
US008699713B1

(12) United States Patent (10) Patent N0.: US 8,699,713 B1
Rivest et al. (45) Date of Patent: Apr. 15, 2014

(54) KEY UPDATE WITH COMPROMISE 2009/0323969 A1 * 12/2009 Nishi 380/281
DETECTION 2010/0202618 A1* 8/2010 Yang et al. 380/277

2010/0303231 A1* 12/2010 Gorissen et al. 380/210

(75) Inventors: Ronald L. Rivest, Arlington, MA (US); OTHER PUBLICATIONS
Ari Juels, Brookline, MA (US)

R. Anderson et al., “Key Infection: Smart Trust for Smart Dust,”
(73) Assigneer EMC Corporation, HOpkintOn, MA Proceedings of the 12th IEEE International Conference on Network

(Us) Protocols (ICNP), Oct. 2004, pp. 206-215.
M. Bellare et al., “Key Insulation and Intrusion Resilience Over a

(*) Notice: Subject to any disclaimer: the term Ofthis Public Channel,” Topics in CryptologyiCT-RSA in Lecture Notes
Pawnt is extended Or adjusted under 35 in Computer Science (LNCS) 5473, Apr. 2009, pp. 84-99.
U-S-C- 154(1)) by 32 days- M. Bellare et al., “Forward-Security in Private-Key Cryptography,”

Topics in Cryptology4CT-RSA in Lecture Notes in Computer Sci
(21) Appl- NO-I 13/250,225 ence (LNCS) 2612, Feb. 2003, pp. 1-18.

Y. Dodis et al., “A Generic Construction for Intrusion-Resilient Pub
(22) Fi1ed3 seP- 30: 2011 lic-Key Encryption,” Topics in Cryptology4CT-RSA in Lecture

Notes in Computer Science (LNCS) 2964, Feb. 2004, pp. 81-98.
(51) Illt- Cl- G.T. Amariucai et al., “An Automatic, Time-Based, Secure Pairing

H04L 9/00 (2006.01) Protocol for Passive RFID,” RFIDSec, Jun. 2011, pp. 1-20.
H04L 29/06 (2006.01) _
H04L 9/08 (2006.01) (Commued)

52 US. Cl. . . .

() CPC H04L 63/068 (2013.01); H04L 9/08 pr’mary Examm” * Tecllane Gerglso _

Attorney, Agent, Ol’Fll’m i Ryan, M85011 & LeWlS, USPC 380/277

(58) Field of Classi?cation Search (57) ABSTRACT
CPC H04L 63/068; H04L 9/08; H04L 9/0891 A key is updated in a ?rst cryptographic device and an update
USPC 380/277 message comprising information characterizing the updated
See application ?le for complete search history. key is sent from the ?rst cryptographic device to a second

cryptographic device. The update message as sent by the ?rst
(56) References Cited cryptographic device is con?gured to permit the second cryp

U.S. PATENT DOCUMENTS

4,720,860 A 1/1988 Weiss
5,168,520 A 12/1992 Weiss
5,361,062 A 11/1994 Weiss et al.

2005/0058139 A1* 3/2005 MonZaWa et al. 370/397

2005/0094814 A1* 5/2005 Aihara 380/247

2007/0140480 A1* 6/2007 Yao 380/30

2007/0201700 A1* 8/2007 Hacigumus 380/277
2009/0240944 A1* 9/2009 Cho et al 713/175

2009/0323964 A1* 12/2009 Park et al. 380/277

UPDATE

to graphic device to detect compromise of the updated key by
determining if an inconsistency is present in the correspond
ing received update message based at least in part on that
received update message and one or more previously-re
ceived update messages. In an illustrative embodiment, the
?rst cryptographic device comprises an authentication token
and the second cryptographic device comprises an authenti
cation server.

