
The Mutual Exclusion Problem for Unreliable Processes: Preliminary Rt~port

Ronald L. Rivest 'and Vaughan R. Pratt
Massachusetts I nstitute of Technology-

Cambridge, MA 92139

Cons,ider ;, proces.ses operating asynchronously in
parallel, each of whiCh maintains I single "special" variable
whichc"n be read (but not written). by the other proce$ses ~

All coordination between processes is to .be accomplished
by means of the execution. 6.f. "the primitive operations of a
process (ll reading another process's spedalvariable, and .(2)'

seUing .its own spedal variable to ·some. value. A process may
"die" at any time,. when its spedal variable is (automatically) set to
a special "dead" value. A dead process may revive.. Reading a
special variable which is being simultaneously written returns
either the old or the new value.

Each process may be in a certain "critical" state (which
it leaves if it dies). We present a coordination' scheme with the
following proper,jies.

(1) At most one process is ever in its critical state at
a time.

(2) If a process wants to enter its critical state, it
may do so before any other process enters itscrttical state more
than once.

(3) The special variables are bounded in value.

(4) Some process wanting to (!nter its critical state can
always make progress to that g.oal.

By the definition of the problem, no process can prevent
another from entering its critical state by repeatedly failing
and restarting.

I n the case of two processes, what makes our solution of
particular interest is its remarkable simpli~ity when compared
with the extant solutions to this problem. Our n-process
solution uses the two-process solution as a subroutine. and is
not quite as. elegant as the two-process solution.

Introduction

I n thi~ introduction we first make precise the model of
paraUel compul alion that we are using, and 'then specify
carefully the proble~ to be solved.

We assume the existence of n processes operating
asynchronously in .parallel. The number n is known to every
process ~ Furthermore, new processes' may not be .added to the
system; the number n may not change over time. Therefore,
processes may not leave the system either, although t~ey may
II die II in a sense to be explained later. The' processes act
independently in the sense. that any action possible for a process
may be performed at any time; none of the basic operations that a
process can perform require for their successful completion any
sort of delay' or any dependence on the stat.e or actions of other
processes. (Thus our model differs from one in which the P and V
coordinating primitives are used.)

This research was supported by the National Science Foundatiun
under contracts rtCS76-14294, MCS76-184bl and DCR74-12C!37.

1

Each process maintains a single " special" variable which
it uses to convey information to the other protesses. A special
variable may be changed only by the process that owns it,
although it may be inspected at any time by any of the other
processes. I fa. special variable is being simultaneously changed
by its owner and read by some other process, the· other process
will see either the old·.or the new value. More precisely, the
effect of any set of read and wri-tes of a special .variable will
always be the same as if they were executeq sequentially in some
order. Later on, we shall assume that the entire set of reads
and writes of all the 'special variables during a' particular
computation can be arranged in a sequence without changing the
net effect. That this may be done follows directty from the
above assumptions.

All communication between processes will be accomplished
by means of the special variables. The only information that
proce~s i, can obtain about process j is the value of 'process
j's special variable. A process's local variabl~s, program
counter, internal state. etc., are i.nvisible to the other
processes. Note that for one process to request the value of the
special variable of another process, it must have a name for that
other process. We will assume that. the names are the integer$ 9
to n-1 •

The most outstanding feature of the coordination scheme
to be presented is that it continues to, work correc.Uyin spite
of the failure (or even repeated failure and restarting) of any
subset of the processes. I n the real world a dev.ice may fail, or
d.ie, in anyone of many possible fashions. For example, it may
Simply cease to function but in such a. manner that the only way
to tell that it has failed is to notice that one can not obtain a
response from it. Or it may fail by continuing to act but in
such a manner that it behaves 'asif it were some different
device; it ceases to lie within its design. parameters. Or,
finally •. it may fail in a very disciplined fashion' by simply
posting a flag that it has failed and then stopping.

The first mode of failure Cd.ylng witho.ut any symptoms}
cannot be incorporated into our model. Since we do. not wish to
make any assum'ptions about the absolute or relative speeds of the
various processes. process i' cannot. merely by noticing that
process j' s special variable has not changed in a long time,
conclude that process j has died. Therefore process i could
not distinguish between the death of process j and a long delay
due to (say) process j 'executing a very long internal
comput ation. We do require that each process continues to make
progfess, however slowly or quickly. Thus no process is
permitted to stop during its computation with no evidence visible
to the other processes that it has stopped, since this could hang
up the system (the other processes might think that the stopped
process was in its critical section. for example).

Si~ilarly. the second mode of failure could cause
problems. I n particular. if processes were allowed to misbehave
in an arbitrary fashion, a 'solution to the mutual
exclusion problem would' become impossible, since a process could
enter its critical state and then refuse to alter its special
variable when it leaves it, causing the other pro.cesses to be
locked out.

Therefore, we require that a process may faU only in the
following disciplined manner (the third mode of failure): it must

leave its critical section if it is in it, set its special
variable to the value "dead ll (or some value defined to be
equivalent), and then stop. This is the only way a process may
stop or fail.

The preceding specifies the nature of the parallel" system
with which we are working. Now we turn our attention to the
specification of the problem to be solved.

The failure of any given process does not disable the system. We
extract from the above discussion a constraint that our solution
will satisfy:

(CS) No global variables; Coordination is achieved by use of
special variables only.

A related "distributed control" problem is studied by Oijkstra in
[3] •

Dijkstra's solution [2] satisfies (C1) and also the
obviously desirable criterion:

(C2) No deadlock: It is not possible for all processes to
become simultaneously blocked in such a fashion that
none of them will be able "to enter their critical
sections.

