The RC6 Block Cipher: A simple fast secure AES proposal

Ronald L. Rivest MIT Matt Robshaw RSA Labs
Ray Sidney RSA Labs
Yiqun Lisa Yin RSA Labs

Outline

- Design Philosophy
- Description of RC6
- Implementation Results
- Security
- Conclusion

Design Philosophy

- Leverage our experience with RC5: use data-dependent rotations to achieve a high level of security.
- Adapt RC5 to meet AES requirements
- Take advantage of a new primitive for increased security and efficiency: 32×32 multiplication, which executes quickly on modern processors, to compute rotation amounts.

Description of RC6

Description of RC6

-RC6-w/r/b parameters:

- Word size in bits: w $\quad(32)(\lg (w)=5)$
- Number of rounds: r (20)
- Number of key bytes: b (16, 24, or 32)
- Key Expansion:
- Produces array S[0... $2 r+3$] of w-bit round keys.
- Encryption and Decryption:
- Input/Output in 32-bit registers A,B,C,D

RC6 Primitive Operations

$\triangle A+B$	Addition modulo $2^{\text {w }}$
$A-B$	Subtraction modulo $2^{\text {w }}$
$A \oplus B$	Exclusive-Or
$\underset{\underline{\sim}}{\underset{\sim}{\sim}} A \ll B$	Rotate A left by amount in low-order $\lg (w)$ bits of B
$A \ggg B$	Rotate A right, similarly
$\checkmark(A, B, C, D)=(B, C, D, A)$ Parallel assignment	
$A \times B$	Multiplication modulo ${ }^{\text {w }}$

RC6 Encryption (Generic)

$B=B+S[0]$
$D=D+S[1]$
for $i=1$ to r do

$$
\{
$$

$$
t=(B \times(2 B+1)) \lll \lg (w)
$$

$$
u=(D \times(2 D+1)) \lll \lg (w)
$$

$$
A=((A \oplus t) \ll u)+S[2 i]
$$

$$
C=((C \oplus u) \lll t)+S[2 i+1]
$$

$$
(A, B, C, D)=(B, C, D, A)
$$

$$
\begin{aligned}
& \} \\
& A=A+S[2 r+2] \\
& C=C+S[2 r+3]
\end{aligned}
$$

RC6 Encryption (for AES)

$$
\begin{aligned}
& B=B+S[0] \\
& D=D+S[1]
\end{aligned}
$$

for $i=1$ to 20 do

$$
\{
$$

$$
t=(B \times(2 B+1)) \lll 5
$$

$$
u=(D \times(2 D+1)) \lll 5
$$

$$
A=((A \oplus t) \ll u)+S[2 i]
$$

$$
C=((C \oplus u) \lll t)+S[2 i+1]
$$

$$
(A, B, C, D)=(B, C, D, A)
$$

$$
\}
$$

$$
A=A+S[42]
$$

$$
C=C+S[43]
$$

RC6 Decryption (for AES)

$C=C-S[43]$
$A=A-S[42]$
for $i=20$ downto 1 do

$$
\begin{aligned}
&\{ \\
&(A, B, C, D)=(D, A, B, C) \\
& u=(D \times(2 D+1)) \lll \\
& \dagger=(B \times(2 B+1)) \lll \\
& C=((C-S[2 i+1]) \gg t) \oplus u \\
& A=((A-S[2 i]) \gg u) \oplus t \\
&\} \\
& D=D-S[1] \\
& B= B-S[0]
\end{aligned}
$$

Key Expansion (Same as RC5's)

- Input: array L[0 ... c-1] of input key words
- Output: array S[0 ... 43] of round key words
- Procedure:

S[0] = 0xB7E15163
for $i=1$ to 43 do $S[i]=S[i-1]+0 \times 9 E 3779 B 9$
$A=B=i=j=0$
for $s=1$ to 132 do

$$
\begin{aligned}
&\left\{\begin{array}{l}
A
\end{array}=S[i]=(S[i]+A+B) \lll 3\right. \\
& B=L[j]=(L[j]+A+B) \lll(A+B) \\
& i=(i+1) \bmod 44 \\
& j=(j+1) \bmod c \quad\}
\end{aligned}
$$

From RC5 to RC6 in seven easy steps

(1) Start with RC5

RC5 encryption inner loop:
for $i=1$ to r do \{
$A=((A \oplus B) \lll B)+S[i]$
$(A, B)=(B, A)$
\}
Can RC5 be strengthened by having rotation amounts depend on all the bits of B ?

