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Design Philosophy 
 Leverage our experience with RC5: use 

data-dependent rotations to achieve a 
high level of security. 

 Adapt RC5 to meet AES requirements  
 Take advantage of a new primitive for 

increased security and efficiency: 
32x32 multiplication, which executes 
quickly on modern processors, to 
compute rotation amounts. 



Description of RC6 



Description of RC6 
 RC6-w/r/b  parameters: 

– Word size in bits:        w   ( 32 )( lg(w) = 5 ) 
– Number of rounds:       r   ( 20 ) 
– Number of key bytes:  b   ( 16, 24, or 32 ) 

 Key Expansion:  
–  Produces array  S[ 0 … 2r + 3 ]  of  w-bit 

round keys. 
 Encryption and Decryption: 

–  Input/Output in 32-bit registers A,B,C,D 



RC6 Primitive Operations 
A + B   Addition modulo 2w 

A - B   Subtraction modulo 2w 
A ⊕ B   Exclusive-Or 
A <<< B   Rotate  A  left by amount in  

              low-order  lg(w ) bits of B  
A >>> B   Rotate  A  right, similarly 
(A,B,C,D) = (B,C,D,A)   Parallel assignment 
A x B   Multiplication modulo 2w  

RC
5 



RC6 Encryption (Generic) 
    B = B + S[ 0 ] 

D = D + S[ 1 ] 
for  i  =  1  to  r  do 
    { 
        t  =  ( B  x  ( 2B  + 1 ) )  <<<  lg( w ) 
        u  =  ( D  x  ( 2D + 1 ) )  <<<  lg( w ) 
        A  =  ( ( A ⊕ t )  <<<  u )  +  S[ 2i ] 
        C  =  ( ( C  ⊕ u )  <<<  t )  +  S[ 2i + 1 ] 
        (A, B, C, D)  =  (B, C, D, A) 
     } 
A = A + S[ 2r + 2 ] 
C =  C + S[ 2r + 3 ]  



RC6 Encryption (for AES) 
    B = B + S[ 0 ] 

D = D + S[ 1 ] 
for  i  =  1  to  20  do 
    { 
        t  =  ( B  x  ( 2B  + 1 ) )  <<<  5 
        u  =  ( D  x  ( 2D + 1 ) )  <<<  5 
        A  =  ( ( A ⊕ t )  <<<  u )  +  S[ 2i ] 
        C  =  ( ( C  ⊕ u )  <<<  t )  +  S[ 2i + 1 ] 
        (A, B, C, D)  =  (B, C, D, A) 
     } 
A = A + S[ 42 ] 
C =  C + S[ 43 ]  



RC6 Decryption (for AES) 
    C =  C - S[ 43 ] 

A =  A - S[ 42 ] 
for  i  =  20  downto  1  do 
    { 
        (A, B, C, D)  =  (D, A, B, C)  
        u  =  ( D  x  ( 2D + 1 ) )  <<<  5  
        t  =  ( B  x  ( 2B  + 1 ) )  <<<  5 
        C  =  ( ( C - S[ 2i + 1 ] ) >>> t ) ⊕ u  
        A  =  ( ( A - S[ 2i ] ) >>> u ) ⊕ t 
    } 
 D = D - S[ 1 ]  
 B = B - S[ 0 ] 



Key Expansion (Same as RC5’s) 
  Input:     array  L[ 0 … c-1 ] of input key words 
  Output:   array S[ 0 … 43 ]  of round key words 
  Procedure: 

S[ 0 ] = 0xB7E15163 
for  i = 1  to  43  do S[i] = S[i-1] + 0x9E3779B9 
A = B = i = j = 0 
for  s = 1  to  132  do 
    {  A = S[ i ] = ( S[ i ] + A + B ) <<< 3 
        B = L[ j ] = ( L[ j ] + A + B ) <<< ( A + B ) 
        i = ( i + 1 )   mod 44 
        j = ( j + 1 )  mod c           } 



From RC5 to RC6 
   in seven easy steps 



(1) Start with RC5 
  RC5 encryption inner loop: 
    for  i  =  1  to  r  do 

      {  
          A = ( ( A ⊕ B )  <<< B )  + S[ i ] 
          ( A, B ) = ( B, A ) 
      } 

Can RC5 be strengthened by having rotation 
amounts depend on all the bits of B? 



