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Abstract. We explore the notion of a pseudo-free group, first introduced
by Hohenberger [Hoh03], and provide an alternative stronger definition.
We show that if Z∗

n is a pseudo-free abelian group (as we conjecture), then
Z∗

n also satisfies the Strong RSA Assumption [FO97,CS00,BP97]. Being a
“pseudo-free abelian group” may be the strongest natural cryptographic
assumption one can make about a group such as Z∗

n. More generally, we
show that a pseudo-free group satisfies several standard cryptographic
assumptions, such as the difficulty of computing discrete logarithms.

1 Introduction

Cryptographic schemes often work with finite groups in such a way that the
security of the scheme depends upon an explicit complexity-theoretic assumption
about computational problems in that group.

For example, the RSA public-key cryptosystem [RSA78] works with the mul-
tiplicative group Z∗

n, where n is the product of two large primes. The security
of RSA encryption depends upon the “RSA Assumption.”

RSA Assumption: It is computationally infeasible for a probabilistic
polynomial-time adversary, given an integer n that is the product of
two sufficiently large randomly chosen primes, an integer e > 1 that is
relatively prime to φ(n), and an element a chosen randomly from Z∗

n, to
compute the x ∈ Z∗

n such that

xe = a (mod n)

with non-negligible probability.1

Similarly, the Cramer-Shoup cryptosystem and signature scheme [CS98,
CS99] depend upon the “Strong RSA Assumption,” [FO97,BP97]. which allows
the adversary himself to choose an exponent e > 1.
1 A function f(k) is considered to be a negligible function of k if for all constants c > 0

and all sufficiently large k we have that |f(k)| < 1/kc. In the RSA Assumption, the
phrase “non-negligible probability” is interpreted to mean a non-negligible function
of log(n).
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Strong RSA Assumption: It is infeasible for a probabilistic polynomial-
time adversary, given an integer n that is the product of two sufficiently
large randomly chosen primes, and an element a chosen randomly from
Z∗

n, to compute an x ∈ Z∗
n and an integer e > 1 such that

xe = a (mod n)

with non-negligible probability.

Assuming that Z∗
n is pseudo-free takes this progression one step further: the

adversary may choose whatever equation he wishes and try to solve it, as long
as the equation is “nontrivial”—unsatisfiable in the free group, with appropriate
care for some details. The pseudo-free assumption is that the adversary will
succeed with at most negligible probability. The assumption of pseudo-freeness
may be made for any arbitrary finite group, such as an elliptic curve group or
even a nonabelian group. We might call the assumption that Z∗

n is pseudo-free
the Super-Strong RSA Assumption.

We explore the assumption that a group is pseudo-free or, more specifically,
pseudo-free abelian, and show how it implies some of these other standard as-
sumptions. Assuming that a finite group is pseudo-free thus appears to be quite
a strong assumption.

Why formulate and study such a strong assumption? Doesn’t this go against
the traditional style of making only the minimal complexity-theoretic assump-
tions necessary for a cryptographic scheme or protocol? Perhaps, but we provide
the following motivation and justifications.

• It seems quite plausible that Z∗
n (for n the product of two sufficiently large

randomly chosen primes) is in fact pseudo-free.
• Making stronger assumptions may make proofs easier (this is especially use-

ful for pedagogic purposes).
• It may turn out that the pseudo-freeness is not a “stronger” assumption

after all—it may be implied by simpler assumptions, perhaps more standard
ones.

• Reasoning in a free group can be quite simple and intuitive, so assuming
pseudo-freeness allows one to capture “natural” security proofs in a plausible
framework. (This was Hohenberger’s [Hoh03] motivation.)

Section 2 provides some mathematical background, and then Section 3 devel-
ops the definition of a pseudo-free group. Section 4 studies some of the implica-
tions of assuming that a group is pseudo-free. Section 5 considers some variations
and generalizations of the basic definition, and then Section 6 discusses further
issues related to the notion of a pseudo-free group. Finally, Section 7 provides
some conclusions and lists some open problems.
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2 Mathematical Background

2.1 Mathematical Groups

We first restate the definition of a mathematical group.