20 Claims, 3 Drawing Sheets

UPDATE
SAFE KEY Ic[i]

US 8,699,713 B1
Page 2

(56) References Cited

OTHER PUBLICATIONS

EPCGlobal Inc., “EPC Radio-Frequency Identity Protocols, Class 1
Generation-2 UHF RFID Protocol for Communications at 860 MHZ
960 MHZ, Version 1.2.0,” Speci?cation for RFID Air Interface, http://
wwwgsl.org/gsmp/kc/epcglobal/uhfc1g2, Oct. 2008, pp. 1-108.
Gene Itkis, “Forward Security: Adaptive Cryptography: Time Evo
lution,” Handbook of Information Security, 2006, pp. 1-27, vol. 3,
No. 199.
G. Itkis et al., “SiBIR: Signer-Base Intrusion-Resilient Signatures,”
Advances in CryptologyiCRYPTO in Lecture Notes in Computer
Science (LNCS) 2442, Aug. 2002, pp. 499-514.
A. Juels et al., “Unidirectional Key Distribution Across Time and
Space With Applications to RFID Security,” 17th USENIX Security
Symposium, Jul-Aug. 2008, pp. 75-90.

M. Lehtonen et al., “How to Detect Cloned Tags in a Reliable Way
from Incomplete RFID Traces,” IEEE International Conference on
RFID, Apr. 2009, pp. 257-264.
S.M. More et al., “Sliding-Window Self-Healing Key Distribution,”
Proceedings of the ACM Workshop on Survivable and Self-Regen
erative Systems (SSRS), Oct. 2003, pp. 82-90.
RSA, “Hardware Authenticators,” The Security Division of EMC,
http://WWW.rsa.com/node.aspX?id:1158, 2011, 2 pages.
J. Staddon et al., “Self-Healing Key Distribution With Revocation,”
IEEE Symposium on Security and Privacy, May 2002, pp. 241-257.
Gene Itkis, “Cryptographic Tamper Evidence,” Proceedings of the
10th ACM Conference on Computer and Communications Security
(CCS), Oct. 2003, pp. 355-364.

* cited by examiner

US. Patent Apr. 15, 2014 Sheet 1 of3 US 8,699,713 B1

FIG. 1

[102 I [104
I

SENDER E 8 ~ RECEIVER
' 105

106w ADVERSARY \100

FIG. 2 [200
[210

COMPUTER

/ 202 [212 uETwgRi16 205
AUTHENTICATION m PROCESSOR INTERFACES

TOKEN

MEMORY »214

[204
AUTHENTICATION

SERVER

FIG. 3 [20,

300» PROCESSOR <=> ¢~304

MEMORY

US. Patent Apr. 15, 2014 Sheet 2 of3

F I G. 4

A S
COMPROMISES SENDS UPDATE

S T0 R

| TIME

u V
\ /\

Y Y

A0 A1

F I G. 5

US 8,699,713 B1

SPACE 0F
D R POSSIBLE
KEYS ICv IN
R’s VIEW

US. Patent Apr. 15, 2014 Sheet 3 of3 US 8,699,713 B1

FIG. 6

UPDATE UPDATE
SAFE KEY IC[i]

u V W
\ /\ j

Y Y

A0 A1

F I G. 7

700, INITIALIZE KEYS IN FIRST AND
SECOND CRYPTOGRAPHIC DEVICES

II

UPDATE AT LEAST ONE KEY IN
702“ THE FIRST CRYPTOGRAPHIC DEvIcE :

IT

SEND UPDATE MESSAGE COMPRISING
704w INFORMATION CHARACTERIZING THE UPDATED

KEY FROM THE FIRST CRYPTOGRAPHIC DEVICE
TO THE SECOND CRYPTOGRAPHIC DEVICE

II

PROCESS ONE OR MORE UPDATE MESSAGES
IN THE SECOND CRYPTOGRAPHIC DEVICE TO

706% UPDATE AT LEAST ONE OF ITS KEYS AND TO
DETERMINE IF AT LEAST ONE UPDATED KEY

HAS BEEN COMPROMISED

US 8,699,713 B1
1

KEY UPDATE WITH COMPROMISE
DETECTION

FIELD OF THE INVENTION

The present invention relates generally to the ?eld of cryp
tography, and more particularly to techniques for updating
keys in a cryptographic device and communicating those
updates to other cryptographic devices.

