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Abstract  

Storage media such as digital optical disks, PROMS, or 

paper tape consist of a number of "write-once" bit positions 

(wigs); each wit initially contains a "0" that  may later be 

irreversibly overwritten with a "1". We demonstrate  that  

such "write-once memories" (woms) can be "rewritten" to 

a surprising degree. For example, only 3 wits suffice to 
represent any 2-bit value in a way that  can later be updated 

to represent any other 2-bit value. For la.rge k, 1.29...  • k 

wits sulllce to represent, a k-bit value in a way that  can 

be simila.rly updated. Most surprising, allowing t writes of 
a k-bit value requires only t -q- o(t) wits, for any fixed k. 

For fixed t, approximately k .  t / log( t )  wits are required as 

k --~ oo. An n-wit WOM is shown to have a "capacity" (i.e. 

k • t when writing a k-bit value t times) of up to n • log(n) 
bits. 
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I Introduction 

Digi~;,l opdcal disk:; (a variation of the "video dk&s" 

used to store analog video ,,la¢:~) are an E.'.'it lag new ,',torage 

:medium. A sill.tie 12-im;h disk costing ',iil09 can be used to 

s~ore over 1011 bits of data  -- the eq,fiv~,h.ut ~A' .10 reels of 

t:mgnetic tape -- and to provide access Lo m~y of it, in 1/10 

second. Such an order-of-magnitude improvement in the 

cost /performance of memory technology can have dramatic 
ell'acts. (See [BUS0], [~v~e81], [Co82].) 

However, such capability is achieved at the cost of mak- 

i:lg the writing process irreversible. 'l'h,., disks are used as 

follows, l,]ach disk is manufactured wil.h a thin re[lective 
coating of tellurium. To write on (,he disk, a laser is used to 

melt  sul)micron pits in the tellurium at specified positions, 

changing those positions from their virgin "0" stal.e to a "1" 

state. To read the disk, the laser (at low power) illuminates 

each position on the disk; the lower retlectivity of the pits 
is easily sensed. 

The tremendous capacities and cheap cost per bit off 

digital optical disks provides strong motivation to examine 

closely their one drawback - their "write-once" nature. The  

purpose off this paper is thus to explore the true capabilities 

of such "writE-once memories" (or wgms). Other familiar 

examples off woms are punched paper tape, punched cards, 

and PROMS (programmable read-only memories -- in which 
the wits are microscopic fuses that  can be selectively 
blown). 

Large woms might naturally be used to store data  Lhat 
is more or less static: programs, documents, pictures, data  

bases, or archival storage dumps. If the data  requires up- 

dating, the worn can be replaced by a freshly written worn. 

A large wom can be divided into blocks that  are used up 

a.s needed; a index on an associated magnetic disk can 

keep track of the valid blocks. The magnetic disk can be 

eliminated by using linked-list or tree-like data  structures 

on the worn itself to link obsolete blocks to their replace- 

ments, at some cost in terms of access time. 
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More forrnally, we model a worn as an array or "write- 

cncc hits" (or w/h;) which are manufactured i .  a "0" state 

l:ut which can h~,ter be independent l :  bul~ irreversibly trans- 

formed into a " t"  state. (We uu lerstand that  some of 

the era'rent recorder/player de:dgns for digital optical disks 

arc not capable of selectively changing individual zero bits 

within a previously written block, llowever, this seems to 

be more a mat ter  of engineering th;m of ruiulameutals.) 

The main result of this paper is that  by using ap- 

[)ropriate coding techniques, a wcm cart be "rewritten:'  

many times, and that  its "bit-capacity" is much greater 

than the number or its wits. Ivhmy of the codi,tg techniques 
proposed here are simple to implement, and can have a 

significant impact  on I,he cost or using woms. 

As an example of the kind of behavior we are interested 

in, the following coding scheme was a prime "motivat, ing 

example" for this research. 

Lemma 1. Only 3 wits are needed to "write 2 bits twice". 

Proof: We show how to represent a 2-bit value z in 3 wits 

so that  it can later be changed to represent any other 2- 

bit value y. First,  represent x with the pattern r(z) given 

in Tablc l. Later, a wdue y (y ~. z) can bc written by 

changing the pattern to r'(y). (If z - -  y no change is made). 
Observe that  r'(y) will ;,ave ones wherever r(x) does, so that  

we need only change zeros to ones. 

Oi i00 } Oil 

I0 OlO [ IOI 
II I OOI I IIO 

Table l. A (22)2/3-Wo,ncode 
Decoding is easy: the memory word abc represents the 

2-bit value (b @ c), (a @ c), no mat ter  whet, her the wom has 

been written once or twice. II 

90 

33 

00 

1I. Notation 

Let weight of a binary codewcrd be the number of ones 
it contains. Let  z @ y denote the bitwise XOR of the bit 

vectors x and y (assumed to have the same length). We 

say that  an binary word z := z l . . . z ,  is "above" another 

binary word y = Yt...Y, (denoted x > y) if r == s and 

zi > Yi for 1 < i < r. Let  log(z) denote the logarithm 
(base 2) of x (or, if the context  requires an integer value, 

[Iog2(x)] ). We use Z .  to denote the set {0,1 . . . . .  v - - i } ,  

and Z~ to denote the set of all binary words of length n. 