Definition 1. A group G = (S, ◦) consists of a set S of elements, and a binary
operator ◦ defined on S, such that:

Closure: For all elements x, y ∈ S, we have x ◦ y ∈ S.
Identity: There is an element 1 ∈ S such that for all elements x ∈ S,

x ◦ 1 = 1 ◦ x = x .
Associativity: For all elements x, y, z ∈ S, x ◦ (y ◦ z) = (x ◦ y) ◦ z .
Inverses: For every element x ∈ S, there is an element y ∈ S such that

x ◦ y = y ◦ x = 1 .

We use multiplicative notation: ab means a ◦ b. The inverse of x is denoted
x−1. We let G also denote the set S. A group G is finite iff |S| is finite. A
group G is abelian if ◦ is commutative: for all x, y ∈ G, xy = yx. We use the
usual exponent notation: ae is the word aaa . . . a of length e, and a−e is the
corresponding inverse word a−1a−1 . . . a−1 of length e.

2.2 Computational Groups

A mathematical group G has some representation [G] when used in cryptogra-
phy. We call such a representation [G] a computational group implementing an
underlying mathematical group. Many computational groups may implement the
same mathematical group.

In a computational group [G], each element x ∈ G has one or more represen-
tations as a finite-length bit string [x]. We often omit brackets, understanding
that each element has such representation(s). When G is finite, it is convenient
to assume that there is a common bit-length N such that any representation of
any element of G requires exactly N bits.

A computational group provides efficient (polynomial-time) algorithms for
all of the following operations: 2

Composition: Given (representations of) group elements x and y, com-
pute (a representation of) x ◦ y.

Identity: Compute (a representation of) the identity element 1.
Inverses: Given (a representation of) an element x, compute (a repre-

sentation of) x−1.
Equality Testing: Given (representations of) any two elements x, y ∈

G, determine if x = y.
2 Hohenberger [Hoh03] studies a variant where inversion is not efficiently computable,

at least by the adversary, and relates such groups to transitive signatures schemes.
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Sampling: (Only if G is finite.) Return (a representation of) an element
chosen uniformly at random from G, or in a manner that is indistin-
guishable from uniformly at random to a probabilistic polynomial-
time (PPT) adversary. We denote such a procedure as x ∈R G.

As a running example: given n, the product of two large primes, anyone,
including an adversary, can efficiently do all the group operations in Z∗

n, using
the usual representation of elements as residues modulo n.

2.3 Black Box Groups

The parties in a cryptographic protocol may access the group in a black-box man-
ner, a notion introduced by Babai and Szemerédi [BS84] (see also Babai [Bab97],
and see Boneh and Lipton [BL96] for extension of the black-box notion to fields).

Under the black-box assumption, each element of the computational group is
a bit string of some common length N , and “black-box” subroutines are available
for the group operations. 3

The black-box assumption is that group operations may only be performed
using the supplied implementations. Furthermore, the representation of group
elements is “opaque”: operations on them other than through the black-box
routines are forbidden. 4

It is natural to ask if there are black-box algorithms for various group-
theoretic problems. The black-box assumption is reasonable for algorithm design;
it amounts to a convention or a self-imposed restriction on what operations may
be performed. To find an efficient algorithm under the black-box assumption is
then a satisfying result; no unusual “tricks” are required.

For example, Tonelli and Shanks [BS96, Section 7.1] [Coh93, Section 1.5.1]
give a probabilistic black-box algorithm for computing square roots in Z∗

p; it
finds the black-box representation [x] of a value x satisfying

x2 = a (mod p)

given the black-box representation [a] of a (assumed to be a quadratic residue),
and also given the prime p. Other algorithms for this problem, such as
Cipolla’s [BS96, Section 7.2], violate the black-box assumption for Z∗

p by uti-
lizing both field operations available in Fp.