BACKGROUND OF THE INVENTION

Cryptographic devices include, by Way of example, one
time passcode (OTP) devices such as hardWare authentication
tokens. Authentication tokens are typically implemented as
small, hand-held devices that display a series of passcodes
over time. A user equipped With such an authentication token
reads the currently displayed passcode and enters it into a
computer or other element of an authentication system as part
of an authentication operation. This type of dynamic pass
code arrangement offers a signi?cant security improvement
over authentication based on a static passWord.

Conventional authentication tokens include both time- syn
chronous and event-synchronous tokens.

In a typical time-synchronous token, the displayed pass
codes are based on a secret value and the time of day. A
veri?er With access to the secret value and a time of day clock
can verify that a given presented passcode is valid.
One particular example of a time-synchronous authentica

tion token is the RSA SecurID® user authentication token,
commercially available from RSA, The Security Division of
EMC Corporation, of Bedford, Mass., U.S.A.

Event-synchronous tokens generate passcodes in response
to a designated event, such as a user pressing a button on the
token. Each time the button is pressed, a neW passcode is
generated based on a secret value and an event counter. A
veri?er With access to the secret value and the current event
count can verify that a given presented passcode is valid.

Other knoWn types of authentication tokens include hybrid
time-synchronous and event-synchronous tokens.

Passcodes can be communicated directly from the authen
tication token to a computer or other element of an authenti
cation system, instead of being displayed to the user. For
example, a Wired connection such as a universal serial bus
(USB) interface may be used for this purpose. Wireless
authentication tokens are also knoWn. In such tokens, the
passcodes are Wirelessly communicated to a computer or
other element of an authentication system. These Wired or
Wireless arrangements, also referred to herein as connected
tokens, save the user the trouble of reading the passcode from
the display and manually entering it into the computer.

Additional details of exemplary conventional authentica
tion tokens can be found in, for example, US. Pat. No. 4,720,
860, entitled “Method and Apparatus for Positively Identify
ing an Individual,” US. Pat. No. 5,168,520, entitled “Method
and Apparatus for Personal Identi?cation,” and US. Pat. No.
5,361,062, entitled “Personal Security System,” all of Which
are incorporated by reference herein.
Many authentication systems are con?gured to require that

a user enter a personal identi?cation number (PIN) or other
static access code in addition to entering the passcode from
the authentication token. This provides an additional security
factor, based on something the user knoWs, thereby protecting
against unauthorized use of an authentication token that is lost
or stolen. Such an arrangement is generally referred to as
tWo-factor authentication, in that authentication is based on

20

25

30

35

40

45

50

55

60

65

2
something the user has (e.g., the authentication token) as Well
as something the user knoWs (e.g., the PIN).

Authentication tokens and other OTP devices are typically
programmed With a random seed or other type of key that is
also stored in a token record ?le. The record ?le is loaded into
an authentication server, such that the server can create
matching passcodes for the authentication token based on the
key and the current time or current event count. When the user
?rst activates the token, the server stores the user PIN in
association With the key corresponding to that token.
An adversary possessing a stolen record ?le is able to

generate correct passcodes for each token key stored in that
?le. In order to impersonate a particular user, the adversary
Would generally have to “phish” or otherWise obtain access to
the details of at least one user login session such that it learns
the user PIN as Well as one passcode that can be matched to
one of the token keys in the record ?le.

Security issues such as these can be addressed through the
use of unidirectional or broadcast key updates. In this manner,
the key associated With a particular authentication token is
periodically refreshed or otherWise updated. HoWever, con
ventional key update techniques are de?cient in that the
updates themselves can be compromised Without the token
user or the associated authentication server being aWare of the
compromise.