Better rotation amounts?

- Modulo function?

Use low-order bits of (B mod d) Too slow!

- Linear function? Use high-order bits of $(c \times B)$ Hard to pick c well!
- Quadratic function?

Use high-order bits of $(B \times(2 B+1))$
Just right!

$B \times(2 B+1)$ is one-to-one mod 2^{w}

Proof: By contradiction. If $B \neq C$ but $B \times(2 B+1)=C \times(2 C+1)\left(\bmod 2^{w}\right)$
then

$$
(B-C) \times(2 B+2 C+1)=0 \quad\left(\bmod 2^{W}\right)
$$

But $(B-C)$ is nonzero and $(2 B+2 C+1)$ is odd; their product can't be zero!
\square
Corollary:
B uniform $\rightarrow B \times(2 B+1)$ uniform (and high-order bits are uniform too!)

High-order bits of $B \times(2 B+1)$

- The high-order bits of

$$
f(B)=B \times(2 B+1)=2 B^{2}+B
$$

depend on all the bits of B.

- Let $B=B_{31} B_{30} B_{29} \ldots B_{1} B_{0}$ in binary.
- Flipping bit i of input B
- Leaves bits 0 ... i-1 of $f(B)$ unchanged,
- Flips bit i of $f(B)$ with probability one,
- Flips bit j of $f(B)$, for $j>i$, with probability approximately $1 / 2$ (1/4...1),
- is likely to change some high-order bit.

(2) Quadratic Rotation Amounts

for $i=1$ to r do \{
$t=(B \times(2 B+1)) \lll 5$
$A=((A \oplus B) \ll t)+S[i]$
$(A, B)=(B, A)$
\}
But now much of the output of this nice multiplication is being wasted...

(3) Use t, not B , as xor input

for $i=1$ to r do \{

$$
t=(B \times(2 B+1)) \lll 5
$$

$$
A=((A \oplus \dagger) \lll t)+S[i]
$$

$$
(A, B)=(B, A)
$$

$$
\}
$$

Now AES requires 128-bit blocks.
We could use two 64-bit registers, but 64 -bit operations are poorly supported with typical C compilers...

(4) Do two RC5's in parallel

Use four 32-bit regs (A, B, C, D), and do $R C 5$ on (C, D) in parallel with $R C 5$ on (A, B): for $i=1$ to r do \{

$$
\begin{aligned}
& t=(B \times(2 B+1)) \lll 5 \\
& A=((A \oplus t) \ll t)+S[2 i] \\
& (A, B)=(B, A) \\
& u=(D \times(2 D+1)) \lll 5 \\
& C=((C \oplus u) \ll u)+S[2 i+1] \\
& (C, D)=(D, C)
\end{aligned}
$$

(5) Mix up data between copies

Switch rotation amounts between copies, and cyclically permute registers instead of swapping:
for

$$
\begin{aligned}
& t=(B \times(2 B+1)) \lll 5 \\
& u=(D \times(2 D+1)) \lll 5 \\
& A=((A \oplus t) \lll u)+S[2 i] \\
& C=((C \oplus u) \lll \square)+S[2 i+1] \\
& (A, B, C, D)=(B, C, D, A)
\end{aligned}
$$

One Round of RC6

(6) Add Pre- and Post-Whitening

$$
\begin{aligned}
& B=B+S[0] \\
& D=D+S[1] \\
& \text { for } \mathrm{i}=1 \text { to } \mathrm{r} \text { do } \\
& \text { \{ } \\
& \dagger=(B \times(2 B+1)) \lll 5 \\
& u=(D \times(2 D+1)) \lll 5 \\
& A=((A \oplus t) \lll u)+S[2 i] \\
& C=((C \oplus u) \lll t)+S[2 i+1] \\
& (A, B, C, D)=(B, C, D, A) \\
& \begin{array}{l}
\} \\
A=A+S[2 r+2] \\
C=C+S[2 r+3]
\end{array}
\end{aligned}
$$