If no efficient black-box algorithm can be found for a problem, then the black-
box assumption may be too restrictive. For example, Shoup [Sho97] proves lower
bounds for discrete logarithms and other problems in the black-box group model.
3 For Babai [Bab97], these operations include all but sampling, as he studies the

implementation of the sampling procedure itself.
4 In some applications side information such as the size or structure of the underlying

group, such as the fact that the group is cyclic, is known, even though the group’s
representation is otherwise “black-box;” we don’t consider such side information
here.
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However, we are studying here not algorithmic efficiency, but cryptographic
security. A typical adversary may willfully violate any black-box assumption: he
may examine the bits of any representation or examine the code implementing
any group operation.

Consider our running example: Z∗
n. Here an adversary is given n, and code

for composition (i.e., for multiplication modulo n). Nothing prevents him from
examining this code or the bit-level representations of elements, or from using
methods such as “index-calculus methods” [SS98] not allowed under a black-box
assumption.

Therefore, we do not make black-box assumptions. 5 We assume that an
adversary may use any available information and may use methods that depend
upon representation or implementation details. The adversary has “non-black-
box” access to the group implementation. Whether a group is pseudo-free may
then depend on the details of its representation as a computational group; one
should properly speak of whether a computational group is pseudo-free or not.
In any case, for our purposes it will be relevant that an equation is satisifiable in
a mathematical group if and only if it is satisfiable in any computational group
representing it.

2.4 Free Groups

Free groups are infinite groups derivable from a given set of generators that have
no non-trivial relationships.

Free groups are defined formally as follows. (See also Gutiérrez [Gut00], for
example.) Let A = {a1, a2, . . . , ak} be a nonempty set of distinct symbols, which
are the generators of a free group. For each such symbol ai, let a−1

i be a new
symbol representing the inverse of ai. Let A−1 denote the set {a−1

i | ai ∈ A},
and let A±1 denote A ∪ A−1; A±1 is the set of symbols for the free group with
set A of generators.

We let F (A) denote the free group defined by the set A of generators. We
may equivalently write F (a1, a2, . . . , ak) when A = {a1, a2, . . . , ak}. Elements of
this free group may be represented as words (sequences of symbols of this free
group). As an example, the word

a1a
−1
2 a2a

−1
1 a−1

3 a2

represents an element of F (a1, a2, a3, a4).
A word may be simplified, or reduced, by repeatedly eliminating any two

adjacent inverse symbols; the resulting word is equivalent to the original. Thus,
the word in the above example is equivalent to a−1

3 a2. A word that can not be
reduced further is reduced or in canonical form.

The elements of a free group are thus words in canonical form. One could
alternatively define the elements to be equivalence classes of words.

The operation ◦ for a free group is concatentation followed by simplification.
For example, a1a2 ◦ a−1

2 a3 = a1a2a
−1
2 a3 = a1a3.

5 One could easily develop a theory of black-box pseudo-free groups.
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The identity for a free group is the empty word ε. Two words represent the
same element of a free group if their reduced forms are the same. The inverse of
a word is just the reverse of the word, with each symbol replaced by its inverse.
The operator ◦ is closed and associative—for a proof see, for example, Lyndon
and Schupp [LS77, Chapter I].

A free group on at least one generator is an infinite group, since there are an
infinite number of distinct words in canonical form (e.g. {ak}).

Since a free group is infinite, it is not possible to even approximately imple-
ment uniform sampling. However, it is easy to construct a computational group
that implements a free group on a countable set of generators except for the
uniform sampling requirement.

We note that if A ⊆ B, then F (A) is a subgroup of F (B).

2.5 Free Abelian Groups

A free abelian group FA(a1, a2, . . . , ak) is defined similarly to ordinary free
groups, except that the group is abelian. Thus, for any pair of symbols a and b,
we may replace the sequence ab by the sequence ba and preserve equivalence.

