
SPRITZ—A SPONGY RC4-LIKE STREAM

CIPHER AND HASH FUNCTION

Ronald L. Rivest1 Jacob C. N. Schuldt2

1Vannevar Bush Professor of EECS
MIT CSAIL

Cambridge, MA 02139
rivest@mit.edu

2Research Institute for Secure Systems
AIST, Japan

jacob.schuldt@aist.go.jp

CRYPTO DAY
October 24, 2014



Outline

RC4

RC4 attacks

Spritz

Security Analysis of Spritz

Performance

Conclusion



Outline

RC4

RC4 attacks

Spritz

Security Analysis of Spritz

Performance

Conclusion



RC4

I Stream cipher RC4 designed by Rivest (1987).
I Widely used (50% of all TLS connections).
I Simple, fast.
I Works for any set of N “bytes”: ZN = {0,1, . . . ,N − 1}.

(All math is mod N.) Default is N = 256.
I State consists of:

I two mod-N “pointers” i and j
I a permutation S of ZN

I Key setup algorithm (KSA) initializes S from secret
key K

I Pseudo-random generator (PRG) updates state and
outputs pseudo-random byte; typically used as
pseudo-one-time pad.



RC4-PRG

RC4-PRG()

1 i = i + 1 // update state
2 j = j + S[i ]
3 SWAP(S[i ],S[j ])
4 z = S[S[i ] + S[j ]] // generate output
5 return z

0 1 i j S[i]+S[j] N−1

S S[i] S[j] z



RC4-KSA

I input key K is a sequence of L bytes (mod N values)

RC4-KSA(K )

1 S[0..N − 1] = [0..N − 1]
2 j = 0
3 for i = 0 to N − 1
4 j = j + S[i ] + K [i mod L]
5 SWAP(S[i ],S[j ])
6 i = j = 0

I Common criticism is that loop of lines 3–5 is executed
too few times; some recommend executing it 2N–4N
times or more, or ignoring first 2N–4N outputs.



Outline

RC4

RC4 attacks

Spritz

Security Analysis of Spritz

Performance

Conclusion



RC4 attacks

RC4 has numerous vulnerabilities and “soft spots” [see
paper for citations]:

I Key-dependent biases of initial output
I Key collisions (producing same internal state)
I Key recovery possible from known internal state
I Related-key attacks (WEP)
I State recovery from known output (feasible?)
I Output biases; distinguishers



Outline

RC4

RC4 attacks

Spritz

Security Analysis of Spritz

Performance

Conclusion



SPRITZ

We started design after CRYPTO 2013. (Really after
AlFarden, ..., and Schuldt. USENIX 2013)
Design principles:

I Drop-in replacement for RC4
I Retain “RC4 style” (e.g. state is a few registers plus a

permutation S of {0,1, . . . ,N − 1})
I Minimize statistical vulnerabilities
I Redo key-setup entirely
I Expand API to have “spongy” interface: can

interleave “absorbing” input and “squeezing” out
pseudo-random bytes.



SPRITZ-PRG

I Automatically examined many thousands of
candidates

I Expressions generated and represented by postfix
expressions: ikjS++ means i + k + S[j ]

I Filtered by:
I syntactic criterion (e.g. invertible expressions containing S

but no SS),
I cryptographic criteria (e.g. can not swap two values in S

and leave evolution of j and k unaffected), and
I statistical criteria (very heavy testing of candidates for

smaller values of N. Approximately 12 “hyperthreaded
core-years” of CPU time used. About 253 Spritz outputs
tested.)



Winner is #4933

iw+︸︷︷︸
i

, kjiS+S+︸ ︷︷ ︸
j

, ikjS++︸ ︷︷ ︸
k

, jikz+S+S+S︸ ︷︷ ︸
z

RC4-PRG()

1 i = i + 1
2 j = j + S[i]

3 SWAP(S[i],S[j])
4 z = S[S[i] + S[j]]
5 return z

SPRITZ-PRG()

1 i = i + w
2 j = k + S[j + S[i]]
3 k = i + k + S[j]
4 SWAP(S[i],S[j])
5 z = S[j + S[i + S[z + k ]]]
6 return z

I About 50% longer
I Uses new register k as well RC4 registers i , j ; output

register z also used in feedback. Register w always
relatively prime to N.



