The [RC6

Ronald L. Rivest MIT

Matt Robshaw
Ray Sidney
Yiqun Lisa Yin

Block Cipher:

A simple fast secure
AES proposal

RSA
RSA
RSA

_abs
_abs

_abs

(August 21, 1998)

Outline

¢ Design Philosophy

¢ Description of RC6

¢ Implementation Results
¢ Security

¢ Conclusion

Design Philosophy

¢ Leverage our experience with RCbH: use
data-dependent rotations to achieve a
high level of security.

¢ Adapt RCH to meet AES requirements

¢ Take advantage of a new primitive for
increased security and efficiency:
32x32 multiplication, which executes
quickly on modern processors, to
compute rotation amounts.

Description of RC6

Description of RC6

¢ RC6-w/r/b parameters:
- Word size in bits: w (32)(Ilglw)=5)
- Number of rounds: r (20)
- Number of key bytes: b (16, 24, or 32)
¢ Key Expansion:
- Produces array S[O ..2r+ 3] of w-bit
round Kkeys.

¢ Encryption and Decryption:
- Input/Output in 32-bit registers A,B,C,D

RC6 Primitive Operations

/AA+B Addition modulo 2"
A-B Subtraction modulo 2"
| A®B Exclusive-Or
8 A <«< B Rotate A left by amount in
a4 low-order Ig(w) bits of B
A >»> B Rotate A right, similarly

vV (ABCD)=(B.CD,A) Parallel assignment

A xB Multiplication modulo 2"

RC6 Encryption (Generic)

B=B+S[0]

D=D+9S5[1]

for i = 1 to r do

{

(2B +1)) «< lg(w)
(2D+1)) « Ig(w)
@®t) «u) + S[2i]
@Du) « t)+ S[2i+1]
,D) = (B,C,D, A

f'):('\;bc —+
"n o, nn
N~~~ W
ﬁ}x X

IBI
}

A=A+S[2r+2]

C=C+S[2r+3]

RC6 Encryption (for AES)

B=B+S5S[0]
D=D+95[1]
for i = 1 to 20 do
{
(2B +1)) «< 5
(2D+1)) « b
@t) ««u) + S[2i]
Du) «<< 1)+ S[2i+1]
,D) = (B,C,D,A)
}

A=A+S5[42]
C= C+5[43]

’;(\}C —t
oy M I
N~~~ T W
ﬁ}x X

, B,

RC6 Decryption (for AES)

C= C-5[43]

A= A-5[42]
for i = 20 downto 1 do
A, B C,D)= (D, A B,C)

(2D +1)) «« 5
(2B +1)) <««
S[2|+1])>>>’r)€r>u
-S[2i])>»>u)et

Famn
THEL i
r\"\wcﬁ

}(\—FC
AA’-\A

Key Expansion (Same as RC5's)

¢ Input: array L[O ..c-1]of input key words
¢ Output: array S[O .. 43] of round key words

¢ Procedure:

S[0]=0xB7E15163

for i=1 to 43 do S[i] = S[i-1] + Ox9E3779B9

A:B:i:J:O

for s=1 to 132 do

{ A=S[i]=(S[i]+A+B)<«<3

B=L[j]1=(L[j]+A+B)<«<(A+B)
i=(i+1) mod 44
j=(j+1) modc }

From RCH to RC6
In seven easy steps

(1) Start with RCH

RC5 encryption inner loop:

for i = 1 to r do
{
A=((A®B) ««B) +5[i]
(A.B)=(B,A)
}

Can RC5 be strengthened by having rotation
amounts depend on all the bits of B?

Better rotation amounts?

¢ Modulo function?
Use low-order bits of (B mod d)

Too slow!

¢ Linear function?
Use high-order bits of (¢ xB)
Hard to pick ¢ welll

¢ Quadratic function?

Use high-order bits of (B x (2B+1))

Just right!

B x (2B+1) is one-to-one mod 2"

Proof: By contradiction. If B = C but

Bx(2B+1)=Cx (2C +1) (mod 2")
then

(B-C)x (2B+2C+1)=0 (mod 2")

But (B-C) is nonzero and (2B+2C+1) is

odd; their product can't be zerol O

Corollary:
B uniform = B x (2B+1) uniform
(and high-order bits are uniform too!)

High-order bits of B x (2B+1)

¢ The high-order bits of
f(B)=Bx(2B+1) = 2B°+B
depend on all the bits of B.
o Let B = B;3B;,B,yg ... B{By inbinary.
¢ Flipping bit i of input B
- Leaves bits 0 .. i-1 of f(B) unchanged,
- Flips bit i of f(B) with probability one,

- Flips bit j of f(B), for j>i, with
probability approximately 1/2 (1/4..1),

- is likely to change some high-order bit.

(2) Quadratic Rotation Amounts

for i = 1 to r do
{

=(Bx(2B+1))««<bH
((A@B) «<|t]) +S[i]

But now much of the output of this nice
multiplication is being wasted...

(3) Use t, not B, as xor input

for i = 1 to r do
{
t=(Bx(2B+1))«« 5
A=((A@’r) «<t) +S[i]
}(A)=(B,A)

Now AES requires 128-bit blocks.

We could use two 64-bit registers, but
64-bit operations are poorly supported
with typical C compilers...