Commutativity enables one to define the canonical form for a word in
FA(a1, a2, ..., al) to be a word of the form:

ae1
1 ae2

2 . . . ael

l

for some integers e1, e2, . . . , el. It is well known that FA(a1, a2, . . . , al) is iso-
morphic to the l-fold direct sum Z⊕Z⊕ · · ·⊕Z. We could represent an element
ae1
1 ae2

2 . . . ael

k of FA(a1, a2, . . . , al) by the vector (e1, e2, . . . , el), and implement
◦ with vector addition.

3 Pseudo-Free Groups

A cryptographic scheme may utilize a particular mathematical group G; all
parties have access to a computational group [G] representing G.

Intuitively, a group is pseudo-free if it is indistinguishable from a free group.
A free group has no surprising or anomalous identities; the only truths are those
implied by the axioms of group theory.

Thus, informally, we say that a finite group G is pseudo-free if a probabilis-
tic polynomial-time adversary can not efficiently produce an equation E and a
solution to E in G where E has no solution in the “corresponding free group.”
Of course, we need to define what we mean by “corresponding free group.”

Assuming that a finite group such as Z∗
n is pseudo-free is thus a complexity-

theoretic assumption, similar to but stronger than the RSA Assumption or the
Strong RSA Assumption.

This assumption turns out to be very strong, as it implies several standard
cryptographic assumptions (at least for G = Z∗

n). Nonetheless, it seems a plausi-
ble assumption in some cases, and it may be useful for new applications. In any
case, we find its formulation and elaboration interesting.
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For example, in a free group (abelian or not), there is no solution to

x2 = a (1)

where x is a variable ranging over group elements, and a is a generator of the free
group, since for any value of x the reduced form of x2 has even length. However,
the corresponding equation in Z∗

n,

x2 = a (mod n) , (2)

has a solution if a is a square in Z∗
n. A solution to such a corresponding equation

“proves” that Z∗
n is different than the corresponding free group.

The adversary may not claim that G is distinguishable from a free group
merely because G is obviously finite, for example, because the elements of G all
have N -bit representations. We insist on a different kind of proof: the adversary
must provide a solution to an equation in G whose “corresponding equation” in
a free group has no solution.

3.1 Equations in Free Groups

Let H denote a free group, such as F (a1, a2, . . . , al) or FA(a1, a2, . . . , al).
Let x1, x2, . . . , xm denote variables that may take values in H.
An equation in H takes the form

w1 = w2

where w1 and w2 are words formed from the symbols of H and from the variables
x1, x2, . . . , xm. One can always put such equations in a “canonical form” of the
form w = 1 for some word w.

As an example, in F (a1, a2) the equation

a1x1 = x2a
−1
2 ,

has many solutions (x1, x2), such as (a−1
2 , a1) or (1, a1a2).

Equations that have solutions in the free group are called satisfiable, others
are called unsatisfiable.

Our definition of a pseudo-free group depends on being able to distinguish
effectively between satisfiable and unsatisfiable equations in a free group.

Can one decide whether a given equation is satisfiable or not? Fortunately,
one can. In 1982 Makanin [Mak82] showed that it is decidable whether or not
an equation in the free group is satisfiable. More recently Gutiérrez [Gut00] has
shown that this problem is decidable in PSPACE. For our use, these results are
quite sufficient; the decision procedure need not be in polynomial-time.

When the free group is the abelian group FA(a1, a2, . . . , al) it is easy to
determine whether a given equation is satisfiable: the equation can always be
rewritten in the form:

xd1
1 xd2

2 · · ·xdm
m = ae1

1 ae2
2 · · · ael

l
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for integers d1, d2, . . . , dm, e1, e2, . . . , el. Such an equation is satisfiable iff for all i,
1 ≤ i ≤ l, we have

gcd(d1, d2, . . . , dm) | ei . (3)

One can prove that this statement holds for l = 1 and that such solutions can
be combined for larger l.