We say "f(n)  ,~ g(n)" if lira . . . .  f(n)/fl(n) = 1. (The 
variable being taken to the limit should be clear from the 

context.) We also let H(p) denote the "entropy function" 
It(p) = p log(I/p)  -q- (I - -  p) log(l / (1 - -  p)). 

A coding scheme that  uses n wits to represent one 

of v values so that  it can bc writ ten a total of ~ times 

(i,e. writ ten once and changed t - -  1 times) we call a 

"(v)t/n-womcode '' (read: a % t-times into n-wit  worn- 

code"). The "/n" may be dropped for an optimal wont code 

(with minimal n) ( read:  an "optimal v t-times womcode").  

The general case - where the number of values may differ 

from generation to generation - -we  call a " ( v l , . . . , v t ) / n -  

womcode" (read: a "vl to vt into n-wit  womcode"); here the 

va.lue stored on the i-th write may be any our of { 0, . . . , v i - -  

t}. 
l ,e t  . , , , ( (v~ , . . . , , ,~>)d , , , . , t e  the least  n rot which a 

( , , , , . . . ,  v~) /~-womcode  exists.  Si, , , i l : ,rly, we , s e  ,,,((,,) ') to 
denol,e the number of wits needed by an optimal {v) t wont- 

code. We are interested in chara,:teriziug the behavior of 

w((v) t) for large values of v or l as well as linding "practical" 

coding schemes for small values of v or t. 

It  secms at first paradoxical that  w((v) t) < log(v) ,  t 

could happen. Intuitively, the reason is that  only the last 
value written needs to be accessible -- previous wtlues may 

2nd 
generation 

ist 
generation 

Figure i. The (2~)2/3-womcode on the Boolean 3-cube 
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become irrcLrievable. In fact, if all I,teviously writ(ca values 
were ahvays accessible th.en k)g(v).t wits would be required. 

To make our definition of a womcode precise, we note 
that a (vt . . . .  , v t ) /n  wonmode can be defined to consist of 
the following parts (here let v = lnax(v~, . . . ,  vt)): 

(1) An interpretation function a that  maps each x 6 
Z~ to a 'value oe(z) in Z~, 

(2) An update function i t which gives for any x E 
Z~ and for any value y in Zv, either "_k" (i.e. 
undefined), or clse a codeword #(x,y)  - -  z 6 Z~ 
such that  a(z) : y and z > z. 

We say that  a and # define a correct (V l , . . . , v t ) /n -  
womcode if they "guarantee at least t writes" as defined 
beloW. In order to define this condition we first make the 
following auxiliary definitions. 

An acceptable sequence (ix . . . . .  ira) for a ( v l , . . . ,  vt}/n- 
womcode satisfies the conditions that  0 < m < t and each 
ii, 1 _< j < m,  is in Zv~. Note that  in particular the null 
sequence k is acceptable. 

We define the "write function" p mapping acceptable 
sequences to codewords (or _L) as the iteration of ,u starting 
from the all-zero word O n (corresponding to the "initial 
state" of the worn) by the following equations: 

~0 n, 
p((i,,..., ij)) = t~(p((i , , .  ' ., i _ , ) ) ,  ij), 

if ] = O; 
if j >  1. 

(We assume that  #(_L,Y) = _L for all y.) We say that  
an acceptable sequence "arrives at 2 if that  sequence is 
mapped by p to x. 

We say that a codeword x is "used in generation m," or 
"is an m-th generation codeword" i'.' there is an a, cceptable 
sequence of length m that arrives at x. A cedeword x is 
sl id to be "unused" if no acceptagle scquer,ce of positive 
l,:ngth arrives at z, otherwise we say x is "used." 

lr every codeword belongs to at most one generation 
vie call the womcode "synchronized" -- since all acceptable 
seq,tences that arrive at a codeword word arrive there "at 
the same time" (i.e. at the same generation). Otherwise the 
womcode is called "unsynchronized." With a synchronized 
womcode one can always determine how many generations 
have been written. Note that  our (2=)=/3 womcode is not 
synchronized since 000 belongs to the zero(h, first, and 
second generations. We say that  a womcode is "almost 
synchronized" if the all-zero word is the only codeword that 
belongs to more than one generation, and it belongs only 
to the zeroth and first generations. 

The laminar womcodes are an interesting special case 
of the synchronized womcodes: a womcode is laminar if it 
is synchronized and the weight of every (used) codeword 
determines its generation. (That is, no two codewords of 
different generations have the same weight.) 

We say that  the womcode defined by a and # "guarantees 
at least t writes" if no acceptable sequence of length t 
arrives at _h. This completes our formal definition of a 
( v t , . . . ,  v t} /n-womcode defined by a and tz; such a worn- 

'code is correct if it guarantees at least t writes. 

We will often identify an interpretation a(x) with its 
binary representation. (For example, in a (2k}t/n-womcode 
each n-bi t  codeword represents a k-bit word.) 