A solution to Dijkstra's mutual excfusion problem for n
processes [2,4] is a set of n programs, one per process, which
may be executed by their owners at any time. Each program·
contains a critical section, which is a piece of the program· that
requires for its correct execution that no other processes be
simultaneously in their critical section. This is our first
requirement of a solution:

(C6) Finite ranges: The special variables can only assume a
finite number of values.

impotence ~ repeated failing: A process cannot
deadlock the system by. repeatedly failing and restarting.

(C7)

The solution to be presented here will satisfy (CG) and
(C7), although in order to satisfy (C7) it is necessary, as we
remarked earlier, to assume in (C5) that when a process fails its
special variable does not assume arbitrary values foc a period of
time, but rather changes directly from its previous value to
zero. Otherwise a process that repeatedly failed and rest.arted
could have a random value in its special variable whenever
another process was reading it.

Lamport's solution still suffers from two drawbacks, in
that it does not meet the following requirements:

Mutual exclusion: No two processes may be in their
critical sections at the same· time.

(Cl)

Unfortunately, Dijkstra' s solution does not have the
following property (this was pointed out by Knuth [6]):

(C3) No lockout: I t is not possible for an individual
process to be kept forever from entering its critical
section by some (perhaps highly improbable) sequence of
actions by the other processes.

I n other words, a particular way of interleaving the
basic operations was able to "lock out" an individual process.
Knuth presented a new solution which satisfied all of (Cl) - (C3) •
I n fact, in an n-process system, a process would be able to enter
its critical section before the other n-l processes were able to

execute their critical sections <Collectively) 2n- 1 times. A
modified procedure by de Bruijn [1] reduced this figure to

(~) Finally, Eisenberg and McGuire [S] constructed a

coordination scheme satisfying (Cl) - (C3). and:

(C4) Linear waiting: A process that is waiting to enter its
critical section will at worst have to wait fat every
other process to take one turn (in its critical
section) •

Thus no process can execute its critical section twice
while 'some other process is kept waiting.

All of the above solutions have the property that they
employ a global variable (one that is set by every process).
This has the drawback that if the memory unit containing the
global variable should f~il, the entire system breaks down.
While this is not serious if the processes themselves are relying
on this common memory for storage of program and data, as in a
typical multiprocessing system, it is undesirable in a
multicomputer (distributed) system. Leslie Lamport [7] invented
a system which satisfies (Cl) - (C4) using variables local to each
process (the special variables of our model); e.ach process may
set only its own variable, but may read the special variables of
any. other process. He assumes that if a process (or the memory
unit containing its variable) should fail, its variable may
assume arbitrary values for a period of time, but eventually must
give a value of zero (until of course the process is restarted).

A solution satisfying (C5) permits even rather widely
separated systems to coordinate their activities in a simple
fashion. Assuming that each pair of processes are directly
connected, a process that changes its special variable need delay
just enough to let the new value propagate to each other process.
Or in a message-passing network a read could be implemented as a
message sent from the process which is .doing the reading to the
process which owns the speci~1 variaQJ~, whQ in turn replies with
a message giving the value of his variable (or a message
indicating that he has failed).

For t~e sake of precision we give formal constraints on
the model of parallelism we have in mind. The various
assignments, functions and tests we use in our programs may all
be abstracted as functions from system states to system states.
Further, though .our solutions impose considerable structure on
the state of each process, in the form of various registers,
toge·ther with the program counter, we shall be content to
stipulate minimum structure of two "registers," se.parating' the
visible and invisible components of a process state.

A process state (sa' ,sb) is a pair of natural numbers,

(respectively the invisible and visible components of its state).

A syste~ state. is an n-tuple (ve' vI' ••• , vn-l) of .process states;

we let va denote (vea ' v1a" • • , v (n-l) a) and likewise for Vb • 0

is a set {80 'Sl'··· ,8n- 1'«e,11'··· '«n-l}

of n state transition functions and n failure functions; the

8 i 's and Ii's map system states to system state~,~ The

solution may specify only the 8 i 's; the «i's are given.

The rest states of a process are .those with first
component 0 ; the critical states have first component 1.
(This permits processes to remember things, albeit publicly t when
critical or at rest; we are being generous here, since: most
solutions in the literature, including ours, will. work even if
only one rest state and one critical 'state is permitted each
process, i. e. no memory while in those states.)

Let 0*, the reflexive transitive closure of 0 ,be the
smallest set of functions satisfying IUOuO*uD*oD* • 0*
That is, 0*· II ,80, .•. ,SeSe,S0S!, ... ,82«38760«2' ••• } ,

2

assume seven distind values, since ttie combinatiot1~, (0,1)
(e,2) will not occur.

all po!=.sible compositions of elements of 0 We take SiS i. to

be the function (SjSj}(x) a Sj(Sj(x», Let V =-0*«0,0)n),
the set of system states Ciccessible from the syste~ start state

(0.0)n
The procedure for process

other process is named process j.
is given in Figure 1.

and

The-

The const.raints that any solution must meet are as
follows. (Assume every constraint is prefixed by
"Vi,j:n VV,w:V i"j:>11 , where i:n means that i is ·'of type"
n (i.e. Bsi<n), v:V means that v is an accessible system state,
k: N .means that k is a natural number, etc.)

(A,S) i : = (l, 1+5 j) ;
(R. 5) i :::r (2, 1+5 j) ;

wait(R j =0 v 5 j =1+5 j v (j~j 1\ (R,S) j=(R,5) i»;
critical section;
(A,S) i :=- (B,e);

Though we shall present our solution in the vernacular of
the programming milieu, it should be clear how to translate our
solution into a system of S i ' s satisfying t~ above
constraints. Barring oversishts on our part, it should also be
possible to translate any system of S i 's satisfying the
constraints into a system of programs satisfying our intuitive
understanding of the problem's constraints.