An equation that is satisfiable in F (A) is also satisfiable in FA(A) (but not
necessarily conversely). This is useful since it provides an easy way to prove that
an equation is unsatisfiable in a free group: merely prove that it is unsatisfiable
in the corresponding free abelian group.

3.2 The Correspondence

Given an equation that is unsatisfiable in a free group F (A), what counts as a
“corresponding equation” in a given group G?

We have to be a little careful, since there are trivial cases to avoid. For
example, the previously mentioned quadratic equation:

x2 = a ,

which is unsatisfiable in F (a), may have “trivial” solutions in Z∗
n, depending

on how the element in Z∗
n corresponding to the generator a of the free group

is selected. For example, if the adversary is allowed to specify that a = 4, then
there is clearly the trivial solution x = 2.

We resolve this issue (following Hohenberger’s thesis [Hoh03]) by requiring
that when making the correspondence between interpreting the equation in the
free group and interpreting it in G, each of the generators ai must correspond to
an independently generated random element of G.

The adversary thus has no control over the choice of elements in G that are
to correspond to the generators in the free group.

Thus, for example, the adversary must take the square root of a randomly
chosen element a ∈ Z∗

n in order to demonstrate an acceptable solution to the
above equation, when G is the group Z∗

n.
This requirement that generators in the free group correspond to randomly

chosen elements of G fits naturally with common cryptographic usage where, for
example, one party publishes randomly-chosen elements g and h such that finding
the discrete logarithm of h base g is assumed to be hard. For the adversary, the
randomly chosen elements g and h are the “generators” of the group he must
attack.

Informally, an adversary succeeds in distinguishing G from a free group if he
can produce:

• An equation E that is unsatisfiable in the free group, where this equation
has variables x1, x2, . . . , xm and generators a1, a2, . . . , al.

• A sequence α1, . . . , αl of values produced as random samples from the group
G, to use as values for the generators a1, a2, . . . , al. (If the inverse symbols
a−1

i are used, then they are to be replaced by the inverses of the randomly
chosen values.)
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• Values for the variables x1, x2, . . . , xm that satisfy the equation produced
in G.

This definition allows the adversary to choose the equation himself, as long
as the equation is unsatisfiable in the free group. This generalizes the situation
for the Strong RSA assumption, where the adversary may choose the exponent
e.

For efficiency in describing his equation, the adversary may use “exponential
expressions,” such as a((ax)531x17), (see [Gut00, Section 2.2.1]), or even the
mathematically equivalent but potentially more compact notation of algebraic
straight-line programs, as proposed in Hohenberger [Hoh03].

The adversary need not produce a proof that the equation is unsatisfiable in
a free group, since this can be verified directly using Makanin’s or Gutiérrez’s
algorithm. (One could alternatively require the adversary to produce an equa-
tion whose unsatisfiability can be verified in polynomial time, or to produce a
polynomial-size proof of unsatisfiability; we do not study such a restriction here,
since the impact of assuming pseudo-freeness is to support the infeasibility for an
adversary to solve the equation, not to support using the equation in a protocol.)

We make our definition more precise as follows.

Definition 2. A family G = {Gk : k ≥ 0} of finite computational groups is
pseudo-free if:

– All operations in Gk can be performed in time polynomial in k.
– For every probabilistic polynomial-time adversary A, for every polynomial

p(·), if α1, α2, . . . , αp(k) are elements chosen uniformly and independently at
random from Gk, then the probability

Pr[A(Gk, α1, α2, . . . , αp(k)) = (E, β1, β2, . . . , βm)]

where A is given access to the routines implementing the group Gk as well
as the elements α1, α2, . . . , αp(k), and where

E = E(x1, x2, . . . , xm; a1, a2, . . . , ap(k))

is an equation over the free group F (a1, a2, . . . , ap(k)) with variables
x1, x2, . . . , xm such that E is unsatisfiable in F (a1, a2, . . . , ap(k)) but
E(β1, β2, . . . , βm; α1, α2, . . . , αp(k)) is true in Gk, is a negligible function of
k.