We would like to note that  we initially studied only 
the (2k)t/n-womcodes,  but  that  we have since seen enough 

interesting examples of womcodes of the more general form 
to warrant  including the more general definition here. 

We now introduce our three "complexity measures": 

P ,  I, and C. 

Let P(t) denote the "penalty expansion factor" needed 
to guarantee t writes of values from Z~, for large v, com- 
pared to that  needed for just  a s:.~gle write: 

w(<,,>,) 
P(t) : = ,  li,n.oo -ioii/vi - ' ,  (t) 

We will  t - o r e  that 1 ' (2)  == 1 2 9 . . .  ,,,,(1 u ( t )  ~ t~ Io,~(t). 
Let I(v) denote the asymptotic "incremental cost?' of 

increasing t by one for a (u}qwomcode: 

1(o)-:  lira " ( ( ' ~ ) ' )  , - , ~  , (2) 

We shall prove the surprising result that I(v) - -  l. 
Wc dellne the appa,'¢t~t capacity (in bits) of a (v~, . . . ,  v , ) /n-  

w o m ~ o d o  to bo l , ,g (~ , . . .~ , , ) ;  we d~no ' ,e  th i s  as C(<v~ . . . .  , ~ , ) / ~ ) .  

Similarly, let C(n) denote the apparent capacily (in bits) of 
an n-wit  menmry field: 

C(n) = max{ lol :(v,. . .v,)  I w((v, . . . .  , vt)) < n }. (3) 

We shah do,nonstrato ~hat C(n) = ~. log(n) + o(,,. lots(s)). 
As an auxiliary definition, we let R ( ( v , , . . . , v t } / n )  = 

C((vt . . . .  , v t ) / n ) / n  denote the rate of the womcode. (This 
is jus t  the capacity pet" wit of the womcode.) 

IlL Elementary Observations 

Lemma 2. 

Proof. Concatenate a (vl)t-womcode and a (v~}t-womeode 
to make a (vt .v2)t/(w((vl)t)q-w({v2)t))  womcode. (Rcprcsent 
each value y in Z.l.v2 as an ordered pair (Yt, Y2), with Yt 6 
Z~ 1 and Y2 E Z. 2. Use the womcodcs to record Yt and y~ 
separately.) II 

Lemma 3.(w((v) t) is subadditive in t.) 

wC(v),,+*=) < w( ( , / , )  + w(<,?,) (s) 
Proof. Use side-by-side optimal {v/1- and (v)t2-womeodes 
to represent the sum (rood v) of the values represented by 
the two subcodes. To update, change one subcode to rep- 
resent the difference (rood v) of the new value to be repre- 
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sented and the value of the other subcode. This guarantees 

at least tl + t2 writes. (The alternative approach of writing 

the new value into one of the two subcodcs would need ex- 

tra wits to indicate which subcode was written last, unless 

the zero word is unused in one of the subcodes.) II 

The above h:mnl:,,s (and w((2t) t) == l ) i m p l y  that  

,,((2~> ~) _< .~. t. 
l,',,r sn, all w,,.,;s or k and ~, ,.,: ca,, derive ,~((2~>') as 

giv,,,, in Table 2. (Obviomqy, v,((2k) ' )  =: k a , , l  w((2t) t) - -  

t.) 

t 

1 2 3 4 5 6 

1 2 3 4 5 6 

2 3 5 6 7 

3 5 7 

4 6 

5 8 

6 9 

7 

Table 2. 1V((2k) t) 

We do not know the exact wflues corresponding to the 

empty positions of the table. 
The (23)3/7 (rate 1.2S...)and (22)2/3 (rate 1.33...) 

womcodes indicated by the table are special cases of the 

general "linear" scheme presented in section V. 

The (22)s/7 (rate 1.42...) wo,ncode indicated by the 

table is an ad hoc scheme; we show here how to decode a 

7-wit pattern abcdef9. If the pattern has weight four or 

less, the value rcpresented is 01 -col @ 10 • clo O 11 • c l t ,  
where c01 = 1 iff ab -- 10 or (ab = 11 and one of cd or ef 
is 01), c10 --= 1 iff cd = 10 or (cd = 11 and one of ab or ef 
is 01), and c n  = 1 iff ef = 10 or (ef = 11 and one of ab 
or cd is 01). (For example, the pattern 1101100 represents 

10. At most one of ab, cd, ef  ~ill  be 11 if another is 01.) 

Otherwise the interpretation is ab 0 cd (-~ e f (~ gg. The 
first three writes change at most one wit, while the last two 

might each change two wits. 

The following notation for the size of the tail of a bi- 

nomial distribution and a related inverse quanti ty will be 

usefuk 

,6, 
i - -O 

~(v,,~) ==,n~,~{h I h ] ]  

Note t, hat  a (4V,~-wo,,,~ode ,,,,,st h.~e ~ > ,,~ + @,,  ~ ) i f  
every fiisl~ generation codeword must have at lea, st, m zeros. 