This last condition req.uire some explanation. Define a
e!!!! of· A (A any set of" functions) to be a set of elements of

A* of the form ll, aj ,ai ai " •• , ai .ai" •a j I •
. Bel e I. m

We take A&k ,where AcO , to be the set of all paths of
minimal cardinality formed fr.om elements in A such that some
function· in each path was formed using each S i in A at least
k times. Thus this condition says that if all processes not at
rest have run for k steps, we will have found that eact) of the
.non-failing ones among them will have entered its critical
section at some· time during our wait.

1.
..,
'-.

3.
4.
S.

6.

7.

8.

V is finite.

~i (v) i = (0,B) lej kills the i-th process •

Ie i (v.) j = v j Ie i can't affect other processes.
S i (v) j. = v j' Sj can't affect other processes.
(v j =W j 1\ Si (v) i -'S i (w) j) ::> Si (v) b-vb

S i can't store while fetching.
3k [(v j =rw j 1\ Vkb-wkb) ::> Si (v) i =6 i (w) i]

Si can fetch only .v i and vkb •

v j. a"l v v ja"l • Mutual exclusion.

3k:.N V" ': n "'Iv: V "'10' cO- IS 'I} VP: (0- I~'I} -0') &k 3f: P
1 J -

[(Vj[SjcO' ::> vja=B]) ::> f(v)ia=ll.

No lockout (& hence no deadlock).

F.igure 1. The Two Process Solution

The "w.ait" statement on the third line merely waits until
the specified condition is true. This might involve either
repeatedly fetching (A, 5)· and evaluating the test (busy
wait"ing), or merely some Jsort of hardware circuitry for detecting
the condition,· if the variables on which the condition depends
are continuously available. We shall interpret the statement
"wait (P)" as "repeat until P" (j.e. busy waiting) in what
follows. To ensure t.he correct behavior of the test, (R, S) j

should be fetched just once and then the whole condition
evaluated. In general, we will ·assume that the condition for a
II wait II command is always evaluated by first fetching the special
variable required for the evaluation of the condition, and the:n
eV~luating the condition based on this value. (A wait condition
will alw'ays require the value of just one other special
variable.)

The conditions for the two processes can obviously be
simplified when the values of i and i are instantiated, since
.the truth of isj is fixed once i and j' are known.

To dear up any possible ambiguities, we rewrite our
program using only indiVisible statements. We use fetch
(repre.sented as assignment to the temporary pair (U, V), a
register inaccessible to the other pro(ess), store (an assignment
whose right hand side names no variables visible to the other
process), -,.!! and ~. We have ta~elted with A-E and H the
statements that fetch (R, S) i or change (R, $) i' These are the
statements that matter when considering alternative interleavings
of statements executed by the two processors. The i!.' s and ~
to's commute with all other statements in that their order does
not affect the state of any variables, whether visible or
invisible to the other process.

may non-deterministically 'be executed. I t is more convenient to
describe this addition to· the program using a nondeterministic
state transition diagram than to stick to the ALGOL-like
notation. For discussion purposes, the only state information

The semantks of a programming language do not normatly
take into account the possibility of processor failure. Rather
than change the semantics we will 'change the program to reflect
the possibility that ·after each instruction the indivisible
statement

The research presented here was motivated by an
unpublished solution by A. Meyer and" M. Fischer which satisfied
all conditions but(eSland (e7).

The Two-Process Solution

I n this ~ection we present a solution for the two-process
problem satis·tying .(ei) - (e7) • We also present a proof of its
cor.rectness, which turns out to be "surprisingly complicated for
such a short program, This solution wiU be used later as a
subroutine in the ,"-process solution.

The special variable of process number i will be
considered as an ordered pair of variables (R~ S) i. The R
component may fake on the values 8, 1, or 2. Uhen R ... 8
proce\s iis either dead or uninterested in entering its
critical section. The S component acts as counters modulo 3;
we assume from now on that all arithmetic performed on it will" be
performed modulo 3. By the nature of our assumptions, both
vari-ables may be changed" simultaneously by .making a single
assignment to the spedal variable. Even though each of Rand
S may assume one of three values, the special variable will only

3

A:
B:
c:
0:
E:
F:

G:
H:

tU,V) :- (R,5) j;
(R,S)i :=- (l,l+V);
rU,V) :=- (R,S)j;
(R, 5) i. :. (2, 1+V) ;

(U, V) : •. (R,S) j;

J! -..(U=0 v V=!tS i v (j~i. 1\ (U, V). (R, S·) i)
then ~ to E;

criticat section;
(R, 5 l i :. (0, 0)

Figure 2. Program using only indivisible statements

needed is the contents of (R, S) i and ~ (U,V). Hence the whole
critical section collapses to a single state. All code. executed
external to the program of. Figure 2 similarly collapses· to a
single state, labelled "entry" in Figure 3, on the assumption
that eventually the program wilt be used again. This assumption
is inessential to any correctness argument using it, si.nce a
process may wait arbitrarily long before re-entering.

H

Figure 3. State transition diagram of the program

(We have for convenience collapsed together as state 4
all states satisfying R.2 but not satisfying the wait
condition. This will not affect the correctness proof.)