This definition refers to a family of computational groups, but one may apply
it to a family of mathematical groups with the understanding that the groups
are implemented in some standard way as computational groups. One may also
wish to specify whether the adversary has black-box access or non-black-box
access to the group.

If the groups Gk are abelian, then we may also say that G is pseudo-free
abelian, although we prefer just saying that G is pseudo-free when, as in the case
G = {Z∗

n}, the groups are obviously abelian.
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4 Pseudo-Freeness Implies Many Other Cryptographic
Assumptions

If G is pseudo-free, then several standard complexity-theoretic assumptions
follow. We look at the six fundamental problems studied by Lipschutz and
Miller [LI71], and then examine other standard cryptographic assumptions, such
as Diffie-Hellman.

Lipschutz and Miller [LI71] consider six fundamental problems: the order
problem [solving ae = 1 for e], the power problem (aka the discrete logarithm
problem) [solving ae = b for e], the root problem (aka the RSA problem) [solving
xe = a for x], the proper power problem (aka the strong RSA problem) [solving
xe = a for x and e > 1], the generalized power problem [solving ae = bf for
nonzero e, f ], and the intersection problem for cyclic subgroups [solving ae =
bf �= 1 for e, f ]. They show these problems are independent: for each pair of
problems there is a group such that one problem is solvable (i.e. satisfiability
of the relevant equation is decidable) while the other problem is unsolvable.
These problems, while studied with respect to their decidability, are familiar
ones for the cryptographer; we explore their satisfiability in the free group, and
consequent implications for pseudo-free groups.

4.1 Order Problem

The order problem in G is the following: given an element a ∈ G, to determine
a positive integer e (if any exist) such that

ae = 1 . (4)

The least positive such value e is the order of the element a in the group G. In
a free group all elements except the identity have infinite order, implying the
following theorem.

Theorem 1. In a pseudo-free group G, it is infeasible for an adversary to de-
termine the order of a randomly chosen element a.

4.2 Discrete Logarithm Problem

The discrete logarithm problem in G is: given elements a and b from G, to
determine an integer e (if any exist) such that

ae = b ; (5)

the value e is a “discrete logarithm” of b, to the base a, in the group G.
This problem is often assumed to be hard, for specific groups G; in their clas-

sic paper [DH76b], for example, Diffie and Hellman assumed that this problem
was hard in Z∗

p for large primes p. (See also [DH76a] for a slightly earlier usage.)
In F (a, b) and FA(a, b) equation (5) never holds, for any value of e. Since

a and b are distinct generators, the two sides of the equation are variable-free
constant expressions that can not be equal.



On the Notion of Pseudo-Free Groups 515

Theorem 2. In a pseudo-free group, the discrete logarithm problem is infeasible
for an adversary to solve, for randomly chosen values a and b.

4.3 RSA Assumption

In the free group F (a) or FA(a) the equation

xe = a (6)

has no solution, for any fixed value of e > 1. (It has no solution in FA(a), by
our previous discussion of the condition of equation (3).)

Theorem 3. In a pseudo-free group, the RSA assumption holds.

4.4 Strong RSA Assumption

The Strong RSA Assumption, defined earlier, was introduced by Barić and Pfitz-
mann [BP97] and also by Fijisaki and Okamoto [FO97].

The ability of an adversary to himself choose an exponent e > 1 does not
affect the satisfiability of equation (6) in a free group.

Theorem 4. In a pseudo-free group, the Strong RSA Assumption holds.

Similar equations, such as
xe = af ,

where the adversary is given a and must find x, e, and f such that e > 1 and
gcd(e, f) = 1, are also infeasible for the adversary to solve in pseudo-free groups;
indeed this problem equivalent to solving the strong RSA problem since x̃e = a
where x̃ = xf ′

ae′
and ee′ + ff ′ = 1 (see [CS99, Lemma 1]).