We derive a lower bo ,nd  Z(o, t) to 'w((v)*) by gener~,lizing 

this observation: 

Z(v,o) = o, a,,d (8) 

Z(v,t -i- 1) = Z(v,t) -F 6(v,Z(v,t)) for t > O. (9) 

Lemma 4. 

w((v)t) > ZCv, t) C m) 

Proof. By induction on t. The case t = 0 is trivial. 

A (v>t+lln-womcode ,nust have at least Z(v, l) zeros in 

every first-generation codeword, and nmst turn on at least 

6(v, Z(v, t)) wits in the worst case on the first write to have 

v codcwords in the first generation. II 

Corollary'. 
w((29t ) > k + t - -  1 (11) 

N o t c t h a t Z ( 2  ~ , l ) = k a n d Z ( 2  k , t + l )  > Z(2 ~ , t ) + l f o r  

k > 0. The following lemma improves this result (by one). 

L e m m a  5. 

w((2k) ') >__ k + t for k > 2 and t > 3. (12) 

• Proof. Suppose to the contrary that  a (2k)t/(k + t - -  1)- 

womcode existed for k > 2 and t > 3. Since Z(2 k, 1) = k, 

the generation t -  1 codewords must each have weight less 

than t. On the ether  hand, if t > 3 then for every value y 6 

Z2~ there is a t - -  1-st generation codeword x with a(x) = y 

and weight at least t -  1. (For t = 2 the claim fails if the 

zero-weight word is in tile first generation.) There tnust 

be at least 2 k - -  1 > 3 diffcrent values y associated with 

first-generation codewords of weight 1 or more. Thus for 

every value y 6 Z2k there is a t - -  1-st generation codeword 

z with a(x) = y and weight ezactly t - -  1. But then no 
possible interpretation for the codeword 1 k-t-t-1 is distinct 

from each of these values (required since the last k levels 

are "tight"). This contradiction t.roves the lemma, m 

IV. How many wits are needed for a fixed number of genera- 

tions? 

[V.A. How many wits are needed for two generations? 

Theorem 1. 

w((v?) ~ 1,293815... log(v) (13) 

Proof. For any v, choose h to be 6(% log(v)) and then choose 

n to satisfy: 

n - -  h ~--- [log(v) + log log(v) -F 1 - -  log log(e)]. (14) 

We will prove tha t  w((v) 2) < n. Choose the first genera- 

tion representations arbitrarily as distinct eodewords with 
weight at most h, and randomly assign to the remaining 

2 '~ - -  v codewords interpretations from Z, .  There are 

(v )~" -~  C15) 
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ways to do this. How many ways do not guarantee two 
writes? Such a bad assignment must  contain a first- 
generation codeword z and a value y 6 Z~ - -  {~(x)} such 
that  no codeword z >_ z represents y. If we select z in 
one of v ways, select y in less than v -  1 ways, assign all 
eodewords z >_ x values different than c~Cx ) and assign all 
other codcwords arbitrary values, we will have overcounted 
the bad codes bu t  examined no more than 

v 2. (v - -  1) 2 " - " .  (v) ~ . . . . .  2"-".  (16) 

codes. Whenever (16) is less than (15) some "good" codes 
must  exist. This happens when 

(17) v2 -< \ v -  11 

which will happen if 

2 log(v) _< 2 " - h - ' ° g ( ' )  • log(e) (18) 

which is implied by 

n = h + [log(v) .-[- log log(v) -~- 1 ~-- log log(e)l. (19) 

Th,,s (19)implies the existence of a Cv)t/w won,code. Since 

~. > h-I-Jog(v) (from Lemma 4), we conch,de that for aa 
cl)iJ~aal (v)2/n-womeode 

= h + log(v) -t- o0og(v)). (20) 

Now the logarithm of the number of words of leng~,h n 
with at mosl, h ones is 

n .  H ( h / n )  + o(n ) ,  for h S n/2.  (21) 

(See [iPW72, Appcndix A], or [MS7?, Ch. 10, §11].) Since 
there are ~ values in the first generation, 

n . H ( h / n )  -q-- o(n) ---- log(,,) (22) 

or (since log(v) ~- n - -  h + o(log(v)) and n _< 2. log(v)) 

U(hl~) - ( n -  h) + 41) (23) 
n 

The equation t I (p)  = 1 - - p  has a solution at p -- 

0.22709219..., so for an optimal womcode h/n ~ .227..., 

or logCv) ~ n. (1 -- .227...) or 

~ 1.29381537.... log(v) (24) 

which was to be proved.| 

The random womcodes of the theorem will have an 

asymptotic rate of 2/1.29 .... 1.5458..., much better than 

the rate 1.33... womcode of lemma 1. However, we could 

not construct by hand a (lk)2-womcode of rate higher than 

1.33 .... Lemma 4 implies that such a scheme must have 

k = 7, n = 10 or k > 9. Using acomputcr we found a 

slightly more efficient inethod with rate 1.3.'I .... 