SUMMARY OF THE INVENTION

Illustrative embodiments of the present invention provide
key update techniques in Which multiple updates are directed
from one cryptographic device to another cryptographic
device in such a manner that the cryptographic device receiv
ing updates purporting to be from the sending cryptographic
device can determine Whether or not the updates have been
compromised by an adversary.
By Way of example, in one of these embodiments, a send

ing cryptographic device sends a sequence of update mes
sages to a receiving cryptographic device, Which authenti
cates the received messages. There is concern that an
adversary may have compromised the state of the sender or
receiver in a manner that alloWs the adversary to insert mes
sages into the stream that are accepted as authentic by the
receiver. To enable detection of this type of compromise, the
sender through the sequence of update messages Will evolve
its key state randomly, While transmitting enough information
to the receiver to alloW it to track these key updates. An
adversary that compromises the sender or receiver state at a
particular time, but does not have access to all of the updates
since that time, risks being detected because later messages
from the adversary Will appear to the receiver to be inconsis
tently authenticated With respect to the updated key state
possessed by the sender and receiver.

Accordingly, in one aspect of the invention, a key is
updated in a ?rst cryptographic device and an update message
comprising information characterizing the updated key is
sent from the ?rst cryptographic device to a second crypto
graphic device. The update message as sent by the ?rst cryp
tographic device is con?gured to permit the second crypto
graphic device to detect compromise of the updated key by
determining if an inconsistency is present in the correspond
ing received update message based at least in part on that
received update message and one or more previously-re
ceived update messages.
The information characterizing the updated key may com

prise at least a portion of the updated key itself, or other
information Which may be used by the second cryptographic
device in determining the updated key. For example, the

US 8,699,713 B1
3

update message may comprise a parity symbol of an error
correcting code, an updated key appended to at least one
previous key, or an updated key embedded in a digital signa
ture.

In one of the above-noted embodiments, the ?rst crypto
graphic device comprises an authentication token and the
second cryptographic device comprises an authentication
server. In an arrangement of this type, the update message
may be sent from the authentication token to the authentica
tion server by embedding it in a passcode, digital signature or
other cryptographic output of the authentication token. For
example, the update message may be sent as one or more bits
of the cryptographic output.

The illustrative embodiments advantageously overcome
the draWbacks of conventional techniques, by providing key
update techniques that alloW an authentication server or other
receiving party to determine if the updates have been com
promised. Also, one or more of these embodiments alloW key
updates to be performed very e?iciently, While maintaining a
high level of security, particularly for devices such as authen
tication tokens or RFID tags that have limited cryptographic
functionality.

These and other features and advantages of the present
invention Will become more readily apparent from the accom
panying draWings and the folloWing detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simpli?ed block diagram of an authentication
system in an illustrative embodiment of the invention.

FIG. 2 is a more detailed block diagram of an authentica
tion system comprising multiple cryptographic devices in an
illustrative embodiment of the invention.

FIG. 3 illustrates portions of one of the cryptographic
devices of the authentication system of FIG. 2.

FIG. 4 illustrates an attack timeline in the authentication
system of FIG. 1 or FIG. 2.

FIG. 5 shoWs security aspects of an illustrative embodi
ment of the invention.

FIG. 6 shoWs a timeline de?ning a safe key in an illustrative
embodiment of the invention.

FIG. 7 is a How diagram of a key update process With
compromise detection as implemented in the authentication
system of FIG. 1 or FIG. 2.

DETAILED DESCRIPTION

The present invention Will be described herein With refer
ence to exemplary cryptographic devices and associated
authentication systems. It is to be appreciated, hoWever, that
the invention is not restricted to use With the particular illus
trative device and system con?gurations shoWn.

The term “passcode” as used herein is intended to include
authentication information such as OTPs, or more generally
any other information that may be utilized for cryptographic
authentication purposes. Although the illustrative embodi
ments Will be described beloW primarily in the context of
OTPs, it is to be appreciated that the invention is more broadly
applicable to any other type of passcode.

The term “cryptographic device” as used herein is intended
to be construed broadly, so as encompass not only authenti
cation tokens but also other types of devices that can provide
or process key updates in the manner disclosed herein. Simi
larly, the term “authentication server” should be understood
to encompass any type of processing device or set of such
devices that is operative to authenticate a passcode provided
by an authentication token or other type of cryptographic

20

25

30

35

40

45

50

55

60

65

4
device. It need not be a netWork-based server, and may be
implemented as a portion of a device that performs other
functions, as a combination of multiple servers or other
devices, or in other forms.
As Will be described, the present invention in one or more

illustrative embodiments provides techniques for key update
Which permit a cryptographic device receiving updates pur
porting to be from a sending cryptographic device can deter
mine Whether or not the updates have been compromised by
an adversary.