 Modulo function? 
Use low-order bits of  ( B  mod d ) 
Too slow! 

 Linear function? 
Use high-order bits of  ( c x B ) 
Hard to pick  c  well!  

 Quadratic function? 
Use high-order bits of ( B x (2B+1) ) 
Just right!  

Better rotation amounts? 



B x (2B+1) is  one-to-one  mod 2w 

Proof:  By contradiction.  If  B ≠ C  but           
 B x (2B + 1) = C x (2C + 1) (mod 2w)   

then 
    (B - C) x (2B+2C+1) = 0      (mod 2w) 
But (B-C) is nonzero and (2B+2C+1) is 
odd; their product can’t be zero!      

Corollary:   
B  uniform  B x (2B+1) uniform  
(and high-order bits are uniform too!) 



High-order bits of  B x (2B+1)   
 The high-order bits of   

 f(B) = B x ( 2B + 1 )  =  2B2 + B  
  depend on all the bits of  B .  

 Let  B  =  B31B30B29 … B1B0   in binary. 
 Flipping bit  i  of input  B 

–  Leaves bits  0 … i-1  of  f(B)  unchanged, 
–  Flips bit  i  of  f(B)  with probability one, 
–  Flips bit  j  of  f(B) ,  for j > i , with 

probability approximately 1/2  (1/4…1), 
–  is likely to change some high-order bit. 



  for  i  =  1  to  r  do 
    {    
        t = ( B x ( 2B + 1 ) ) <<< 5 
        A = ( ( A ⊕ B )  <<< t )  + S[ i ] 
        ( A, B ) = ( B, A ) 
     } 

But now much of the output of this nice 
multiplication is being wasted... 

(2) Quadratic Rotation Amounts  



  for  i  =  1  to  r  do 
    {    
        t = ( B x ( 2B + 1 ) ) <<< 5 
        A = ( ( A ⊕ t )  <<< t )  + S[ i ] 
        ( A, B ) = ( B, A ) 
     } 

Now AES requires 128-bit blocks.   
We could use two 64-bit registers, but  
64-bit operations are poorly supported 
with typical C compilers...   

(3) Use  t, not B, as xor input 



(4) Do two RC5’s in parallel 
  Use four 32-bit regs (A,B,C,D), and do  

RC5 on (C,D) in parallel with RC5 on (A,B):    
   for  i  =  1  to  r  do 

    {  
        t  =  ( B  x  ( 2B  + 1 ) )  <<<  5 
        A  =  ( ( A ⊕ t )  <<<  t )  +  S[ 2i ]     
        ( A, B ) = ( B, A ) 
        u  =  ( D  x  ( 2D + 1 ) )  <<<  5 
        C  =  ( ( C  ⊕ u )  <<<  u )  +  S[ 2i + 1 ] 

           ( C, D ) = ( D, C ) 
    } 



(5) Mix up data between copies 
   Switch rotation amounts between copies, 

and cyclically permute registers instead of 
swapping:  
for  i  =  1  to  r  do 
    { 
        t  =  ( B  x  ( 2B  + 1 ) )  <<<  5 
        u  =  ( D  x  ( 2D + 1 ) )  <<<  5 
        A  =  ( ( A ⊕ t )  <<<  u )  +  S[ 2i ] 
        C  =  ( ( C  ⊕ u )  <<<  t )  +  S[ 2i + 1 ] 
        (A, B, C, D)  =  (B, C, D, A) 
     } 



One Round of RC6 
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(6) Add Pre- and Post-Whitening 
    B = B + S[ 0 ] 

D = D + S[ 1 ] 
for  i  =  1  to  r  do 
    { 
        t  =  ( B  x  ( 2B  + 1 ) )  <<<  5 
        u  =  ( D  x  ( 2D + 1 ) )  <<<  5 
        A  =  ( ( A ⊕ t )  <<<  u )  +  S[ 2i ] 
        C  =  ( ( C  ⊕ u )  <<<  t )  +  S[ 2i + 1 ] 
        (A, B, C, D)  =  (B, C, D, A) 
     } 
A = A + S[ 2r + 2 ] 
C =  C + S[ 2r + 3 ]  