The new scheme is a (2~;>2/7-womcode Crate = 1.3429...). 
So a seven-track paper tape is "reusable" for writing just  
letters! Row i, column ] of Table 3 gives the value ( a let- 
ter) of the 7-bit string with binary value i * 32 + j .  The 
first-generation is in upper case. Thus a "T" (0011000) is 
made into an "h" by changing bits 1, 2, and 5 (to obtain 
1111100). We were unable to lind a <27}2/7-womcode or 
to prove one doesn't  exist, although we can prove that  a 

{29}~/7 womcode doesn't  exist. 

00000000001111111 I 11222222222233 

01234567890123456789012345678901 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 AIIGCFYLwEZYrXfpnD?IVzUdj oTwkeltdu 
1 CSRcQiozPpihuexy0zsj sniwveqgfkbm 
2 BNMzLb&m[OttbngfwJwrhkvxyraj psoqc i  
3 Ikmq].eku~qt.eosdj vubd fge t .pyxnlhr za 

Table 3. A (<lG)2/7)-womcode 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

IV.B. What  is P(t)? 
By reasoning similar to that of the proof of Theorem 

1, we derived the following estimat,es for P(t). Note how 
closely t, he estimates are to t / log(t) .  

t P ( t ) ( e s t . )  t / l o g ( t )  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 1.000 - - -  
2 1.294 2.000 
3 1.549 1.893 
4 1.783 2.000 
5 2.003 2.153 

10 2.983 3.010 

20 4.668 4.628 
50 8.960 8.859 

100 15.191 15.051 

200 26.346 26.164 

Table 4. P(t)(est.) vs. t / log( t )  

To dernonstrate our main result that  P(t)  ~ t~ log(t), 
we define an upper bound to w((v) t) which is asymptotically 
equal to our lower bound Z(v,  t) of Lemma 4, to within a 
small additive term. 

Theorem 2. For fxed t and v sufficiently large, a sufficient 
t * i condition for the existence of a /v ) ' i n -womcode  is IJle ex- 

istence of t numbers li, 1 < i < t, such that 

(,~) t. log(v) _> ~ 2 h 2 h _> . . .  _> tt _> 0, 
Cb) ( ;3 ~ v, 
(c) (,,';,) > v.  (t + i ) .  log(v), for I < i < t. 

ProoL 

We prove the exi:~tence of a O?/ /n  wo:ncodc in w l , id l  

all 'i-[h generation codewoMs contai l  exad.ly li zeros. Con- 
dition (b) implies that  t.here are enough codewords wiih ll 
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zeros for the v values of the first geaera.tion. We now show 
(by a counting a r g u m e l l t )  tha t  for all i, 1 ~ i < t it is pos- 
sible to assign interpretat ions to the codewords with liq-i 
zeros for the i-}- I-st  generation in such a way tha t  for 
every j ,  0 _< j < v, every codeword with li zeros is below 
some codeword with li+ 1 zeros tha t  has been assigned in- 
terpretat ion j .  

n The total  number of ways in which the (t,+~) eodewords 
with li-H zeros c:m assigned values is: 

v ( ' ' : ' ) .  (25) 

We can overcount the number of "bad" ways of assigning 
interpretat ions to the codewords with li-H zeros (assuming 
we have already assigned interpretat ions to the earlier 
generations), in the following way. Choose a codeword 
x with li zeros, choose a "missing yahle" y C Zv, assign 
the (~ ~ , )  eodewords with l i+l zeros above x with the v 
1 remaining values (other than y), and assign the other 
codcwords with l i+l zeros arbi t rary interpretat ions.  The 
number of "bad" ways is thus at most: 

li . v . ( v  - -  • v ( ' ' + ~ ) - C ' ' + ' )  (26) 

a "good" way must exist whenever (26) is less than (25). 
By simplifying this inequality, we get: 

n , .v .  1 - -  < 1. (27) 

Since n < t .  log(v) (otherwise the existence of the desired 
womeode is trivial), (l:) -< vt, and thus it is enough to 
prove: 

v t - H ,  1 - -  < 1. (28) 

By condition (c), (t/i_~) > v .  log(v). (t -t- 1), and thus it 
suffices to prove that,: 

V t + l  • ( t  ~ ~-)"l°gC°)'(t+l) < 1. (29) 

lh t t  for laq,:e enough v, ([ . . . .  ~)" approaches i / e ,  and thus 
the left hand side is approximated ',)y: 

v t ~-1 . e Iog(~).Ct ~t), (30) 

which approaches zero as v goes to infinity. [I 
To find the smallest (or nearly smallest) n for which the 

existence of a {v)twomcode is guaranteed by the theorem, 
the numbers Ii should be chosen in reverse order (from tt 
to l,). The last two numbers can be cllosen as: 

It log(v) 
= - - 2  + t i n g i n g ( v ) ,  (31) 

where c is any constant  greater  than 1, and 

t , _ ,  = log(v) + 2c log log(v), (32) 

since 

C,_q  _ (2l,) 2~', v (,,,g(v)~) (33) 
l, ) \ tt ) > 2z, = log(v) + 2~ log log( . ) '  

Since c > 1 and t is fixed, this becomes larger than v .  
log(v).  (t + t) for v sulticient!y large. The other l, 's can 
chosen as the smallest numbers satisfying condition (c) of 
the theorem. Finally,  n can be chosen as the smallest 
number satisfying (;]) _> v. 

