
 The RC6 Block Cipher:
 A simple fast secure
 AES proposal

Ronald L. Rivest MIT
Matt Robshaw RSA Labs
Ray Sidney RSA Labs
Yiqun Lisa Yin RSA Labs

 (August 21, 1998)

Outline
 Design Philosophy
 Description of RC6
 Implementation Results
 Security
 Conclusion

Design Philosophy
 Leverage our experience with RC5: use

data-dependent rotations to achieve a
high level of security.

 Adapt RC5 to meet AES requirements
 Take advantage of a new primitive for

increased security and efficiency:
32x32 multiplication, which executes
quickly on modern processors, to
compute rotation amounts.

Description of RC6

Description of RC6
 RC6-w/r/b parameters:

– Word size in bits: w (32)(lg(w) = 5)
– Number of rounds: r (20)
– Number of key bytes: b (16, 24, or 32)

 Key Expansion:
–  Produces array S[0 … 2r + 3] of w-bit

round keys.
 Encryption and Decryption:

–  Input/Output in 32-bit registers A,B,C,D

RC6 Primitive Operations
A + B Addition modulo 2w

A - B Subtraction modulo 2w
A ⊕ B Exclusive-Or
A <<< B Rotate A left by amount in

 low-order lg(w) bits of B
A >>> B Rotate A right, similarly
(A,B,C,D) = (B,C,D,A) Parallel assignment
A x B Multiplication modulo 2w

RC
5

RC6 Encryption (Generic)
 B = B + S[0]

D = D + S[1]
for i = 1 to r do
 {
 t = (B x (2B + 1)) <<< lg(w)
 u = (D x (2D + 1)) <<< lg(w)
 A = ((A ⊕ t) <<< u) + S[2i]
 C = ((C ⊕ u) <<< t) + S[2i + 1]
 (A, B, C, D) = (B, C, D, A)
 }
A = A + S[2r + 2]
C = C + S[2r + 3]

RC6 Encryption (for AES)
 B = B + S[0]

D = D + S[1]
for i = 1 to 20 do
 {
 t = (B x (2B + 1)) <<< 5
 u = (D x (2D + 1)) <<< 5
 A = ((A ⊕ t) <<< u) + S[2i]
 C = ((C ⊕ u) <<< t) + S[2i + 1]
 (A, B, C, D) = (B, C, D, A)
 }
A = A + S[42]
C = C + S[43]

RC6 Decryption (for AES)
 C = C - S[43]

A = A - S[42]
for i = 20 downto 1 do
 {
 (A, B, C, D) = (D, A, B, C)
 u = (D x (2D + 1)) <<< 5
 t = (B x (2B + 1)) <<< 5
 C = ((C - S[2i + 1]) >>> t) ⊕ u
 A = ((A - S[2i]) >>> u) ⊕ t
 }
 D = D - S[1]
 B = B - S[0]

Key Expansion (Same as RC5’s)
  Input: array L[0 … c-1] of input key words
  Output: array S[0 … 43] of round key words
  Procedure:

S[0] = 0xB7E15163
for i = 1 to 43 do S[i] = S[i-1] + 0x9E3779B9
A = B = i = j = 0
for s = 1 to 132 do
 { A = S[i] = (S[i] + A + B) <<< 3
 B = L[j] = (L[j] + A + B) <<< (A + B)
 i = (i + 1) mod 44
 j = (j + 1) mod c }

From RC5 to RC6
 in seven easy steps

(1) Start with RC5
 RC5 encryption inner loop:
 for i = 1 to r do

 {
 A = ((A ⊕ B) <<< B) + S[i]
 (A, B) = (B, A)
 }

Can RC5 be strengthened by having rotation
amounts depend on all the bits of B?

 Modulo function?
Use low-order bits of (B mod d)
Too slow!

 Linear function?
Use high-order bits of (c x B)
Hard to pick c well!

 Quadratic function?
Use high-order bits of (B x (2B+1))
Just right!

Better rotation amounts?

B x (2B+1) is one-to-one mod 2w

Proof: By contradiction. If B ≠ C but
 B x (2B + 1) = C x (2C + 1) (mod 2w)

then
 (B - C) x (2B+2C+1) = 0 (mod 2w)
But (B-C) is nonzero and (2B+2C+1) is
odd; their product can’t be zero!

Corollary:
B uniform B x (2B+1) uniform
(and high-order bits are uniform too!)

High-order bits of B x (2B+1)
 The high-order bits of

 f(B) = B x (2B + 1) = 2B2 + B
 depend on all the bits of B .

 Let B = B31B30B29 … B1B0 in binary.
 Flipping bit i of input B

–  Leaves bits 0 … i-1 of f(B) unchanged,
–  Flips bit i of f(B) with probability one,
–  Flips bit j of f(B) , for j > i , with

probability approximately 1/2 (1/4…1),
–  is likely to change some high-order bit.

 for i = 1 to r do
 {
 t = (B x (2B + 1)) <<< 5
 A = ((A ⊕ B) <<< t) + S[i]
 (A, B) = (B, A)
 }

But now much of the output of this nice
multiplication is being wasted...

(2) Quadratic Rotation Amounts

 for i = 1 to r do
 {
 t = (B x (2B + 1)) <<< 5
 A = ((A ⊕ t) <<< t) + S[i]
 (A, B) = (B, A)
 }

Now AES requires 128-bit blocks.
We could use two 64-bit registers, but
64-bit operations are poorly supported
with typical C compilers...