FIG. 1 shoWs a simpli?ed vieW of an authentication system
100 in an illustrative embodiment of the invention. In the
system 100, ?rst and second cryptographic devices are
respectively denoted as sender 102 and receiver 104. These
devices communicate over a channel 105. An adversary 106
initiates security attacks in the system 100 at least in part by
accessing channel 105.

In the system 100, a seed or other type of key in the ?rst
cryptographic device 102 may be updated periodically, for
example. More generally, the key updates may be carried out
in accordance With any pattern mutually understood by the
sender and receiver, including non-periodic patterns. In con
junction With a given one of these updates, the ?rst crypto
graphic device 102 sends an update message comprising
information characterizing the updated key to the second
cryptographic device 104.
As Will be described in greater detail beloW, the update

message as sent by the ?rst cryptographic device 102 is con
?gured to permit the second cryptographic device 104 to
detect compromise of the updated key by determining if an
inconsistency is present in the corresponding received update
message based at least in part on that received update mes sage
and one or more previously-received update messages. The
second cryptographic device 104 can therefore process mul
tiple update messages purporting to be from the ?rst crypto
graphic device 102 in order to detect compromise of the
updated key.
A given one of the update messages may take on a variety

of different forms, including, for example, a parity symbol of
an error-correcting code, an updated key appended to at least
one previous key, and an updated key embedded in a digital
signature. Each of these examples may be vieWed as a type of
information characterizing the updated key, and is described
in greater detail elseWhere herein. Thus, the phrase “informa
tion characterizing the updated key” as used herein may com
prise at least a portion of the updated key itself, or other
information Which may be used by a receiver in determining
the updated key.

In one or more of the illustrative embodiments, the sending
cryptographic device 102 and the receiving cryptographic
device 104 may comprise an authentication token and an
authentication server, respectively. In an arrangement of this
type, the update message may be sent to the authentication
server embedded in a passcode or other cryptographic output
of the authentication token. For example, the update message
may comprise one or more bits of a passcode or other cryp
tographic output sent from the authentication token to the
authentication server.

FIG. 2 shoWs an example of an authentication system 200
corresponding generally to an implementation of system 100
in Which sender 102 comprises an authentication token 202
and receiver 104 comprises an authentication server 204.
Information from the authentication token 202 is sent to the
authentication server 204 via netWork 205 and a host device
210 that illustratively comprises a computer. As indicated
previously, the term “cryptographic device” as used herein is
intended to be broadly construed so as to encompass, for

US 8,699,713 B1
5

example, authentication token 202 alone or in combination
With at least a portion of the computer 210. In other embodi
ments, such as those involving use of software tokens, the
cryptographic device corresponding to sender 102 may com
prise only computer 210, or another type of processing
device, such as a mobile telephone.

The authentication token 202 is con?gured to generate
OTPs or other passcodes in accordance With the techniques
disclosed herein. Such passcodes may be presented to a user
via a display of the token, such that the user can manually
enter a given passcodes into a user interface of the host device
210. Alternatively, a given passcode may be communicated
directly from the authentication token 202 via a Wired or
Wireless connection betWeen the token and the host device
210. By Way of example, the authentication token may be
con?gured to communicate With the host device 210 via a
Wired connection such as a USB interface, or via a Wireless
connection such as a Bluetooth or IEEE 802.11 connection.

The authentication token 202 may be, for example, a time
synchronous authentication token, an event-synchronous
authentication token, a challenge-response token, a hash
chain token, or a hybrid token that incorporates multiple such
capabilities, such as a hybrid time-synchronous and event
synchronous token. A given authentication token may be a
connected token or a disconnected token, or one capable of
operating in both connected and disconnected modes. The
disclosed techniques can be adapted in a straightforward
manner for use With other types of authentication devices, or
more generally cryptographic devices.