    B = B + S[ 0 ] 
D = D + S[ 1 ] 
for  i  =  1  to  20  do 
    { 
        t  =  ( B  x  ( 2B  + 1 ) )  <<<  5 
        u  =  ( D  x  ( 2D + 1 ) )  <<<  5 
        A  =  ( ( A ⊕ t )  <<<  u )  +  S[ 2i ] 
        C  =  ( ( C  ⊕ u )  <<<  t )  +  S[ 2i + 1 ] 
        (A, B, C, D)  =  (B, C, D, A) 
     } 
A = A + S[ 42 ] 
C =  C + S[ 43 ]  

(7) Set r = 20 for high security  

Final RC6 

(based on analysis) 



RC6 Implementation Results 



Less than two clocks per bit of plaintext ! 

CPU Cycles / Operation 



Operations/Second (200MHz) 



Encryption Rate (200MHz) 
MegaBytes / second 
MegaBits   / second 

Over 100 Megabits / second !  



On an 8-bit processor 
 On an Intel MCS51  ( 1 Mhz clock ) 
 Encrypt/decrypt at 9.2 Kbits/second 

(13535 cycles/block;  
 from actual implementation) 

 Key setup in 27 milliseconds 
 Only  176  bytes needed for table of 

round keys. 
 Fits on smart card (< 256 bytes RAM). 



Custom RC6 IC 
 0.25 micron CMOS process 
 One round/clock at 200 MHz 
 Conventional multiplier designs 
 0.05 mm2 of silicon 
 21 milliwatts of power 
 Encrypt/decrypt at 1.3 Gbits/second 
 With pipelining, can go faster, at cost 

of more area and power 



RC6 Security Analysis 



Analysis procedures 
 Intensive analysis, based on most 

effective known attacks (e.g. linear 
and differential cryptanalysis) 

 Analyze not only RC6, but also several 
“simplified” forms (e.g. with no 
quadratic function, no fixed rotation 
by 5 bits, etc…) 



Linear analysis 
 Find approximations for  r-2  rounds. 
 Two ways to approximate  A = B <<< C 

–  with one bit each of A, B, C       (type I) 
–  with one bit each of A, B only    (type II) 
–  each have bias  1/64; type I more useful 

 Non-zero bias across f(B) only when 
input bit = output bit.  (Best for lsb.) 

 Also include effects of multiple linear 
approximations and linear hulls. 



Estimate of number of plaintext/ciphertext 
pairs required to mount a linear attack.   

(Only 2128 such pairs are available.) 

 Rounds   Pairs 

     8       247 

     12       283 

     16       2119 

     20          RC6     2155 

     24       2191 

Security against linear attacks 

Infeasible 



Differential analysis 
 Considers use of (iterative and non-

iterative) (r-2)-round differentials as 
well as (r-2)-round characteristics. 

 Considers two notions of “difference”: 
–  exclusive-or 
–  subtraction (better!) 

 Combination of quadratic function and 
fixed rotation by 5 bits very good at 
thwarting differential attacks.  



An iterative RC6 differential 
      A             B               C              D 

    1<<16       1<<11          0               0 
    1<<11        0               0               0 
    0             0               0               1<<s 
    0             1<<26         1<<s           0 
    1<<26       1<<21         0               1<<v 
    1<<21       1<<16          1<<v           0 
    1<<16       1<<11          0               0 

 Probability  =  2-91  



Estimate of number of plaintext pairs 
required to mount a differential attack.   

(Only 2128 such pairs are available.) 

 Rounds   Pairs 

     8       256 

     12       297 

     16       2190 

     20          RC6     2238 

     24       2299 

Security against  
    differential attacks 

Infeasible 



Security of Key Expansion 
 Key expansion is identical to that of 

RC5; no known weaknesses. 
 No known weak keys. 
 No known related-key attacks. 
 Round keys appear to be a “random” 

function of the supplied key. 
 Bonus: key expansion is quite “one-

way”---difficult to infer supplied key 
from round keys. 



Conclusion 
 RC6 more than meets the 

requirements for the AES; it is 
–  simple, 
–  fast, and 
–  secure. 

 For more information, including copy 
of these slides, copy of RC6 
description, and security analysis, see 
   www.rsa.com/rsalabs/aes 



               (The End) 


