repeating as often as desired the operation of
simultaneously replacing each letter x with the 85-letter string sx. In this figure,
sa appears as the first row, and sx appears as the row beginning with letter x.
We note that sb is the same as sa with each letter replaced by the one following
it cyclically in the alphabet; sc and sd follow similarly.

8 Miscellaneous facts about square-free sequences

The preceding subsection shows how to generate Keränen’s abelian square-free
sequence, and to use it as a dithering sequence.

Another approach to dithering is to incorporate it into the recoding opera-
tion.

In a cross-product approach, we start with an infinite abelian square-free
sequence w = w0w1w2 . . . where each element wi is a symbol from an alphabet
Σ, and with a finite message sequence M0, M1, . . . , where each element wi

is a symbol from an alphabet Σ′. The resulting encoding has the form: M ′ =
M ′

0M
′
1 . . .M ′

L−1 where M ′
i = (wi,Mi). That is, the i-th element of the recoded



input is the ordered pair consisting of wi and Mi; this is a symbol from the
cross-product alphabet Σ ×Σ′. It is trivial to see that this recoding procedure
results in an word that not only represents M (i.e., M can be extracted from
M ′), but that is abelian square-free as well.

Another recoding approach uses a “perfect shuffle” to combine an arbitrary
message sequence with a fixed (abelian) square-free sequence (such as Keränen’s)
yields a sequence that is both an encoding of the message and (abelian) square
free. The theorem requires that the fixed (abelian) square-free sequence and the
message sequence be on disjoint alphabets. It is easy to see that this condition
is necessary.

As an example, the 16-letter word HHHHAAAASSSSHHHH can be perfectly shuf-
fled with the first 16 letters of Keränen’s sequence: abcacdcbcdcadcdb to yield:
HaHbHcHaAcAdAcAbScSdScSaHdHcHdHb. This process can obviously be extended
for as long as desired, since the Keränen sequence is infinite.

Theorem 1 ((Abelian) Square-free perfect shuffling theorem). If w =
w1w2 . . . is an infinite square-free sequence (respectively abelian square-free) over
an alphabet Σ and x1, x2, . . . is an infinite sequence of empty or finite square-
free words (respectively empty or finite abelian square-free words) on a disjoint
alphabet Σ′, then the infinite sequence

z = shuffle(w,s) = w1x1w2x2w3x3 . . .

is square free (respectively abelian square-free) over the alphabet Σ′′ = Σ ∪Σ′.

Note that the xi’s are words, not just symbols.
Proof. The word z is formed by alternating symbols from w with words from
x. We prove the case for square-freeness; the proof for abelian square-freeness is
almost identical. Let yy′ be any subword of z, where |y| = |y′|. If yy′ is a square,
then the word obtained from yy′ by erasing all symbols in Σ′ must also be either
empty or a square over the alphabet Σ. But the latter possibility contradicts the
square-freeness of w. Therefore yy′ must only contain symbols from Σ′, which
means it must be a subword of one of the xi’s. The theorem follows from the
assumed square-freeness of the xi’s. ut

9 Discussion, Open Problems, and Conclusions

We have presented a novel way of “dithering” an iterated hash function, to
prevent attacks such as those of Dean [Dea99], and Kelsey and Schneier [KS05].
Our dithering approach is based on the use of square-free and abelian-square
sequences.

We have also presented a particular concrete instantiation of this idea, using
Keränen’s infinite abelian-free sequence and a counter to produce a prefix-free
square-free sequence of two-byte dither inputs.

As an open problem, we ask if there is an even stronger notion of “repetition-
free” that would be usable for this application?



The flip side of this question is whether there is really anything being gained
by using definitions of repetition-free that are stronger than square-free.

It would be interesting to find simple worst-case constant-time generation
techniques for sequences defined by iterated morphisms; at present I know only
of such a simple technique for the Towers Of Hanoi sequence.
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Appendix A. Generating Keränen’s abelian square-free
sequence

# asf.py -- Python code to output Keranen’s abelian square-free sequence.

# Ronald L. Rivest. June 12, 2005.

import string

# Magic sequence R is from:

# V. Keranen, "Abelian squares are avoidable on 4 letters", Proc.

# 19th ICALP Conference, Springer LNCS vol. 623. 1992, pages 41--52.

R = "abcacdcbcdcadcdbdabacabadbabcbdbcbacbcdcacbabdaba"

R = R + "cadcbcdcacdbcbacbcdcacdcbdcdadbdcbca"

k = len(R)

alphabet = "abcd" # code assumes R and alphabet start with same letter.

m = len(alphabet)

# Works via a walk of a tree of branching factor k and height L.

# L is arbitrary; we just need k**L > desired output length.

# Level L-1 is the root of the tree; level 0 has the leaves.

# Array C[0..L-1] gives state of walk, specifying path from leaf to root.

# 0<=C[i]<k for all i. C is base-k counter, LS digit in C[0].

# Level i-th node is C[i]’th child of its parent (0-origin indexing).

# Each node has label between 0 and m-1, inclusive, stored in S, which is

# letter being expanded at that level; label of leaves seen are output.

def reset():

""" Reset system to starting state. """

global S, C, L

L = 100; S = [0]*L; C = [0]*L # arrays of L zeros

def out():

""" Return output symbol for current state. """

return alphabet[S[0]]

def inc():

""" Move to next state. """

# Increment counter in C by one, base k

j = 0

while C[j] == k-1: C[j] = 0; j = j + 1

C[j] = C[j] + 1

# Update state values for all levels that have changed count.

while j >= 0: S[j] = ((ord(R[C[j]])-ord(R[0]))+S[j+1])%m; j = j - 1

def get(t):

""" Return string with next t output symbols, advancing state. """

answer = []

for i in range(t): answer.append(out()); inc()

return(string.join(answer,’’))

reset(); for i in range(20): print get(k) # produce 1700 output symbols
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