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1 Introduction

The recent development of powerful cryptographic techniques has caused a number of public
policy issues to become significant. The three most prominent issues are (1) export control,
(2) key escrow, and (3) anonymity. These represent tradeoffs between different societal objec-
tives: (1) commerce/national-security and (2,3) privacy/law-enforcement. Some discussion
of cryptographic policy issues can be found in Hoffman[3].

While the rapid development of cryptography is likely to make attempts to control it
ultimately futile, it is interesting to see what technical possibilities there are for supporting
compromise positions in each such trade-off.

This paper presents a new paradigm for secret-key cryptography that may be useful for
export control (and perhaps also for law-enforcement). We call it multi-grade cryptography
because it makes a single cryptosystem appear to present multiple levels of security. It is
not based on key-escrow, but rather on computational complexity.

2 The key-size debate

We begin with the classic attempt to forge a compromise for exportable cryptography: key-
size limitations. One begins with a standard fixed-key-length cryptographic system (like
DES) or a variable-key-size cryptographic system (like RC2, RC4, or RC5), and then hard-
wires a key-size limitation into the export version of cryptographic systems. A typical
limitation would be to restrict the key size to 40 bits.

Forty bits of key is not very much; the recently publicized successful attack on the export
version of Netscape by the Frenchman Damien Doligez demonstrated just how easy it is to
search 240 keys.



The question is then often formulated in the following terms: If 40 bits is too short, what
is the “right” key-length for exported cryptographic systems? Here the “right” key-size
would satsify both national security and commercial requirements.

It seems extraordinarily difficult to answer this question in a manner that satisfies both
national-security and commercial requirements. On the one hand, large multinational cor-
porations legitimately require high security in their international communications. On the
other hand, intelligence agencies must process so much data that even modest increases in the
average key-length used by their adversaries make collecting plaintext extremely expensive.

I think it is important to note the common confounding of the notions of breaking one
ciphertext and that of breaking many. Admittedly, a large intelligence agency such as the
NSA with many large computers could presumably search some exceptionally large key-
spaces (say, well in excess of 64 bits) if all of its resources were devoted to a single challenge
ciphertext. However, its bread-and-butter business is collecting large amounts of data, and
so having to search a (say) 64-bit keyspace for each of a million messages received each day
would be too expensive even for its generous budget. The distinction between an intelligence
agency’s “peak” capability and its “average” capability is an important one to address in
any attempt to resolve the “key-size question.”

The problem with the basic approach to export control by limiting key-sizes is that
commercial interests want very large key-spaces, so that “breaking-in” is hard to do (near
the peak capability of an intelligence agency), while intelligence agencies want modest key-
spaces, so that the average time to decrypt a ciphertext is not too large.

3 Multi-grade cryptography

We propose to modify the basic approach by designing cryptosystems that have a dual
character. Our cryptosystems are designed so that breaking the first key has one difficulty
level (hard) while finding later keys has another difficulty level (easier). No matter which
key the adversary attacks first, it will be quite difficult for him to figure out that key. But
once he has broken his first key, he learns something about how the keys are created, and
subsequent keys will be much easier for him to break.

We might, for example, want a “68/48” multi-grade cryptosystem, where finding the first
key requires a searching a set of size 268, but where finding subsequent keys only require a
searching a set of size only 248.

A commercial user might be happy with such a system, since he knows that there is a
very high initial fence around his communications; no-one (not even a well-funded intelligence
agency) can easily break in. A large investment is required to get the first break.

On the other hand, intelligence agencies might also be happy with our approach, since
the large key-space only has to be searched once to “get in,” after which the later problems
are easy. On the average, the time to break a ciphertext will be satisfactorily small.

Whereas previous approaches have tended to ignore the distinction between breaking a
single instance of the user’s cryptosystem and breaking many such instances, we capitalize
on this difference. The first instance will be hard, no matter which instance is chosen. Later
instances will be easier.
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The system requires that users choose keys in a structured manner. While the user may
initially choose any full-size key, once he has chosen that key he is constrained as to how
he can choose his other keys. The keys are “related” in a pre-specified manner. On an
individual basis, however, each key offers the strength of a full-size key.