We now proceed to analyze the performance of the 
womcodes described above, in order to show tha t  their  per- 
formance is asymptot ical ly  equal to tha t  of the lower bound 
we proved in Lemma 4. Then we prove our main theorem 
(theorem 4) tha t  PCt) ~ t / log(t) .  

We first introduce some necessary notation.  Let  

=: r a i n { h i  [[ rn + h i >  }" (34) 6' (v ,m)  
h ] - k 

(Note the similarity to the definition of 6 in (7).) Then we 
define: 

~,(v,O) = log(v) - 2  + ~loglog(v), (35) 

Y~(v, 1) = log(v) q- 2c log log(v), and (36) 

~;,(v, t t- t) = Y,,(v, t)-~ 6 ' (v . , , .  lo~(v), r;,(v, ~:)), for t 2 J. 
(37) 

For convclfience in the next thcore:n, we defiue Y(v , l )  to 
be )~o,,(.,,)(v, t); note that for large v, Y(v, t) > Yt+,(v, t). 
From this definition it follows tha t  ;or v sl,llicicntly large, 

~((vy) < Y(v, t), (38) 

smcc li = Y t _ H ( v , t - - i )  for 1 < i < t and n < Yt+l (v , t )  
in the construction of last theorem. 
Theorem 3. For t > 1, 

Y ( v , t )  
lira Z(v , t )  - ~ (391 

v --, oo 

Proof. 

By induction on t. The case t = I is trivial. By 
comparing the forms of the definitions of Y and Z, we see 
tha t  it is enough to prove: 

~im ~'(v - (log(v))L m')  
o~oo ~(v, m) = 1, (40) 

where m = Z (v , t  - -  1) and m'  -~- Y ( v , t - -  1). We observe 
tha t  

6(v,m) < ¢ ( v , m )  < 5(v,m) + 1 (41) 

if m > log(v) (since tha t  implies tha t  ~(v, m) _< ( m / 2 ) )  
(Note tha t  in (40) both m and m '  are > log(v).) Thus 
we can replace 5' by 6 in (40). Furthermore,  6 ( v , m ) i s  a 
decreasing function of m, so tha t  we can also replace m'  by 
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the s,naller value m in (40). In a similar vein, it is simple 
to show that  in > log(v) implies that  

6(v. (log(v)) 2, in) ~_ ~(v, in) + 2 log log(v), (42) 

and a little more complicated to show that  log(v) < in < 

3'" log(v) implies that  

5(v, in) > log(v)-(23 ' .  _//-1(1/23')) (43) 

Combining t.hese observations lea'.s to the desired result, g 

Theorem 4. P(t) ~ t l  log(t). 
Proof. 

Let  nt := Z(v, t). '['hen we must have: 

((-)) . . . .  , . ,  
V ~ ?l t i n t _ _ . t  

(,t4) 

so we derive 

It(n, _, / ,z,)~ Iog(v)/n<. (45) 

We consider II(p) near p == 0 using the fact that  It(p) = 

t t ( t  - -  p): 

1 - -  n t _ i l n ,  ~ H - - i ( I o g ( v ) l n t ) .  (46) 

Near p = O, I I ( l , )  ~ p" h,g(l/P),  so I I - - ' ( y )  ~ --y/ log(y):  

1 - -  nt._,  ~ __-- l°g(v) /nt  (47) 
n,  l o g ( l o g ( v ) / n , )  

n ,  - -  n , _ ,  ~ - -  log(v)/log(iog(v)ln,) ( 4 8 )  

dnt - - log(v)  (49) 
dt log(log(v)lnt) 

dt ~ to~(n,l log(v)), dnt (50) 
log(v) 

nt  n t  
t ,-~ ( l o ~ )  l o g ( ~ )  (51) 

nt  ~ P ( t )  ~ t 
log(v) ~ 1 1  (52J 

As a consequence of Theorem 4, for fixed t and large 

v, an optimal (v) t womcode will have a rate approximately 

equal to log(t), with the approximation improving as t in- 

creases. 

V. What is I(v)? 
In this section we demonstrate that  I(v) = 1 for any 

v, using a "tabular" womcode. We also present a "linear" 

womeode that  - while it only shows that  I(v) < 4, general- 

izes nicely our {22)2/3-womcode. 

~, .A.. 'rLe Tabullar (v)t/~:-Womeode 

\.Ve assume here that  t > v. I,et u denote an in- 

teger parameter to be chosen later (imagine IJla.t u is about 

h,g(n)). Our (v)t/n-wo,ncode ,viii l,,we its n == r . s  wits 

c~nsidercd as r := (u b l ) ( v - - 1 )  rows of s == 1 % @ ) - k t / ( u .  

( o - -  1)) coh, n,ns. ICed, row i~ divided into a Io~,;(v)-wit 
"header" field and an (s- - - log(v))-wit  "co,,nt" field. The 

h)g(v)-bit value represented by such a table is the sum 

(.nod v)) of Ihe header liekts of all rows that  have an odd 

number of " l " s  in their count fiehls. 