(7) Set $r=20$ for high security

$B=B+S[0]$
(based on analysis)
$D=D+S[1]$
for $i=1$ to 20 do

$$
t=(B \times(2 B+1)) \lll 5
$$

$$
u=(D \times(2 D+1)) \lll 5
$$

$$
A=((A \oplus t) \ll u)+S[2 i]
$$

$$
c=((c \oplus u) \lll t)+S[2 i+1]
$$

$$
(A, B, C, D)=(B, C, D, A)
$$

$$
\begin{gathered}
\} \\
A=A+S[42] \\
C=C+S[43]
\end{gathered}
$$

Final RC6

RC6 Implementation Results

CPU Cycles / Operation

Java Borland C Assembly

Setup $1100002300 \sim 1000$
Encrypt $16200616 \quad 254$
Decrypt 16500566
254
Less than two clocks per bit of plaintext !

Operations/Second (200MHz)

Java Borland C Assembly

Setup 182086956 ~200000
Encrypt 12300325000787000
Decrypt 12100353000788000

Encryption Rate (200MHz)

MegaBytes / second MegaBits / second

Java Borland C Assembly

On an 8-bit processor

- On an Intel MCS51 (1 Mhz clock)
- Encrypt/decrypt at 9.2 Kbits/second (13535 cycles/block; from actual implementation)
- Key setup in 27 milliseconds
- Only 176 bytes needed for table of round keys.
- Fits on smart card (< 256 bytes RAM).

Custom RC6 IC

- 0.25 micron CMOS process
- One round/clock at 200 MHz
- Conventional multiplier designs
- $0.05 \mathrm{~mm}^{2}$ of silicon
- 21 milliwatts of power
- Encrypt/decrypt at 1.3 Gbits/second
- With pipelining, can go faster, at cost of more area and power

RC6 Security Analysis

Analysis procedures

- Intensive analysis, based on most effective known attacks (e.g. linear and differential cryptanalysis)
- Analyze not only RC6, but also several "simplified" forms (e.g. with no quadratic function, no fixed rotation by 5 bits, etc...)

Linear analysis

- Find approximations for r-2 rounds.
- Two ways to approximate $A=B \lll C$
- with one bit each of A, B, C (type I)
- with one bit each of A, B only (type II)
- each have bias 1/64; type I more useful
- Non-zero bias across $f(B)$ only when input bit = output bit. (Best for lsb.)
- Also include effects of multiple linear approximations and linear hulls.

Security against linear attacks

Estimate of number of plaintext/ciphertext pairs required to mount a linear attack.
(Only 2^{128} such pairs are available.)

Differential analysis

- Considers use of (iterative and noniterative) ($r-2$)-round differentials as well as ($r-2$)-round characteristics.
- Considers two notions of "difference":
- exclusive-or
- subtraction (better!)
- Combination of quadratic function and fixed rotation by 5 bits very good at thwarting differential attacks.

An iterative RC6 differential

A	B	C	D
$1<16$	$1 \ll 11$	0	0
$1<11$	0	0	0
0	0	0	$1 \ll s$
0	$1<26$	$1 \ll s$	0
$1 \ll 26$	$1<21$	0	$1 \ll v$
$1<21$	$1<16$	$1 \ll v$	0
$1<16$	$1 \ll 11$	0	0

- Probability $=2^{-91}$

Security against differential attacks

Estimate of number of plaintext pairs required to mount a differential attack.
(Only 2^{128} such pairs are available.)

Security of Key Expansion

- Key expansion is identical to that of RC5; no known weaknesses.
- No known weak keys.
- No known related-key attacks.
- Round keys appear to be a "random" function of the supplied key.
- Bonus: key expansion is quite "one-way"---difficult to infer supplied key from round keys.

Conclusion

- RC6 more than meets the requirements for the AES; it is
- simple,
- fast, and
- secure.
- For more information, including copy of these slides, copy of RC6 description, and security analysis, see www.rsa.com/rsalabs/aes
(The End)