Multi-grade cryptography is closely related to Shamir’s “partial key escrow” proposal[6],
except that we are not proposing any escrow capability as part of the proposal, but are
depending on computational complexity instead. For export purposes, computational com-
plexity seems simpler to arrange than an acceptable international escrow system. Extensions
of Shamir’s idea are studied by Micali[5] and Bellare and Goldwasser[1]. Our proposal also
bears some vague similarity to the CDMF proposal of IBM [4], and to Lotus’ recent an-
nouncement.

The proposal can be extended in a number of ways to make the parameter choices more
elaborate. For example, one can require that the adversary solve not just one, but many hard
problems before finding keys begins to get easier for him. One can also have the transition
from hard to easy occur suddenly, or gradually.

We note that the hard problem must be re-solved for each user. In other words, there are
certain fixed “hidden system parameters” that the user is free to choose initially, but which
he may not thereafter change. Finding one or more keys allows one to determine the hidden
system parameters, and thus to reduce the search required for later keys. Since another
user’s keys may be based on different hidden parameters, another large search is required
to solve for his parameters, after which only small searches are required for each additional
key of that user. Here a “user” might mean a corporation or some other organizational
entity within a single security domain, or it might mean a single workstation or piece of
cryptographic equipment.

3.1 The simplest case

In the simplest case, the user chooses his first key K at random:

K = (K0, K1) .

Here K0 is an n0-bit string and K1 is an n1-bit string. Let n = n0 + n1 denote the total
key-length. Subsequent keys are then chosen similarly, except that they must all agree in
their choice of K1. The user, once he uses his first key, is irrevocably committed to K1;
all his future keys will agree in their last n1 bits. We call such a constraint a multi-grade
constraint. Choosing n = 68 and n0 = 48 (so that n1 = 20) gives a “68/48” multi-grade
cryptosystem as discussed above.

We call K0 the “short-term key” (or more accurately, the “short-term key segment”), and
we call K1 the “long-term key” (or long-term key segment). The key K is thus composed of
two parts: a short-term part and a long-term part.

We note that K1 is not a “salt” in the usual sense, since it is not public. It is a fixed
hidden parameter chosen by the user.

For an adversary to find any of the user’s keys requires a large search of 2n keys, since he
must find both the short-term and long-term parts. However, once the first key of the user
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is determined by a large brute-force search, it only requires a small search of size 2n0 to find
any later key, since only the short-term part needs to be found then.

From a commercial user’s point of view, a multi-grade “n/n0” cryptosystem is clearly an
improvement over conventional (single-grade) n0-bit cryptography. By requiring an adver-
sary to find the long-term key K1 (at least the first time) in addition to the short-term key
K0, he has established a strong lower bound on how difficult it is for any opponent to read
his communications.

From an intelligence agency’s point of view, our proposal offers a way to reach a compro-
mise on a difficult public policy issue. Choosing two parameters (n and n0) rather than just
one (n0) permits greater flexibility to satisfy all parties. While the agency would have to
perform some large n-bit searches, the bulk of its deciphering work would be n0-bit searches.

3.2 Enforcing multi-grade constraints

The ability of the cryptographic system to enforce a multi-grade constraint is crucial. If a
user were able to “get around” the multi-grade constraint and choose an arbitrary full-size
(n-bit) key every time he changed keys, then he would defeat the purpose of the multi-grade
cryptography. The system must allow the user to pick his first n-bit key arbitrarily, and then
it must enforce the condition that his later keys all have the same long-term key segment
K1.

Presumably, systems that do not offer credible enforcement techniques would not be
acceptable to intelligence agencies, and will not be approved for export. Manufacturers are
thus motivated to provide good methods for dealing with this “multi-grade enforcement
problem.”

We now discuss several approaches towards handling the enforcement problem. There
are probably many other approaches that can be used instead of, or in combination with,
the ideas sketched here.

3.2.1 Hardware solutions

Enforcing a multi-grade constraint in a credible manner is perhaps easiest in hardware, where
permanent state changes (such as burning a ROM) can be made.

Hardware approaches can also be used for software systems: a hardware “dongle” that
performs encryptions and stores the cryptographic key could be used in conjunction with
the software. The dongle would enforce the multi-grade constraint.

3.2.2 Software solutions

Software systems are more problematic. What is to keep the user from re-initializing (re-
loading) his software, and thus “beginning over” at the point where is he allowed to choose
a fresh n-bit key?