(4) Do two RCH's in parallel

Use four 32-bit regs (A,B,C,D), and do
RC5 on (C,D) in parallel with RC5 on (A,B):
for i = 1 to r do

{
= (B x (2B +1)) «« b

= ((A®1t) « 1) + S[[2i]]
B,A)

A

@u) « u) + S[2i+1]
(D, C)

"\('\C"\:b—l-

B)=(

(D x (2D+1)) « b
((C

D)=

(5) Mix up data between copies

Switch rotation amounts between copies,
and cyclically permute registers instead of
swapping:
for i =1 to r do
{

(2B +1)) «< b

(2D+1)) « B
®t) «[u)) + S[2i]
u) «[f) + S[2i+1]
,D) = (B,C, D, A)

T REETINLE
ﬁ}xx
@

ﬁ"\f‘\UW

S
\wr\,\f\"\

S:('\}:: —+

One Round of RC6

K<L

(6) Add Pre- and Post-Whitening

B=B+S[OH

D=D+95[1

for i = 1 to r do
{

(2B +1)) «< b
(2D+1)) « b

®t) « u) + S[2i]
@u) « t)+ S[2i+1]
,D) = (B,C, D, A)

f):('\;bc —+
n oy ol
N~~~ W
ﬁ}x X

, B,
}

A=A+S[2r+2]

C=C+S5[2r+3]

/) Set r = 20 for high security

B=B+S[0] (based on analysis)
D=D+95[1]
for i = 1 to |20] do

{

}

a:4-s8) [Final RC6

C= C+S[|43]]

(2B +1)) «< b
(2D+1)) « b

®t) « u) + S[2i]
@u) « t)+ S[2i+1]
,D) = (B,C,D, A)

TO>c +
N~~~ W®
ﬁ}x X

, B,

RC6 Implementation Results

CPU Cycles / Operation

Java Borland C Assembly

Setup 110000 2300 ~1000

Encrypt 16200 616 254

Decrypt 16500 D66 254

Less than two clocks per bit of plaintext |

Operations/Second (200MHz)

Java

Setup 1820

Encrypt 12300

Decrypt 12100

Borland € Assembly

86956
325000
353000

~200000

/787000
/788000

Encryption Rate (200MHz)

MegaBytes / second
MegaBits / second
Java Borland € Assembly
Encrypt 0.197 5.19 12.6
1.57 41.5 100.8
Decrypt 0.194 5.65 12.6
1.55 45.2 100.8

Over 100 Megabits / second | _T

On an 8-bit processor

¢ On an Intel MCSH51 (1 Mhz clock)

Encrypt/decrypt at 9.2 Kbits/second
(13535 cycles/block;

from actual implementation)

¢

\ 4

Key setup in 27 milliseconds

¢ Only 176 bytes needed for table of

4

round keys.

Fits on smart card

(< 256 bytes RAM).

Custom RC6 IC

¢ 0.25 micron CMOS process

¢

One round/clock at 200 MHz

¢ Conventional multiplier designs
+ 0.05 mm?® of silicon

4
4
4

21 milliwatts of power

Encrypt/decrypt at 1.3 Gbits/second

With pipelining, can go faster, at cost

of more area and power

RC6 Security Analysis

Analysis procedures

¢ Intensive analysis, based on most
effective known attacks (e.g. linear
and differential cryptanalysis)

¢ Analyze not only RC6, but also several
"simplified” forms (e.g. with no
quadratic function, no fixed rotation
by b bits, etc...)

Linear analysis

¢ Find approximations for r-2 rounds.

¢ Two ways to approximate A = B<««< C
- with one bit each of A,B,C (type I)
- with one bit each of A, Bonly (type II)
- each have bias 1/64; type I more useful

¢ Non-zero bias across f(B) only when
input bit = output bit. (Best for Isb.)

¢ Also include effects of multiple linear
approximations and linear hulls.

Security against linear attacks

Estimate of number of plaintext/ciphertext
pairs required to mount a linear attack.

(Only 2'*® such pairs are available.)

Rounds Pairs
8 247
12 283
16 2119

20— RC6 — 2°® Infeasible
24 2

Dif ferential analysis

¢ Considers use of (iterative and non-
iterative) (r-2)-round differentials as
well as (r-2)-round characteristics.

o Considers two notions of “difference":
- exclusive-or
- subtraction (better!)

¢ Combination of quadratic function and
fixed rotation by 5 bits very good at
thwarting differential attacks.

An iterative RC6 differential

o A B C D
1<<16 1«<11 0 0
1<<11 0 0 O
0 0 0 1«s
0 1«26 1«s 0
1«26 1«21 0 1<«<v
1«<21 1«16 1<«<v 0
1«<16 1«<11 0 0

¢ Probability = 27

Security against

differential attacks

Estimate of number of plaintext pairs
required to mount a differential attack.

(Only 2'*® such pairs are available.)

Rounds Pairs
8 256
12 2°7
16 2190 Infeasible

20 +— RC6 — 2°%¢
24 2297

Security of Key Expansion

¢ Key expansion is identical to that of
RCH: no known weaknesses.

¢ No known weak keys.
¢ No known related-key attacks.

¢ Round keys appear to be a "random”
function of the supplied key.

¢ Bonus: key expansion is quite "one-

way"---difficult to infer supplied key
from round keys.

Conclusion

¢/RC6 more than meets the
requirements for the AES; it is
- simple,

- fast, and

- Secure.

¢ For more information, including copy
of these slides, copy of RC6
description, and security analysis, see
www.rsa.com/rsalabs/aes

(The End)