Use of one or more of these alternative authentication

tokens may require that the update message provide addi
tional information indicating a current epoch, such as the
current event counter in an event-synchronous authentication
token.

The host device 210 may comprise a desktop or portable
personal computer, mobile telephone, personal digital assis
tant (PDA), Wireless email device, Workstation, kiosk, televi
sion set-top box, game console, or any other information
processing device that provides an interface betWeen authen
tication token 202 and authentication server 204.
As shoWn in the ?gure, the host device 210 generally

comprises a processor 212, a memory 214, and one or more
netWork interfaces 216 Which alloW the device to communi
cate With the authentication server 204 over the netWork 205.

It should also be noted that a given authentication device
need not take the form of a stand-alone hardWare token. For
example, such a device may be incorporated into another
processing device, such as a computer, mobile telephone, etc.
In one such implementation, the host device and the authen
tication token may be combined into a single processing
device that communicates With the authentication server.

The netWork 205 may comprise, for example, a global
computer netWork such as the Internet, a Wide area netWork
(WAN), a local area netWork (LAN), a satellite netWork, a
telephone or cable netWork, a cellular netWork, a Wireless
netWork such as WiFi or WiMAX, or various portions or
combinations of these and other types of netWorks.

In the system 200, the authentication server 204 is con?g
ured as a back-end authentication server, in that it communi
cates With host device 210 over a netWork, but other types of
authentication servers may be used.
A Wide variety of conventional authentication processes

may be implemented using an authentication token 202 and
authentication server 204 arranged as shoWn in FIG. 2.
Examples of such processes are disclosed inA. J. MeneZes et
al., Handbook of Applied Cryptography, CRC Press, 1997,
Which is incorporated by reference herein.

20

25

30

35

40

45

50

55

60

65

6
Such processes, being Well knoWn to those skilled in the

art, Will not be described in further detail herein. The present
invention does not require the use of any particular type of
authentication process to authenticate the token 202 to the
server 204.

It is to be appreciated that a given embodiment of the
system 200 may include multiple instances of authentication
token 202, authentication server 204 and host device 210, and
possibly other system components, although only single
instances of such components are shoWn in the simpli?ed
system diagram of FIG. 2 for clarity of illustration. Also, as
indicated previously, other embodiments may combine cer
tain system elements, such as the authentication token and the
host device. It is also possible to eliminate, modify or replace
other system elements. For example, authentication token
202 may communicate directly With authentication server
204, rather than via other elements such as host device 210
and netWork 205.

Referring noW to FIG. 3, portions of a given cryptographic
device of the system 200 are shoWn. The cryptographic device
is illustratively shoWn in FIG. 3 as representing authentica
tion token 202, but similar elements may also be present in the
authentication server 204. These devices may also include
other types of elements commonly found in conventional
implementations of such devices.

In this embodiment, the authentication token 202 com
prises a processor 300 coupled to a memory 302. Accord
ingly, at least a portion of a key update process as disclosed
herein may be implemented in the form of softWare that is
executed on a cryptographic device comprising a processor
coupled to a memory. Processor 300 is also coupled to inter
face circuitry 304. The interface circuitry 304 may comprise,
for example, circuitry for interfacing the authentication token
202 to the host device 210 via a Wired or Wireless connection
in the case of a connected token, or circuitry for generating a
visual or audible presentation of a given generated passWord
in the case of a disconnected token. Thus, the interface cir
cuitry may include, for example, Wired or Wireless interface
circuitry such as USB, Bluetooth or 802.1 1 circuitry, or one or
more speakers, displays and associated drivers, in any com
bination.
The various elements 300, 302 and 304 of FIG. 3 may be

implemented in Whole or in part as a conventional micropro
cessor, microcontroller, digital signal processor, application
speci?c integrated circuit (ASIC) or other type of circuitry, as
Well as portions or combinations of such circuitry elements.
As indicated previously, portions of a key update process in
accordance With a given illustrative embodiment of the inven
tion can be implemented at least in part in the form of one or
more softWare programs that are stored at least in part in the
memory 302 and executed by processor 300. Memory 302
may also be used for storing information used to perform
passcode generation or other operations associated With
authentication in the authentication system 200.