In addition, software is eminently corruptable, and so a malicious user could modify the
software to circumvent any controls or enforcement techniques that have been built in. Our
position is that users capable of such sophisticated manipulations would be capable of writing

4



their own software in any case, so that such users are outside the scope of the objectives of
export control. Software enforcement techniques can not be perfectly effective, but can limit
the capabilities of the cryptographic system for all but the most sophisticated of users.

We suggest two approaches for purely software-based solutions to the enforcement prob-
lem. The first is based on specialized distribution techniques, while the second (which we
prefer) is based on the use of digital signatures.

Distribution-based methods

In the first approach, enforcement for software systems could be achieved by requiring
the purchaser (say, the security officer for an organization) to purchase the software in such
a way that the hidden system parameters (such as K1) are chosen by the purchaser and then
embedded into his purchased master copy. This would need to be done so that the seller
does not see the parameters, and so that the purchaser can not easily modify them in the
purchased software.

Signature-based methods

Our second approach is based on the use of digital signatures. The cryptographic system
will not work without a copy of the long-term key (or other hidden parameters) that has
been signed by an appropriate authority (such as the manufacturer or the export control
office). With digital signatures, the software would be generic: all copies would be identical,
making manufacturing and distribution easier. The distributed software would contain a
copy of the authority’s public key, to be used in verifying these signatures. The software
would only function when it is supplied with a copy of the long-term key K1 that has been
signed by the authority. (If no signed value of K1 is available, the software might warn the
user and use a default value of K1 = 0.)

The user would apply to the authority in order to obtain the necessary signed electronic
document (containing the long-term key K1 or other parameters). In some cases the user
might trust the manufacturer or distributor to obtain this signed document for him.

This signed version of the long-term key would be installed by the user as part of his
configuration and set-up for the cryptographic software.

For the multi-grade scheme to work as desired, the signing authority must sign the long-
term key without knowing what it is. If the authority needs to see K1 in order to authorize
(sign) it, then we effectively have an escrow system instead of a multi-grade system. There
are two standard approaches for enabling the authority to sign K1 without knowing what it
is:

Hash functions: The user supplies the authority with H(R), where H is a suitable hash
function (such as MD5 or SHA), and R is a long random number. The authority signs
H(R) and returns it to the user. The software is given this signature and R, and
checks that both the signature and the hash computation are correct. It then uses the
low-order n1 bits of R as the long-term key K1.

Blind (RSA) signatures: (as proposed by Chaum[2]). As above with hash functions,
but the user also picks a random blinding number b, and gives the authority the
value H(R)be (mod n) to sign, where (n, e) is the authority’s public RSA key. The
user obtains the authority’s signature, (H(R)be)1/e, and divides it by b to obtain the
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authority’s signature H(R)1/e on the value H(R). The long-term key is then the low-
order n1 bits of R, as before.

The hash function approach makes it computationally intractable for the authority to
obtain R from H(R). The use of blinding makes information-theoretically impossible to
determine H(R) from H(R)be; no amount of computing power helps, since for any proposed
value of H(R) there is a corresponding value of b that makes H(R)be yield the value given to
be signed. With blinding, you can ask your worst enemy to sign something without having
the slightest worry that he can figure out what he is being asked to sign.

The blind-signature approach does not require that hashing be used; the value of K1

could be signed directly instead of signing H(R). However, signatures of H(R) may be more
convenient than signatures of K1 to work with, since the storage of the signature can then
be treated separately from the storage of the key K1, and would require less protection.

A nice feature of the signature approach is that the authority can control the number
of distinct values of K1 being used (even though it doesn’t know what those values are),
and can also control by whom they are used. For example, the authority could authorize as
few as one long-term key per organization, or as many as one long-term key per instance of
cryptographic equipment or software.

In a (significant) variation, we note that the authority can authorize different values of
the length n1 of the long-term key for different users. For example, the authority might
authorize a 20-bit long-term key for a large financial organization, but authorize only a 6-bit
long-term key for an individual. The length of the long-term key authorized could depend on
any number of factors, such as the length of time it will be in use, the amount of encrypted
traffic it will be used for, and the importance or “friendliness” of the user.

To implement such “custom-sized” long-term keys, the authority could sign (in the hash-
function approach) pairs of the form (n1, H(R)) instead of just signing H(R). Implementing
custom-sized long-term key authorization with blind signatures is more complicated, and
seems to require separate public RSA keys for each key-length desired.