We .observe that the procedure consists of a loop-free
block of code (statements A-D) followed by a single loop which
waits until the process may safely enter its critical section.
The variable Ri indicates how· many times process i has set S i
to be 1+S j • The act of setting 5 i to 1+S j is equivalent, to
saying "After you" to process j since if both processes arrive
at statement E simultaneously, that process whose S value is
one less than the other proce~s's 5 value may enter its
critical section. The repetitive nature of A-O ("After you,
after you") may appear redundant, but we doubt the existence of a
solution with only one fetch from the _other process's memory (not
counting the fetch in the test).

Le~ma2.1. Oeadloc'" is impossible (i.e. (C2) is satisfied).

Proof: Statement E contains the only waiting command, so a
deadlock could only arise if both· processes were looping at
statement E. I n this case both R values are 2, and of the

two 5 values one must be one less than the other (since we are
work~ng mod 3) ,or else the two special variables are identkal.
I n either case exactly one process will find that it may proceed
to enter tts critical section. •

We next show tha·t (Cl) is not violated:

Le~ma 2.2. The two processes are never simultaneously in their
critical sections.

Proof. First observe that if (C1) can be violated, then it can
be violated without using any unsuccessful E transitions.

.Hence.we shall assume in this proof that all E transitions are
successful.

We exhaustively consider all computation sequences
leading up to such a catastrophe, an· initially forbid~ing

prospect that fortunately collapses into. six easily djspo~ed-of

cases.. To analyse hoW (Cl) might have failed, we conside.r the
final ABeD trajectory each processtookthro~gh •.. itstransiti()n
diagram just before the catastrophe; these two traject.ories can

be merged in (4t4). 70 ways; labelling as

process i the first process to execute its A transition reduces
this to 35 cases. (Naturally we shall not assume that i is the
winner or loser in the tie-breaking II isj .. test.) Ea~h of
these 35 cases will in general include many var.i.ants. on' the. basic
merge of the twoABCO's. Thus the case AjBjAjBjCjC'iOjOymay

4

(if (C1) is violated) include such sequences as

••• A i A jH jBjA jB jC jCiDiD jEiE j , ••• AiBjA jB jH jA jB jC jCiDiEjD jE j'
••• AjBjAjBjCjCiDiEiOjEj' and so on.

We can ignore any sequence containing as a consecutive

pair any of AjC i' CjC j' BjB j , B.jO j , on the ground that the
sequence derived from that sequence by reversing the order of the

pair will have the same outcome. Note that 0Pi and ~Bj

are not on the list because Ej may occur betwee.n tOem. .e
interchangeability of pairs is not as .. symmetric as it may appear;
though the transformation from. AjC i to CjAj is harmless, .if we
instead ·transform CiA j to AjC i ·we may overlook the possible
sequence ••• CiAjBjHjAj ••••

The above reduces the 35 cases to 19 cases, which
collapse furth~r to six cases as follows. I n cases I and VI .we
argue that whoever executes the last 0 cannot proceed. I n cases
I I, I I I and V, we argue that no one can proceed until the last 0
has been executed. I n case I V we argue that whatever happens
after the 0 i is unaffected by the following OJ •

(I) Sequences that end in the fetch-store sequence C j 0 i

(AjBjAjBjCjDjCiD j • AjA jBjBh DjCjD i • AiALBjC jBjD jCiD i •
AiAjBjCjOjBiCiOi) forbid E j , since after Di , Si-Sj+1.
Similarly, sequences that end in C10j (AiBiC;OiAjBjCjUj'

AjajCjAjOjBjCjOjt AjBjAjBjCjOiCjDj' AjAjBjC;OiBjCjDj'
A iA jB j B jC i°i CjO j) forbid Ej •

(I I) Sequences ending in CjOjD j (A i B j CjA jB jC jO jD i '
AjBjA jBjCiC jD jD j • AjA jBjCjBhDjD j , AjA jBjB jCjCjDjDjl
forbid E j before OJ because the CJD jsequence sets 5 j to
1+Sj. After 0 i ' process j will be enabled to enter its
critical section if and only if process i is not by Lemma 2.1.

Similarly, AjAjBjCjBjCjOjOj forbids E j before OJ •

(III) Sequences that end in ·C iC jOiOj
(AjBjAjBjCjCjOjDj' AjAjBjBjCjCjOiDj) succumb to the argument in
(I I) since Ci and Cj commute.

(J VI I n A jB jC jA jB jC jDjD j' the °j stores the same
value that B j stored. since A . and C. are not· separated by
any stores due to process i. rhus the decision made by process

will not later be invalidated· by the stere °j •

(V) In AjAjBjCjBjCjDjDj' the .A j and the Ci
fetches each take place while th~ other process is between A
and B. Hence each will fetch the same value, nameJy0, and so
store the same value, namely 1, via B j and 0 i respectively.
This forbids E j before 0 j. (Notice that this argument bre~ks

down if S is not constrained to be 9 when R is 8, and indeed
the .algorithm is incorrect without this precaution.)

(V I) I n A1Aj~ .Cj BiCj0 j 0 i' the Aj and C j
fetches 'both take place While ··i is between Ai and Bi.
Hence B j and 0 j both store 1. So Cj ~ust fetc~ the 1
stored byB j , so OJ .will store 2. But after 0 i ' we
have S j .·5 j+l .1, so i- cannot' proceed.

This completes the proof of .Lemma 2. t. •

Lemma 2. 3. Lockout of a non~failing process is i~possi~le (i. e.
(e3) holds).