4.5 Generalized Power Problem

The generalized power problem is: given group elements a and b, to find nonzero
integers e, f satisfying

ae = bf . (7)

Theorem 5. In a pseudo-free group, it is infeasible for an adversary to solve
the generalized power problem.

4.6 Intersection Problem for Cyclic Subgroups

The intersection problem for cyclic subgroups is: given group elements a and b.
to find integers e, f such that

ae = bf �= 1 . (8)

Theorem 6. In a pseudo-free group, it is infeasible for an adversary to solve
the intersection problem for cyclic subgroups.
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4.7 Diffie-Hellman Assumption

Interestingly, the (computational) Diffie-Hellman problem seems not to fit within
our formalism. It is a very interesting open problem whether the Diffie-Hellman
assumption is implied by pseudo-freeness.

The Computational Diffie-Hellman problem (CDH) is the following: given a
value g, and two values

a = ge (9)
b = gf , (10)

for large randomly chosen integers e and f , to compute

x = gef . (11)

The CDH assumption is that an adversary will have a negligible chance of com-
puting x, given a and b. The natural way of trying to show that the CDH
assumption is implied by pseudo-freeness is via equations (9)–(11), where e and
f are integer-valued variables, and x is a group element variable (see section 5).
However, this argument fails because an adversary who violates CDH to com-
pute x need not be able to find e and f (this is DLP). There doesn’t seem to
be any equation in variable x alone (i.e., without e, f) available to verify that
an adversary has correctly computed x. In other words, the decisional Diffie-
Hellman problem doesn’t seem to be solvable by verifying an appropriate set of
equations involving the single unknown x.

5 Generalizations

In this section we discuss some variations and generalizations on the basic notion
of pseudo-freeness.

5.1 Multiple Equations

Mal’cev [Mal60] (see also [KM, Lemma 3 and Corollaries 2–3]) shows that for
any finite set of equations in the free group, one can construct a single equation
having exactly the same set of solutions. Thus, we may consider sets of simul-
taneous equations as equivalent to a single equation. The method is based on
showing that the two equations x = 1, y = 1 are equivalent to the single equation
x2ax2a−1 = (ybyb−1)2.

For abelian groups, it is easy to determine if a set of equations is satisfiable;
one may apply standard techniques for solving a set of simultaneous equations
over the integers (see Artin [Art91, Section 12.4], for example).

These results allow us to permit the adversary to produce a set of simulta-
neous equations rather than just a single equation, without loss of generality.
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5.2 Adversary Must Prove That Equation Is Unsatisfiable in the
Free Group

One could require that the adversary provide a polynomial-time checkable proof
that the equation he produces is indeed unsatisfiable in the corresponding free
group. However, this restriction seems somewhat pointless, since the reason for
assuming pseudo-freeness anyway is to conclude that finding an equation to-
gether with its solution should be infeasible.

5.3 Generation of α’s

Instead of providing random α’s to the adversary directly, one could allow the
adversary to produce them himself, as long as they are guaranteed to be “ran-
dom” in some way.

For example, the adversary might be allowed to use a hash function with
range G to derive the relevant α. If the hash function is pseudorandom, or can
be modeled as a random oracle [BR93], then its output could be considered as
an acceptable α for purposes.

Similarly, if the output of h is an integer, then we may be able to accept gh(x)

as an acceptable element α from G for our purposes. The essential criterion for
sampling is that the adversary should have no control over the element chosen,
and it should be reasonable to model the element chosen as being independently
chosen (approximately) uniformly at random from G.

The values α supplied might also be constrained to ensure that a solution in
G exists; we don’t pursue this variant further here.

5.4 Generalized Exponential Expressions

In the most general form of exponential expressions, the exponents may them-
selves be integer-valued variables. Consider for example, the equation (ax)eb =
xf in F (a, b) where x is a variable ranging over group elements and e, f are
integer-valued variables. This equation is satisifiable, for example, with x = b,
e = 0, f = 1. It is an open problem how to decide if such equations, contain-
ing both element-valued variables and integer-valued exponent variables, are
satisfiable—see Problem 3 in Section 7.