To write a value x when the table currently represents 

y, it sulficcs to change a single "0" to a "1" in a row with 

header , - -  y (rood v). If every row with this header has all 

ones in its count fieht, we find a new row which currently 

is all zeros both its header and count fiehts, change the 

header l.o the desired value, and change one bit of the count 

field. We can always llnd a new row up until u(v - -  1) 

rows are completely "full", since there are only v - - 1  useful 

header wdues. (The all-zero value is useless.) Thus we are 

guarantccd at. least u(v - -  1). (s - -  log(v)) = t writes. 

Since 

n --- t + t / u  q-log(v)(u -t- 1)(v - -  1), 

by choos ing  'u -~  []og(t)J implies that  n ---- t -}- o(t). 

This code has rate approximately log(v) < log(n). 

With optimally chosen parameters, this code has a rate 

nearly log(n), about twice as good as any other code 

presented in this paper. 

V.B. The "Linear" Womeode 

This scheme has t)arameters v, t = 1 + v/4, and 

n = v - -  1. The i-th wit is associated with the number 

i, for 1 < i < v. The wdue represented by any pattern 

is the sum (rood v) of tile numbers associated with wits 

in the "1" state. (An alternative definition, useful when 

v ~- 2 k, intm'prets the pattern as tile XOR of the k-bit 

representations of the numbers associated with wits in the 

"l"  state. For example, in our (22}2/3-womcode the pat tern 

abc can be decoded as 01 • a @ 10 • b @ 11 • c.) 

We now show that  - as long as there are at least v/2 
zeros - we cau change the wom to represent a new wflue 

by(:lmnging at most twowils.  Let z denote l.he difl'erence 

(;m,dulo v) o1' the new value de:,ired, y, and the current 

value rcl~reseut,~d, x. If the bit associated with z is now off, 

we can simply cha.nge it to a "1". Otherwise let S denote 

the set of nunfl.wrs associated with wits which are currently 

zero, and let T denote the set {z - - -x  (rood v).[ z C-: S t .  

Since ISl = ! r l  > v /2  ,,,,,t IS O'J'l < v - -  t (zero is in 
neither set), the set Sf-'IT must be uonem/pty. Their overlap 
indicates a solution to the equation z - -  xl + z2 (rood v) 

where  :el and  :r 2 are e l e m e n t s  of S .  

The code described above thus has rate roughly log(v)/4 ~-~ 

log(n)/4. 
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The linear wolncode described above may have to stop 
when there are as ,,,any as (~/2)- ~ ',,eros left  (which can 
happen after as few as 1 -I- (v/4) writes). The following 
trick allows oue to keep going a while longer. Divide the 
n-wit  field into n/3 blocks of size 3. By writing additional 
"l"s  if necessary, force each block to have either one "1" 
or three "l"s exactly. Those "bad" blocks having no zeros 
remaining are now considered as deleted, while each of the 
remaining "good" Mocks can be  used to store one bit  (by 
changing one of its wits -- the other one is left untouched 
to indicate that  tile block is a good block and not a deleted 
block). With at least (n - -  1)/2 zeros remaining we are 
guaranteed of getting at least n/12-- 1 "good" blocks. The 
recurrence: t(n) = =  n14 + t(nll2 ) has the solution t (n) = 
3n/11 + O(1), indicating that  this trick can increase the 

"number of writes we can achieve by a factor of 12/11 (from 
n/4 to 3 n / l l  writes). At the moment  this coding trick is 
also the best general scheme we know of for making use of 
a "dirty" WOM that  may have been writ ten before in an 
arbitrary manner  (i.e. without any thought of using some 
sort of "womcoding" for better utilization). 

VI. What  is C(n)? 

The schemes presented in the last section can be used 
to show that  C(n) : n .  log(n) -t- o(n. log(n)). 

Theorem 5. 

C(n) > n log(n)+ o(n log(n)) 

['roof. ]Per a given large meulory dze n, we can use the 

"tabular" scheme of section V.A. :,nd choose p;,rameters: 

I,,g(~) = L l o g ( , O - 2  h,l-l,,~¢(,)J wi th  r :-- f log log(r,)} . ( v - -  i )  
rows of iel,r;th <s =- [n / rJ .  (\¥e ",,'ill ",,v:<ste" n .... rs wits.) 
As before, iohe to ta l  l i l i inbor  of writes possible is n - - o ( n ) ,  
prov ing the theorem, ll 

lb is also possible to show that  tills result, is "best 
l:ossible": 

Theorem 6. 
C(rg) _~ n .  log(n) 

Proof. (Intuitively, changing one wit, out of n should 
provide at most log(n) bits of information.) Consider any 
(vl,...,vt)/n-womcodc. The n-wit  field can umtcrgo at 
nmst (g --t- 1) n < n'~ "histories" as it progresses from its 
first stale (all "0"st to its final state (perhaps all "l"s), since 
wc can describe the history by specifying for each of the n 
wits that  it either always remains "0" or that  it is turned 
to a "1" during one of the t write operations. On the other 
hand, the womcode has at least vl.. "vt different acceptable 
sequences of length t to handle, each of which must have 
its own history. The theorem follows, i 

VI. Other Womcodes 
Several of our colleagues have become intrigued by 

the problem of designing high-rate womcodes, and have 
graciously consented to our sketching or referencing their 
prclimiuaff  results here. 