Proof: We shall prove this for process P, letting P, denote. the
other process. Consider the transition diagram for P 'Vithout its
H transitions. The only loop is an E transition. Recalf that we
assumed that processes made progress. -Hence if. a proc~ss is
locked out it must be continually taking that loop. Now
eventually either P' makes anH transition or it settles down to
taking its E' transition for ever.) n the former case, after P'

has' taken the H transition. E (the condition evaluated when P
takes transition El becomes true. and now cannot b, made false
by any sequence of transitions allowed P' provid,d P stays in
state 4. Thus the next transition P makes is to its critical
section. I n the latter case. once both processes are looping. as
·in the proof of Lemma 2.1 t exactly one process will be permitted
to enter its critical section. If P is the winner,. we are done.
Otherwise P' must eventually take a.n H transition, which reduces
.toth., former case. I

(C4) holds:

Le~ma 2.4. The algorithm has "linear wa~ting".

Proo:f: Suppose'p is wait:ing at state. 4. By the above proof •
.once p.' has made an H transition, 'it cannot .execute its critical
section before P does. I

U-.n-l • Actually the test for Rj.9 is now re~.undant, since this
condition is implied by Uj =0 v U.j <i

Lemma 3.1. . This' jllgorithm satisfies C1-C3 and C5-C7 (i. e. 811
but-~

Proof.

(C1) Mutual Excfusion. Suppose processes i and j are
simultaneously in their critical sections. Then process i beat
process j and vice versa while the respective' processes were
leading up to their critical sections. Suppose without' loss of
generality that i beat j before j beat- i. If j beat
b.efore i increased Ui to j+1 , this wouJd contradict the
correctness of the two-process solution. If. j beat i after
I jn~reased Ui to j+1', this would contradict j' $ being
stopped by the failure of both Ui <j and Ui -j •

Trivially((~5) and (CS) hold by the construction. (C7)
fol.lows from Lemm~ 2.2 t whose' proof does not depend on the
integrity of p'. We have now demonstrated (Cl)- «(7).

The n-Process' Solution.

(C2, C3) No Deadlock or Lockout. Assume there exists' a process in
the system. We shall constructively prove the existence of a
process that is able to make progress in the' sense that it can
complete the race it is pre.sently engaged in. Since for fixed n
the ,number of races ·a process engages in is fixed, it 'follows
that so~e process 'willeventually reach its critical section.

(CS) Finite ranges. Self-evident.

(C5J No global variables. Self-evident.

We turn our attention now to satisfying (C4). The
problem is that. while a lower-numbered process is working its way
up through the ranks as it competes with 1,2,3, ••• , a
higher-numbered. process may repeatedly enter the lists, win
because no one h~s worked his way high enough to chaUenge him
yet, aAd proceed to his critical section.

I n the absence of global variables , we shall arrange for
each of. the waiting processes. to maintain an up-to-date copy of a
virtual dock. The absence of a single. time-keeping authority
'complicates the Eisenberg-McGuire solution considerably. I t is
'clearly impossible to have all the' waiting pro(esses main.tain the
·same. value for t.he clock. However, it is possible to hav., at most·

I mpotence of Repeated Failing. Follows from the proof of

•
(e7)

C~-C3.

The only way for a process not to. be able t-o. make
progress is for it to be unable to' pass the test when racing with
some other process. Sta'ding from the process that we postulated
fa 'be in the system, we enumerate processes such that the next
process' .enumerated is. the one the last one enumerated is racing
With and is beaten by. Eventually this enumeration must either
terminate or cycle. I·f it terminates, the last process
enumerated is. free to proceed. .we claim that it cannot cycle.
For suppose -it does cycle; then either the cycle is of length 1,
2 or· greater. Length 1 is ruled out because the algorithm
ensures' that a process always beats itself. Length 2 is ruled
out since C2-C3 hold for· the two-process solution. So assume the
cy.c1e is of length 3 or more. Let i, j, k be three consecutive
processes in the enumeration such that k is the least-numbered
protes's of the three.. (Choosing k to be the least-numbered i",
the cycle wiil ensure this.·) Then j has thus far raced only
with· processes 1 through k. Since i>k, j cannot have
raced with i yet, contradicting i's being beaten by j.

Our solu~ion to this problem is modelled 'on that of
Eisenberg and. McGuire [5], who use a global variable to point to
processes '0,1,2, ••• , n-1 ,0, ••• in turn, permitting the indicated
process to. execute its· critical section. The appropriate imagery
is 'of a (one-handed) clock • the term we shaH use for such: a
pointer •.

A sli.ght improvement to this scheme is for· each process
to have only one copy of' the Rand 5 registers,' but to have
in addit!on a U register whose contents na~es the process
currently being raced with·. Then the test for whether process
can pro~eed at the end of its race with j becomes

U·.0 v U·<i v
. J (U .•i j fR j=0 v Sj=l+S i v «R, Sl ;. (R, S)· 1\ isj-l))

We arbilrarily favor the smaller-numbered process fa break any
ties. By making' this test isj the tie that must happen when 8

process races with itself allows that process to proceed. A dead
process is assumed to have U.O. while a critical' process has

I n the absence of constraint (C4). our' sol·ution is for
each process to race with processes e through n-l in turn,
'winning against itself. When it has won· every rac'e, it then
executes· it·s critical section. One approach is ·to let each
process have n~l copies of the data structures used :in the
two-process solution t one for ~ach of the other processes. When
process i races with ·process. .j , process i fetches from
copy i of process j's .data, and stores into' copy j of its
own data. .Thea when it has won against process j ,it leaves
copy j of .its data as it is, preventing process j from later
racing. 'with and beating processi • and proc~eds to race with
process j+1 When it has beaten all the other processes. all
n-l eopies of its, F:I register are 2 I t then executes .its
critical section; when done It sets all n-l copies of its R
register to 0 ,permitting processes waiting· on process i to
proceed.