We may nonetheless allow an adversary to use these general exponential
expressions, with variable exponents, because it is still possible to verify that
the adversary has “done the impossible.” The adversary produces an equation E
with variable exponents, and also a solution that satisfies E. If E is unsatisfiable,
then so is the equation E′ obtained by substituting into E the exponent values
supplied in the adversary’s solution. One can then verify that E′ is unsatisfiable
using Makanin’s algorithm.

Hohenberger uses straight-line programs in her definition of “equation” or
“identity”, a natural further generalization of the exponential expressions, which
could also be allowed here.
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5.5 Adaptive Attacks and Side Information

It may be possible generalize the definition of pseudo-freeness here to handle
adaptive attacks and other forms of “side information.” How might the definition
of pseudo-freeness change if side information, such as the order of the group, is
known? Is there a reasonable way to do this? Similarly, how can the notion
of pseudo-freeness be adapted to handle adaptive attacks, where the adversary
may obtain a solution to an equation before having to provide a different solution
(perhaps with new generators)?

6 Discussion

We compare our definition of a pseudo-free group with that given in Hohen-
berger’s thesis. Her work is motivated by transitive signature schemes, and does
introduce the critical correspondence between elements drawn from G at random
and generators in the free group.

However, Hohenberger doesn’t use variables, which are necessary for setting
up equations and showing how pseudo-freeness implies other cryptographic as-
sumptions, and she doesn’t address the decidability of determining which equa-
tions are satisfiable in a free group. Also, her definition requires that an adversary
have only “black-box” access to G.

7 Conclusions and Open Problems

We have taken the definition of pseudo-free group introduced by Hohen-
berger [Hoh03], strengthened it, and shown how it implies a number of other well-
known cryptographic assumptions. While stronger than many previous cryp-
tographic number-theoretic assumptions, pseudo-freeness seems fairly natural,
worthy of study in its own right, and quite plausible for commonly used groups.

The study of pseudo-freeness yields some intriguing open problems and con-
jectures. We begin with our main conjecture.

Conjecture 1 (Super-Strong RSA Assumption). Z∗
n is pseudo-free.

The next open problem is to relate the Diffie-Hellman assumption to pseudo-
freeness.

Conjecture 2 (Diffie-Hellman holds for Pseudo-free groups). In a pseudo-free
group, both the computational and decisional Diffie-Hellman assumptions hold.

The following interesting problem, discussed briefly earlier, also appears to
be open.

Conjecture 3. It is decidable whether a given equation (or set of equations) with
constants is satisfiable over a free group, when the equation is written in expo-
nential notation and may have integer-valued variables in the exponents.



On the Notion of Pseudo-Free Groups 519

Here is a (satisfiable) example of such an equation: a((ab)ey)fb = x2 where
x and y are variables (over the group), a and b are constants (group elements),
and e and f are integer-valued variables. Some partial results are known [Lyn60,
LI71,CE84]; the introduction to [CE84] gives a brief survey. This problem may
also be open over semigroups.

Another open research direction is to explore ways of showing that a group G
is not a free group, other than by demonstrating the solution to an equation that
has no solution in a free group. For example, some statement of the elementary
theory of free groups may be (say) false, but provably true in G. Kharlampovich
and Myasnikov [KM98] have shown that the elementary theory of a free group
is decidable, even if constants are allowed, a much more general result than
determining whether a given equation is satisfiable in the free group.

The theory of pseudo-free groups might also be expanded to handle cases
such as Z∗

p ; this group is typically not pseudo-free, since the size of the group is
presumably known in a typical implementation.

Finally, we note that we have only scratched the surface of the study of
adaptive attacks against cryptographic schemes defined on pseudo-free groups;
much work remains to be done here.
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