Start SPRITZ with INITIALIZESTATE

I State variable S initialized to identity permutation
I “Pointer” variables i , j , k , initialized to 0.
I “Last output” variable z initialized to 0
I “Number of nibbles absorbed” variable a set to 0
I “Step size” variable w initialized to 1

INITIALIZESTATE(N)

1 S[0..N-1] = [0..N-1]
2 i = j = k = z = a = 0
3 w = 1



SQUEEZE to output r -byte array

SQUEEZE(r)

1 if a > 0 // last operation was ABSORB
2 SHUFFLE()
3 P = new array of size r
4 for v = 0 to r − 1
5 P[v ] = SPRITZ-PRG()
6 return P



Encryption

ENCRYPT(K ,M)

1 KEYSETUP(K )
2 C = M + SQUEEZE(M. length)
3 return C

KEYSETUP(K )

1 INITIALIZESTATE()
2 ABSORB(K )



Spritz-KSA

I ABSORB takes an arbitrary sequence K of bytes as
input.

I Absorbs each byte by absorbing its two four-bit
“nibbles”.

I After each 512 bits of input, or when output is
desired, SHUFFLE procedure called to “stir the pot”
(WHIP) and to “provide forward security (CRUSH).

I Variable a is number of nibbles absorbed since last
SHUFFLE



SHUFFLE

I SHUFFLE effects a “random” one-way transformation
on the current state.

SHUFFLE()

1 WHIP(2N)
2 CRUSH()
3 WHIP(2N)
4 CRUSH()
5 WHIP(2N)
6 a = 0



WHIP

I Purpose of WHIP(r) is to “stir the pot” vigorously, by
generating and ignoring r bytes of output, then
increasing w by 2 (so w remains odd and relatively
prime to 256.)

WHIP(r)

1 for v = 0 to r − 1
2 SPRITZ-PRG() // output ignored
3 w = w + 2

I (If N is not a power of 2, WHIP increases w to the
next value that is relatively prime to N.)



CRUSH for forward security

c 9 3 d b 0 8 2 6 e a 4 7 1 5 f
0 1 2 3 4 5 6 7 8 9 a b c d e f

S

c 5 1 7 4 0 8 2 6 e a b d 3 9 fS
The elements of S are considered as N/2 pairs; each is sorted
into increasing order. The input is at the top; the output at the
bottom. Horizontal lines represent two-element sorting opera-
tions. CRUSH provides “forward security” for SHUFFLE.



Key-Setup (or general input) with ABSORB

ABSORB(K )

1 for v = 0 to K . length − 1
2 ABSORBBYTE(K [v ])

ABSORBBYTE(b)

1 ABSORBNIBBLE(LOW(b))
2 ABSORBNIBBLE(HIGH(b))

ABSORBNIBBLE(x)

1 if a = bN/2c
2 SHUFFLE()
3 SWAP(S[a],S[bN/2c+ x ])
4 a = a + 1



AbsorbNibble

9 a 0 8 4 5 6 7 3 2 1 b c d e f
0 1 2 3 4 5 6 7 8 9 a b c d e f

S :

a spots used (N/2− a) free

N/2 D N/2− D

Nibble sequence 1,2,1,0 has just been absorbed. When the
a-th nibble x is absorbed, S[a] is exchanged with S[N/2 + x ];
note that 0 ≤ x < D, where D =

√
N. ABSORB never touches

the last N/2−D elements of S, greatly limiting how adversarial
input can affect S.



SPRITZ is spongy!

I SPRITZ is also a (modified) sponge function, and
usable as a hash function:

1 INITIALIZESTATE(N)
2 ABSORB(“abc”) – ACCEPT INPUT PIECEMEAL.
3 ABSORB(“def”)
4 SQUEEZE(32) – OUTPUT 32 BYTE HASH.

5 ABSORB(“ghi”) – KEEP GOING...
6 SQUEEZE(1000)

I Large state space (like KECCAK), but also has built-in
protection against inference of key from knowledge of
internal state (which KECCAK does not).