• Prof. David Klaruer (Dept. Math, SUNY Bin- 
ghampton), has created an elegant {5)3/5 (rate 1.39...) 
cyclic womcode, which works as follows. The first value 
is represented by 10000 in the first generation, either 
01001 or 00110 in the second generation, and one of 
01111, 10110, or 11001 in the third generation. The 
other four values are handled similarly, using cyclic 
rotations of the words given for the first value. (Since 
n is prime all the cyclic rotations are distinct.) 

• David Leavitt  (an undergraduate working with Prof. 
Spyros Magliveras, Dept. Math, Univ. Nebraska at 
Lincoln), has found an even more efficient (7)4/7 (rate 
1.60...) cyclic womcode by extending Klarner 's  tech- 
nique. (To appear.) 

o James B. Saxe (a graduate student aL CMU) has 
created the following beautiful (~, :~- -1 , . . . ,  1}/n worn- 

code (rate asymptotically --~---), where the two halves 
of each codeword are the same except thal~ the left 
half has an extra "1" bit. The value represented is the 
number of zeros in the left half to the left of the extra 
bit. Each update (except the first), changes exactly 
two wits - one iu each half. 

• Saxe also suggested the following marvelous recursive 
womeode, which use's n = 2 k wit, s, and changes exactly 
one wit per write. Using f(u)  to denote the capacity 
of Saxe's code, we shall see that  f(2 k) == k • 2 k-q ,  

log(n) using the base case f(1) = 0, giving a rate of - -~- - .  
Part i t ion tile n wits into ~ pairs. With the first 
writes we turn on at most one bit  in each pair, and 
obtain capacity f(~)-k- .~ by using the code recursively 
on the ~ pairs, and getting an extra bi t /wri te  using the 
parity of the number of pairs whose left bit is on. For 
the second ~ writes we obtain ca.pacity f (~ )  reeursively 
on the pairs by turning on their second bits as needed. 
The recurrence f(n) = ~ + 2f (~)  gives the desired 
result. 

• Saxe has also created a {65,81,63)i12 (rate 1.52...) 
womeode that  can be improved to a (65,81,64}/.t2 
(rate 1.53...) womcode if the "generation number" is 
externally available when decoding. 
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VII. Discussion and Conclusions 
The results presented in this paper provide much in- 

forrnation about the nature of the function w((v)t). On the 
basis of the evidence so far, we conjecture that 

log(v), t) 
wC{v)') ~ maxCt, ~ o ~ j  

for all large v and t. We expect that this result should 
follow in a more-or-less straightforward manner from the 
results and techniques given here, but we have not as yet 
worked through a detailed demonstration. (Exercise for the 
reader: prove that w((2k} k) = O(k2/log(k)).) 

The relationship between womcodes and error-correcting 
codes arc interesting: we can view a womcode as a situation 
where the channel is assymmetric (only 0 ~ 1 errors occur), 
and where the transmitter knmvs where the errors will oc- 
cur before he has to choose a eodeword. Of course, there 
are still many differences, since the objective of womcoding 
is to allow ma W "messages '~ to be strut, and the codeword 
for one message determi,,cs what !hv: %rrors" arc for the 
next message. 

A more closely related problem may be that of ,[evising 
codes for ra.mlom-:~ccess memories /hat have "stuck bits". 
llecgard /lle¢'~l] has some recent work in this area. Again, 
1,owever, the problem seems intrinsically ditferent. 

Some iuteresl.ing veork has been done on Turing machines 
that have "nonerasing" work tapes (e.g. see [Mi67]), which 
is peripherally related to the research reported here. 

We note that our formulation of the problem requires 
that the decoding scheme for an (v)t/~>womcode provide a 
unique interpretation for each possible pattern of the n wits, 
independent of how many generations have been written. In 
some cases the current "generation number" might also be 
available as input to the decoding scheme at no extra cost 
(in wits). While this variation might, permit some minor 
performance improvements in some instances, it remains an 
open question as to how much this additional information 
might help. 

A number of questions need further investigation: 

• What if there is some restriction on the kinds of up- 
dates that may occur? (For example, what if y can 
replace x only if v is numerically greater than x?) 

• What, advantages arc there to representing a different 
number of values at each generation? 

• What is the complexity of the decoding and updating 
algorithms for the best codes? 

• How" can these coding schemes be adapted to handle 
the possibility of errors occurring on the wom? 

• If the underlying storage medium is viewed as storing a 
modulated digital signal rather than a sequence of bits, 
what kind of "womcoding" should be used to allow 
updating yet to maximize bandwidth while minimizing 
modulation frequency? (See [Br81], [ttG69]) 

* What can be said about the average-case behavior of 
womcodes? 

• What if the storage elements had more than two pos- 
sible states, and had a complicated dag that described 
the set of legal state transit:ons? 

o What truly practical womcodes exist? 
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