We first sotve· the n-process problem in t.he absence .of
tonst.raint C4,which. requires that no process be served twice
while' another is waiting. This uses the two-process solution as
8' subroutine. and in. turn will itself be used as a subroutine to
solve the n~process problem with a" constraints. in force. For
notational convenience we say that process i is racing with
process j when iand j are the' two processes of the
two-process solution 'and process. i is ex~cuting the part of the
code of that 'sorution that precedes the critical section. When
process i completes execution of that code we say it has won
the. race and beaten process j

We naw solve the mutual ex~Iusion problem for n
processes where n>2 ,sti" heeding constraints leI) - (C7) • A
straightforward generalization of the two-pr.ocess solution. eludes
us, .and we content ours.elves with a quite different solution that
reqUire~ the foregoing two-proces.s solution as a subroutine.

5

two (co,nsecutive) values in the system at any moment. We
fOrmalize this situation thus.

Window Hypothesis (WHJ. At all times no two- system clocks
(clocks' owne'd by processes with U.Q) differ by more than '1 mod
n. (HeRce for each moment in time there ,must exist k such
that for every process i with Ui =0, c j ([k, k+11 .)

(Here and later, we adopt the notation [a, b] to denote

the set of integers {a', a+1, a+2, ••• b-l~b) , where the arithmetic

is performed modulo n. Thus [a, b~l] U[b, a-I] •
IB, f, ... ,n-1} while when a-b, [a,b-l] n[b,a-I] .' {} •.J

The general principles for maintai'ning' this state of
affairs are:

(i) Process i may not tick Hncrement its clock) unless for

every live ,process j, c j' ([ci' c i +1] •

(ii) To~ the syste~, a process sets it,S clock to <an existing
system clock, or to. an arbitrary value if no other process is in
the system.

Our implementation of (j) wilL have for ~a'ch process not
only a clock but a variable Uj just as in the previous
algorithm. ,When process i is "hors deco~bat, II Ui.O (0 is a
constant denoting deat.h)·.' The condition for advancing one· s,
clock is

Vj [U j=D v c r:sci v ~ r,cj+lJ ..
Thus the main loop consists of wa,tlng for this condition to come
true, then doing, ci:=cj+1 •

When c j.i , process i procee~s 'to execute its' critical

section. The test for this. condition is performed aner' the te~t

for whether to advance, but before ',the actuat advance~ It is not

hard to see how this guarantees C1 (mutual exclusion), at least
for the case when no processes are in the' a,ct o.f joining. the
system ..

Now let us consider the implementati.on of (iil, joining
the system • While the basic idea {set your clock to some syst~m

clockJ seems plausible, the process is akin to boarding a rapidly
spinning carousel. One may' pick up a clock value, but find it
out-of-date by the time· one has stored it - in one's own dock~

The solution to -this' is to set U'i ,,0 before selecting a 'clock,

value. I n this way the system cannot spin much further while
your clock does not ,change. This raises . the possibility.·of not
meelij,g C7. The solutionis as for the two-process so,lutio'n '
set yOur clock ini,tiaHy to some system doc,k before. Y!Ju set U.
independently of selecting another clock value after setting U.
Thus although no guarantee' is made that the first attempt'to set

yOl:Jr dock will .bring you up to date, at least it avoids your
being r~sponsible lor the' system's making no further progress;
eac~ time'you fail and re-enter, the system is .no ·Ionger
prevented by you from incrementing its clock one more time.

A separate problem is that of the','phantom~ clock. II A
pro(:ess may fetch a system clock,' but not store it immediately.
Inthe m~antime everyone in the system'leaves> it, .o"e w·ay, or
another. Then a.nother process attempts to join the system, finds,
na usable ciock value, so choo~es. an arbitrary value~ (The
example can be made to work no maUer what he' choQs,sb~~,au$e

of the' inaccessibility of the "phantom clock"being h,ldl:>Y .out
temporarily suspended process.) The first process now joins the
system with its clock se·t to the II phantom dock," the valu~he

saw originally, which may bear no relation to the n~w system
clock.

The solution we adopt ,to this problem is tQ make. the
final feteh-and-store one atomic operation, using the previous
n-process s'01ution as'the synchronization mechanism. This

6

precludes any ether process's joining the system V'hile a phantom
clock exists.

Yet another problem exists.. Suppose that at some time

c i =2. Ui =n-1, fC' =0 and Uj =0 (POSSib",.. le, because. of •.p',otential
delay between i s tirst fetch and store of a clock valu~, or by
virtue of the ent re system dying and being ,replaced ..by .. a new one
with an unrelate system clock, as in the " phanto"1"clock"
example) • Furth~r. suppose that process j is 'just about to
increment its clock. Now suppose process i fetches (but does
not yet store) c j =0 , then c j ticks twice to 2 'as it is
entitled to do. and then c i is set to 0. If there are no other
system clocks, c i will pro~eed to join the system and (for n>3)
destroy the window hypothesis WH.

Our· solution is simply to ensure that c i cannot be so
out-at-date as to be overtaken in this manner. .We accomplish
this with one more. assignment of a system clock to C i '
immediately before the final assignment and after Ui ceases to
be 0 (~nd hence after the first assignment, so altogether three
similar assignments are made). To avoid the problem of the

vanishing and reappearing system, we make the second and third
assignments one atomic block of code, using the sarJ\e
synchronizing mechanism we proposed to use for the last
assignment atone. After the middle assignment, no system clock
will be able to advance more than three ahead of c i (proved
below). so for ry?S, the wrap-around problem we are trying to
solve cannot vCCUI.

