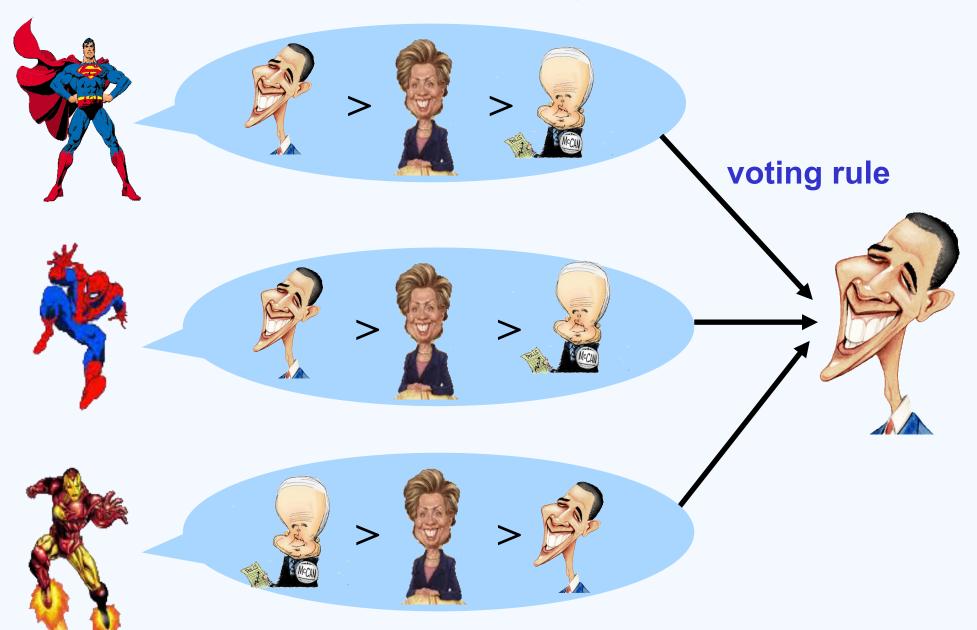
Complexity of Computing the Margin of Victory for Various Voting Rules

Ronald L. Rivest


Emily Shen

Lirong Xia

Voting

Criteria for voting rules

- Lots of voting rules (plurality, approval, instant runoff voting, etc.) – How to choose one?
- "Traditional" criteria: monotonicity, consistency, majority, etc.
- More recently: computational complexity of manipulation (strategic voting)
- We consider: efficient auditability specifically, computational complexity of computing *margin of victory* (related to manipulation problems)

Margin of Victory (MoV)

- Definition: Given a profile of ballots, the margin of victory is the smallest number k such that k modified ballots could change the election winner
- Margin of victory is critical to efficient, effective post-election audits
 - To provide a given level of statistical confidence, landslide election requires much less checking than a close election
- Margin of victory is a measure of closeness of election, suggests level of political mandate won by winner

Margin of Victory Examples

Plurality

- A:10 votes, B: 15 votes, C: 4 votes
- Margin of victory = 3
- Instant-runoff voting (IRV)

A>B>C	B>A>C	C>A>B
10	15	4

– Margin of victory = 1

The MoV computational problem

- Computational problem MoV: compute margin of victory of a profile of ballots
- Decision problem MoVk: Is the margin of victory at most k?
- MoV problem closely related to previously studied manipulation problems: UCM, bribery

Margin of Victory & Related Manipulation Problems

Problem	Objective	Ву	Desired Complexity
Margin of Victory	Change the winner	Changing votes	Low
Unweighted Coalitional Manipulation	Make a given candidate win	Adding votes	High
Bribery	Make a given candidate win	Changing votes	High

Our Results

Voting rule	Margin of Victory	Unweighted Coalitional Manipulation	
Positional scoring rules Including Borda	This work P	P (1 manipulator) [BTT89]	
		[XCP10] NPC (2 or more) [DKNW11] [BNW11]	
Plurality with runoff	Р	P [ZPR09]	
Copeland	NPC and FPT	P (1 manipulator) [BTT89]	
		NPC (2 or more) [FHS08,10]	
Maximin	NPC and FPT	P (1 manipulator) [BTT89]	
		NPC (2 or more) [XZP+09]	
STV	NPC for MoV ₁	NPC [BO91]	
Ranked pairs	NPC for MoV ₁	NPC [XZP+09]	
Nanson's rule	?	NPC [NWX11]	
Baldwin's rule	?	NPC [NWX11]	

Poly-time margin algorithm for plurality with runoff

- Let d be the current winner
- For every *k*
 - Check whether there is a way to make d not in the runoff by changing k votes
 - Check for every adversarial c, every threshold l, whether there is a way to change k votes such that
 - c and d are ranked at the top for at least l times
 - Any other alternative is ranked at the top for no more than l times
 - c beats d in their pairwise election

IRV Margin of Victory = 1 is NP-Complete

- Proof by reduction from unweighted coalitional manipulation problem
- Tweak UCM1 profile P to get new profile P' by:
 - Adding a new candidate d
 - Ranking d just below c in P
 - Adding |P|+1 voters who all rank d as 1st choice
- Show: MoV of P' is 1 if and only if UCM1 has a solution

Summary and Future Work

 We studied complexity of computing the margin of victory for some common voting rules

Future work:

- Complexity of MoVk (k > 1) for IRV, ranked pairs
- Practical algorithms to compute/approximate margin of victory for IRV, ranked pairs
 - Heuristics, approximation algorithms