In order to support custom-sized long-term keys cleanly, we recommend the hash-function
approach for signing long-term key authorization. That is, we recommend using an ordinary
signature on the pair (n1, H(R)) rather than using a blind signature.

3.3 Discussion and elaborations

We note that the user is responsible for keeping his long-term key secret. For a “user”
that is actually a large organization, this may become difficult without the utilization of
tamper-resistant hardware.

It is possible in principle for the user to check that his cryptosystem is working correctly,
by verifying that it encrypts test data properly with the key K he has chosen. Thus, the
user is assured that he obtains the full benefits of a randomly-chosen n-bit key.

The advantage of multi-grade cryptography increases as the expected number of keys
used increases. Roughly, a user who uses d distinct keys could have a hidden parameter of
roughly lg(d) bits without increasing the average workload for an intelligence agency. Thus,
a user who uses one million keys might have a 20-bit value for the hidden parameter K1. A
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“68/48” scheme for such a user would be a big improvement over a simple 48-bit key limit.

It is not difficult to invent more elaborate multi-grade cryptographic schemes. We de-
scribe a few possibilities here.

One could require that the adversary solve t1 instances of the “hard” (n-bit) problem
before he is able to solve the remaining problems easily. For example, a “6416/48” cryptosys-
tem would require the adversary to solve t1 = 16 hard problems before the remaining ones
become easy. We note that a 6416/48 cryptosystem requires the same amount of work from
an intelligence agency as a 68/48 system requires before things get easier, but allows him to
decode the first 16 keys attacked with less work (only 264 encryptions) per key.

How can this be done?

The basic idea is that K1 can be determined as a function of K0:

K1 = fu(K0) .

The function fu is randomly picked (once and for all time) by the user initially, as a member
of public-known class of functions F . Then, every key (K0, K1) that the adversary determines
(by a large search) gives him one more input-output example of the unknown function fu.
Computational learning theory provides many examples of function classes F that require
(more-or-less-)controllable number of input-output examples to identify. For example, fu
could be a degree-(t1−1) polynomial (over some suitable field); then t1 examples are required
to learn fu. The hidden system parameters are then the coefficients of this polynomial.

A second natural approach is to have more than two parts to the key. A “701/6432/40”
multi-grade cryptosystem would require an adversary to perform at least one 70-bit search,
and then at least 32 64-bit searches, before the remaining keys are obtainable with only a
40-bit search each. It is easy to arrange such hierarchies, although it is not yet obvious what
the best general approaches and techniques are for doing so. The basic idea is that level of
keying involves new hidden parameters that can only solved for once the earlier parameters
have been determined.

In another variation on the basic idea, keys might be triples (K0, K1, K2), where K0 is
allowed to change daily, K1 is allowed to change monthly, and K2 is allowed to change yearly.
The user would be assured that this year’s keys are totally independent of last year’s keys,
while the export agency would know that the user’s key changes could only require a large
search once a year. Enforcing such a routine is similar to the original enforcement problem,
and could be handled by similar means.

The proposal given here works most smoothly when the keys are used for file encryption
or for encrypting intra-organization messages. In these cases, sender and receiver are either
the same individual or share the same long-term key. When Alice and Bob are in different
organizations and wish to communicate securely, care needs to be taken that they don’t
reveal their long-term keys to each other in establishing a common communication key. One
approach is as follows. Let KA denote a multi-grade key for Alice (containing her long-term
key), and let KB denote a multi-grade key for Bob. Alice and Bob agree on a session key
KS (say by using Diffie-Hellman key exchange), and then exchange values EKA(KS) and
EKB(KS). These values are like “LEAF’s” in the Clipper proposal. If an eavesdropper
knows either KA or KB, he can compute KS. The encryption algorithm needs to utilize
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these two values in an essential way, so that if they are accidentally or maliciously modified
the ciphertext becomes useless to the recipient.

4 Conclusions

We have proposed a new paradigm for secret-key cryptography: multi-grade cryptography.
Multi-grade cryptosystems are like Brazil nuts: hard to get open at first, but then much softer
and chewier. Perhaps “crypto with the shells on” (multi-grade crypto) is more acceptable
than “weak crypto” (shelled nuts) for export purposes. (I’d appreciate suggestions for better
analogies!)
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