Here is another probl'em. Suppose c j =1 and c j+1 =0 ,

and suppose c i becomes 1 at the intermediate assignment·. Now
let J leave the system (say by dying) so that for the final
assignment, i fetches j+l' s dock, ,which is still 0. But
before i can store this value, j+1 ticks twice to 2
(permitted since c i =1)'. Now c i becom~s 0 and again we
lose WH. This problem can actually be detected by process i,
since the final value it fetched was one less than the ,intermediate
one. I n this case, process i can ignore the final value and
keep the intermedia,te one.

One more ',problem, a variant of the "phantom clock"
problem: suppose th~t at! system clocks are'0 or 1, but that all
processes joining the system set their clocks to 0, with other
system processes dying as needed ·to make room for new. processes.
1n this way the system can fail to make progress sin~e there is
always a system clock at 0. Our solutionis. to .look at ·a,1I
syste~ clocks in turn, ignoring those," system .clpck.s."one less than
the last distinct system dock' we saw. I nthis w,ay, if the

system is not making progress, we wil't get the maximum system

clock; if th~ system is making progress, ·the value we ,choose,

while not guaranteed to be the maximu~, ,at least will be no worse
a choice than an arbitrar:y system clock.

The whole algorithm is then:

1. c· :- "max" system clock (to. avoid hangup) •t

2. P. (Use previous algorithm, which inter aHa sets Ui ·)---
3. c' :- "max" system clock (to update Cj).,
4. c i := "max il system clock, if this does,n' t decrement ci •

5. V. (Suffices to $et Uj :. a - see below.)

6. ' Wait tHl all clocks of live (U.O) processes equal yours or
are one' larger than it.

7. I f your clock .points to you, execute y~ur critical section,
then set··U to 0 and exit.

With the algorithm before us we can observe one final
problem. When a process leaves its critical section,it is
possible. for it to re-enter the system and find everything

unchang~~. with the system clock still pointing to it. I n this
way. it may· repeat its critical section arbitrarily often before

other processes already in the system get a turn'. To avoid this

injustice we· forbid a process from entering its critical section

the first time it reaches step' 7 of the above algorithm. We do
this. with a .flag .ok that is set during step 5, tested at step
7 t and cleared during step 8.

Proof. Evident from the code. The strengthened form of WH is
needed here to avoid the case where has already. passed step 6
when arrives in the system with c i +1 =c j' (It is tempting
here to argue that WH unstrengthened will suffice, since from
the state described in the L~mma, j could legally proceed to
invaliddle WH, u)"tradicting vu: ,issumpll"';. hat WH held. The
catch is that we want tou5e Lemma 3.3 in the inductive step of
the proof of WH, and this sorf· of "looking into the future" would
invalidate this use.) •

8. I ncrement your clock (mod n) and return to step S. Lemma 3. 3. Assume WH.
can~ot pa; f>tep 6 before

If Ui =Uk=Q but
c i increments.

ck=ci-I ,

We now present the comp.lete algorithm. We assume that

S. is of type integer mod 3 and .c i of type integer mod n ,

implying that all arithmetic involving them is done modulo the

appropriate quantity. Initially c i is, set to some ra~dom' value,
but its type forces the value' to be i.n the range 8 to n-1 •

Ui takes on some prefix of the sequence of values
0,0.1.2 •• ~ • ,n-1, a , followed by o. U t~kes over some of the
role' of R. and' the test Rj::sB is subs~med by the test Uj.O v Uj <i
v Uj.O. Hence we may assume thatR takes on onfy two values,
1 and 2.

integerprote~ure sysclock; .

begin integer m, j; m:· 0;
for j :. 0~ 1 until n~ldo

.i!. Uj=Q " c j+l-m ,then m : - e j;
sysclock : • ..!!. m-O then m else e

endsysclock;

1: c i:. sysclock;

2: for j :. e until n-l do

begin (R.S,~ :. (!:l+S,j j);
(R, S) i :. (2.1+5 j);

wait (U r-O v Uj<i v Uj-a v
(Ur~:i 1\ (Sj-l+S i v «R,Sli-CR.S) j 1\ i~j))))

3: c'i :. sysdock;

5: Ui :- 0; ok :. false;

7~ if.c i·i " o.k fhen
begin' <critical section> ; Ui :. 0 end

else

8: b-eginci : it c i +1; ok :. true; ~]? S end

In· the' following proof of the correctness of this
algorithm. we will do all arithmetic involving Cj'S modulo n.

For technical reasons (namely when usi.ng WH as an
induction hypothesis) we shal.1 strengthenWH· to' include the

foltowingcondition. No system clock ckmay be m when C i

is hot in' (m.l. ml ,nd process i is either in step Swith j>k
or 'is between step S and the increment of step· 8. This' caters

for tile possibility that a process might join the system with a
valid c1oc·k. only to h~ve it invalidated a moment later as some
pr6cessproceedsto increment its clock.

Le~~. After processi has executed step 2, Uj -0 •

~. I~deed, Ui is set to 9 at· the outset of step 2, and
then increments liP to n-l. I

7

Lemma '3.4. Assume WH and that n~6. After process i

fetZhes son)e c j in step 3, no system clock may reach c j +4

before. c i changes again.