(3) Use t, not B, as xor input

(4) Do two RC5’s in parallel
 Use four 32-bit regs (A,B,C,D), and do

RC5 on (C,D) in parallel with RC5 on (A,B):
 for i = 1 to r do

 {
 t = (B x (2B + 1)) <<< 5
 A = ((A ⊕ t) <<< t) + S[2i]
 (A, B) = (B, A)
 u = (D x (2D + 1)) <<< 5
 C = ((C ⊕ u) <<< u) + S[2i + 1]

 (C, D) = (D, C)
 }

(5) Mix up data between copies
 Switch rotation amounts between copies,

and cyclically permute registers instead of
swapping:
for i = 1 to r do
 {
 t = (B x (2B + 1)) <<< 5
 u = (D x (2D + 1)) <<< 5
 A = ((A ⊕ t) <<< u) + S[2i]
 C = ((C ⊕ u) <<< t) + S[2i + 1]
 (A, B, C, D) = (B, C, D, A)
 }

One Round of RC6

5 5
f f

A B C D

<<< <<<
<<< <<<

S[2i] S[2i+1]

A B C D

t u

(6) Add Pre- and Post-Whitening
 B = B + S[0]

D = D + S[1]
for i = 1 to r do
 {
 t = (B x (2B + 1)) <<< 5
 u = (D x (2D + 1)) <<< 5
 A = ((A ⊕ t) <<< u) + S[2i]
 C = ((C ⊕ u) <<< t) + S[2i + 1]
 (A, B, C, D) = (B, C, D, A)
 }
A = A + S[2r + 2]
C = C + S[2r + 3]

 B = B + S[0]
D = D + S[1]
for i = 1 to 20 do
 {
 t = (B x (2B + 1)) <<< 5
 u = (D x (2D + 1)) <<< 5
 A = ((A ⊕ t) <<< u) + S[2i]
 C = ((C ⊕ u) <<< t) + S[2i + 1]
 (A, B, C, D) = (B, C, D, A)
 }
A = A + S[42]
C = C + S[43]

(7) Set r = 20 for high security

Final RC6

(based on analysis)

RC6 Implementation Results

Less than two clocks per bit of plaintext !

CPU Cycles / Operation

Operations/Second (200MHz)

Encryption Rate (200MHz)
MegaBytes / second
MegaBits / second

Over 100 Megabits / second !

On an 8-bit processor
 On an Intel MCS51 (1 Mhz clock)
 Encrypt/decrypt at 9.2 Kbits/second

(13535 cycles/block;
 from actual implementation)

 Key setup in 27 milliseconds
 Only 176 bytes needed for table of

round keys.
 Fits on smart card (< 256 bytes RAM).

Custom RC6 IC
 0.25 micron CMOS process
 One round/clock at 200 MHz
 Conventional multiplier designs
 0.05 mm2 of silicon
 21 milliwatts of power
 Encrypt/decrypt at 1.3 Gbits/second
 With pipelining, can go faster, at cost

of more area and power

RC6 Security Analysis

Analysis procedures
 Intensive analysis, based on most

effective known attacks (e.g. linear
and differential cryptanalysis)

 Analyze not only RC6, but also several
“simplified” forms (e.g. with no
quadratic function, no fixed rotation
by 5 bits, etc…)

Linear analysis
 Find approximations for r-2 rounds.
 Two ways to approximate A = B <<< C

–  with one bit each of A, B, C (type I)
–  with one bit each of A, B only (type II)
–  each have bias 1/64; type I more useful

 Non-zero bias across f(B) only when
input bit = output bit. (Best for lsb.)

 Also include effects of multiple linear
approximations and linear hulls.

Estimate of number of plaintext/ciphertext
pairs required to mount a linear attack.

(Only 2128 such pairs are available.)

 Rounds Pairs

 8 247

 12 283

 16 2119

 20 RC6 2155

 24 2191

Security against linear attacks

Infeasible

Differential analysis
 Considers use of (iterative and non-

iterative) (r-2)-round differentials as
well as (r-2)-round characteristics.

 Considers two notions of “difference”:
–  exclusive-or
–  subtraction (better!)

 Combination of quadratic function and
fixed rotation by 5 bits very good at
thwarting differential attacks.

An iterative RC6 differential
  A B C D

 1<<16 1<<11 0 0
 1<<11 0 0 0
 0 0 0 1<<s
 0 1<<26 1<<s 0
 1<<26 1<<21 0 1<<v
 1<<21 1<<16 1<<v 0
 1<<16 1<<11 0 0

 Probability = 2-91

Estimate of number of plaintext pairs
required to mount a differential attack.

(Only 2128 such pairs are available.)

 Rounds Pairs

 8 256

 12 297

 16 2190

 20 RC6 2238

 24 2299

Security against
 differential attacks

Infeasible

Security of Key Expansion
 Key expansion is identical to that of

RC5; no known weaknesses.
 No known weak keys.
 No known related-key attacks.
 Round keys appear to be a “random”

function of the supplied key.
 Bonus: key expansion is quite “one-

way”---difficult to infer supplied key
from round keys.

Conclusion
 RC6 more than meets the

requirements for the AES; it is
–  simple,
–  fast, and
–  secure.

 For more information, including copy
of these slides, copy of RC6
description, and security analysis, see
 www.rsa.com/rsalabs/aes

 (The End)