I (But very much slower than Keccak...)



ABSORBSTOP rather than padding

I ABSORBSTOP absorbs an “out-of-alphabet” symbol;
makes for easier interfaces than padding rules.

I All ABSORBSTOP does is increase a (the number of
absorbed nibbles) by one, without actually absorbing
a nibble.

ABSORBSTOP()

1 if a = bN/2c
2 SHUFFLE()
3 a = a + 1



Spritz as a hash function

I Note that we include output length r in the hash input,
so r -byte hash outputs are not just a prefix of r ′-byte
hash outputs for r < r ′; these act as distinct hash
functions.

HASH(M, r)

1 INITIALIZESTATE()
2 ABSORB(M); ABSORBSTOP()
3 ABSORB(r)
4 return SQUEEZE(r)



Spritz as a MAC

I MAC example with r -byte output.

MAC(K ,M, r)

1 INITIALIZESTATE()
2 ABSORB(K ); ABSORBSTOP()
3 ABSORB(M); ABSORBSTOP()
4 ABSORB(r)
5 return SQUEEZE(r)



Outline

RC4

RC4 attacks

Spritz

Security Analysis of Spritz

Performance

Conclusion



Statistical testing

I Primary tool: chi-square testing for uniformity.
I Typical test: chi-square for uniformity of triple (i , z1, z)

(aka “iz1z”) where zs is z delayed s steps. Table has
N3 entries for counts.

I Tests run include jsj, iksk, izsz, ijsz, and iksz
for s up to N.

I Tested N = 16: no biases for 232 outputs; for 236

outputs biases detected (strongest iz3z).
I Chi-square biases modelled as cN−d ; good model for

all RC4-like designs; can fit curves to estimate c and
d as function of N.

I Measured biases for N = 16,24,32, extrapolate to
N = 64,128,256.



Biases measured and extrapolated

N log2(#keystream bytes)
RC4 (iz1z) Spritz (iz3z)

16 19.5799 31.7734
24 22.8294 39.0387
32 25.1350 44.1934
64 30.6900 56.6135
128 36.2450 69.0335
256 41.8000 81.4535

The expected number of outputs required for RC4 and Spritz
to reach a distribution with a chi-square deviating by one stan-
dard deviation from the expected chi-square statistic of a uni-
form distribution, for the best distinguisher in each case.



Graph

2 4 8 16 32 64 128 256

10
20
30
40
50
60
70
80
90

RC4

Spritz

log2 of outputs required versus N



Much better statistics!

I Spritz statistical biases are much fainter than for RC4.
I For N = 256:

I Can distinguish RC4-256 from random with only 241

samples.
I Our tests suggest that 281 samples are required

to distinguish SPRITZ-256 from random.



Other security properties

Design of Spritz should also make the following hard:
I inferring state from observed output
I inferring key from known state
I related-key attacks
I finding collision for Spritz as hash function



Outline

RC4

RC4 attacks

Spritz

Security Analysis of Spritz

Performance

Conclusion



Performance

I Squeeze output at 94MB/sec (24 cycles/byte)
(RC4 is 293MB/sec).

I Absorb data at 5MB/sec (408 cycles/byte)
(Keccak is 11 cycles/byte)

The virtues of Spritz are more its simplicity of of
implementation, flexibility, and secure conservative design
than its speed.



Outline

RC4

RC4 attacks

Spritz

Security Analysis of Spritz

Performance

Conclusion



Conclusion

SPRITZ is a spongy stream cipher in the style of RC4; it
shows excellent statistical properties and great flexibility
for applications.



More...

Our paper on SPRITZ is here:

people.csail.mit.edu/rivest/pubs.html#RS14

More security review needed; comments and analysis
appreciated!

Thank you!


	RC4
	RC4 attacks
	Spritz
	Security Analysis of Spritz
	Performance
	Conclusion