(I f 6 seems a little high, note that when f~tching

c j • some process may have its clock at c j -1 • which is already

c j+4 when n=5 .•)

Proof. At the moment c j is fetched, no process can have passed
the test at step 6 permItting it to increase to c j+2 (Lemm~

3.3). Hence to reach C j +4 'a process must pass through step S
three times, with three successively higher (modulo n) clock

values. Because c i remains constant (hypothesis) and Ui pIl0
(Lemma 3.2), the test at step 6 cou~d not have succe'eded all
three times. •

Corollary 3.5. After process i completes step 3 and before any

process can' execute another instruction. every system clock lies

in [c i -1, c j +3] •

Proof. By. WH, when c j was fetched all system clocks lay in
[cj-1.cj+1] • By Lemma 3.4 and the f.ad that sys·tem clocks can
only increase, they can onl,y move on to as far as C j +3 •

I ~mediately after the assignment of this c j to c i ' we can
say the same of c i • I

Corollary 3. (). After process i completes step 3 Qut before C i
changes again, every system clock lies. in [c j -1. c i +31 , and any
system dock in (c j • c i +3] that incr~ments during this time will
not subsequently be able to pass the test at step 6 during this
time and so cannot increment more than once.

Proof. During step 3, after c j has been f€t.:.hed. every system
clock is either in [c j -1, c .+2] or cannot pass the test at step 6

on account of (at least) Ci. Assigning c j to c i fhen leaves

us with every process either in [c i -1, c i +2] or still unable to
pass the te~t Or) acco1.mt of C i . T'le for ",2" can c1eeir1y now not
increment past Cj +3 before being stopped at 6 on account of
C j •. Moreover, any that increment to c i +1 or beyond (and
hence were initially in [c i •c i +2]) cannot pass the test at
the next encounter of 6. again on account of c i • and so can

increment at most once. •

Le~,!,a 3. 7 ~ Provided the system starts with all processes dead.
the Window Hypothesis will hold at all times.

Proof. We proceed· by induction· on the number of instructions
executed by all processes since some time, when all processes were

dead. We only care about instructions that assign to c i while
U i =0, and instructions that set Ui to O. AU others cannot
do any harm immediat·ely. For each i there is only one

instruction of each of these two kin~s, c i :- c j +1 at step 8,
and Ui :::1 a at step 5. The first of these preserves WH since

i has passed the test at step' 4 (whose intent is clearly to
preserve WH), and the strengthening of WH assures us that rio
process has since then joined the system with a value other than
c i or c i +1. The second preserves WH on account of Corollary
3. 6.·which promises not only that the joining process is within

the 'window but ensures tha.t any process with a greater clock will

be stu'.k at step 6 on account of· the joining processbefore··it can
invalidate WHo I

Theorem 3.8. This a.lgorithm 'satisfies Cl-C7.

Proof.

(Cl) Mutual Exclusion. Because of WH, only one process can
simultan'eously satisfy c i =i and have a minimal clock' (one such

that for no j is C j =c i -1) • Because system clocks do not
decrease, the minimal· clock property guaranteed by step 6' must

still hold at step 7, by WH as strengthened.

(C2, C3) No Lockout or Oe?dlock. The only source of problems for
the reliable process i are the wait at step 2, dealt with
already by Lemma 3.1, the wait at step 6, and the goto at step 8.
By WH, eventually all processes with U~O will have a clock

value equal to C j or c i +1 , by WH. and the 'fact that the.
largest system clod~ is chosen. Moreover, any process with

c=c i -1 will pass the test at step 6, so eventually no such
process will re'main. Then i will pass the testal step 6. The
goto at step 8 allows c i to make progress, and this combined
with setting ok means that eventually the test at step 7 will
be satisfied, and wiH enter its critical section.

(C4) Linear l~ai.!i!28.. I f we weaken this condition from its
original statement to "each process need wait while at most kn
other (not necessarily all distinct) processes execute their

critical sections, II then this is evident from the argument for

C2-C3-. I n order to improve the waiting to "whi,le U;Il!O, each other

process may execute its critical section at most once, II we need
to change' the algorithm to avoid processes· i-I through i-5 being

served twice. A simple solution 'to this is to introduce abol!t 4n
"dummy" processes, renumbering the original processes SO that
they .are 5 apart. This need not entail the actual construction

of memories for the dummy processes, since the real processes
will always know that the dummies are dead. The effect is to

"slow down" the system clock a bit, at the cost of additional
overhead in· the execution of the algorithm. An ,additional

benefit of' such an approach is to solve the problem for the case
when the.re are fewer than 6 processes. Unless the cost of the
critical sections far outweighs that of our solution to their
mutual exclusion, this "padding" of additional processes is
probably of no practical value.

(CS) No. Global Variables. Self-evident.

(C6) Finite range. Self-evident.

(C7) 'I mpotence of Repeated Failing. Follows from the proof of
C2-C3.

We should like to thank Leslie· Lamport, Micha.el Fischer,
and Albert f1eyer for their helpful comments on eC'rlier versions
of this algorithm and manuscript, and Michael Fischer and Gary
Peterson for detecting and correcting' some serious flaws in
a later version.

References

[1] de Bruijn, N. G., IIAdditional Comments on·a Problem in

Concurrent Control", CACM 10 (March 1967) ,p '137-138.

[2] Dijkstra. E. W., "Solution of a Problem in Concurrent

Programming Control". CACM ~ (September 1965),. p 569.

8

(3]

[4]

[S]

[6]

[]]

Oijkstra. E. W., "Self-Stabilizing Systems in Spite of
Distributed Control", CACM 17 (November 1974),
p 643-644.

Dijkstra, E. W., "Cooperating Sequential Processes", in
Programming Languages. F Genuys, Ed~, Academic Press,
New York (1968).

Eisenberg, M. A., and M. R. McGuire, "FurtherComments
on Oijkstra's Concurrent Programming Control Problem",
(CACM 15 November 1972), p 999'

Knuth, .0. E., "Additional Comments on a Problem in

Concurrent Control", CACM ~ (May 1966), p 321-322.

Lamport, L. It A New Solution of Oijkstr·a' s .Concurrent
Programming Problem", CACM 17 (August 1974),
P 453-455. --