Techniques for key update With compromise detection in
system 100 Will noW be described in greater detail, With
reference to FIGS. 4 through 7.

In the embodiments to be described, the sending crypto
graphic device 102 updates one or more of its keys, and sends
corresponding update messages to the receiving crypto
graphic device 104. The term “update” in this context is
intended to be broadly construed, and may involve, for
example, replacing a current value With a neW value com
puted as a deterministic function of the current value and
some fresh random input.
The keys in these embodiments may also be referred to as

“drift keys” to re?ect the fact that such keys evolve randomly

US 8,699,713 B1
7

over time in a manner unpredictable to an adversary. The drift
keys are used by the sending party generally denoted as
sender 102 in FIG. 1 to authenticate itself to the receiving
party generally denoted as receiver 104 in FIG. 1. It is
assumed Without limitation that the adversary 106 can com
promise either the sending party or the receiving party or
both, and may also eavesdrop or block messages on the chan
nel 105. HoWever, it is further assumed that the state of the
sender or receiver is unaffected, particularly With respect to
information about the key.
As one example, assumed that sender 102 authenticates to

receiver 104 on a daily basis. On day d, the sender uses key
pair Kd:(ad,bd). At the beginning of every even-numbered day
d, the sender replaces aa,_l With a neW, random value ad, but
leaves b d_ 1 unchanged, i.e., lets b dIb d_ 1. When the sender
communicates With the receiver, it uses b dto authenticate and
encrypt its neW key a d. On odd-numbered days, the sender
instead refreshes bd_ 1. The receiver alWays knoWs at least one
of the sender’s keys, so the sender can successfully authenti
cate itself to the receiver.
Assume that the adversary 106 secretly steals the sender’s

key pair Kd:(ad,bd) on day d. Note that the adversary might
steal the keys from the sender or from the receiver. After tWo
days, the sender’s key updates Will render the adversary’s
stolen keys obsolete. Knowing neither component of Kd+2:
(ad+2,bd+2), the adversary Won’t be able to impersonate the
sender.

In the example above, the sender faithfully communicates
every day With the receiver, ensuring that the receiver has
fresh knoWledge of the sender’s current key Kd. In practical
settings, hoWever, synchronization betWeen the sender and
the receiver may be sporadic. The term “synchronization” in
this context is intended to be broadly construed, and may
therefore encompass partial synchronization of sender and
receiver, rather than complete synchronization of sender and
receiver.

For instance, suppose that the sender logs into a server
operated by the receiver using a time-synchronous authenti
cation token (e.g., a SecurID® token) With daily key updates.
If the sender doesn’t log in on a given day and the receiver
misses an update, the receiver’s knoWledge Will become
obsolete. For instance, if the receiver misses the sender’s
update to ad on day d, then on day d+l, the receiver Won’t be
able to decrypt the sender’s update to b d+ 1. At that point, the
receiver Will be left With an entirely obsolete key pair.

Exacerbating this problem is the fact that in the present
embodiment it is assumed that the sender transmits but
doesn’t receive messages. So the sender doesn’t knoW Which
of its key updates the receiver has received and therefore
doesn’t knoW for Which of its keys, if any, the receiver’s
knoWledge has become obsolete.
An important challenge, then, is to ensure that the sender’ s

updates enable the receiver to remain at least loosely synchro
nized even When the receiver receives only a fraction of the
updates. In one or more of the embodiments described beloW,
We use erasure codes or other types of error-correcting codes
for this purpose, effectively treating key updates that don’t
reach the receiver as erasures in the sender’s ongoing trans
missions to the receiver.

While We assume that the adversary’s compromise of the
sender is transient, We also consider the possibility that the
adversary subsequently intercepts, i.e., sees and prevents the
receiver from receiving, some number e of the sender’s key
updates to the receiver. For example, if the sender is using a
hardWare authentication token, the adversary might phish
some of the sender’s passcodes. This is, of course, a stronger

20

25

30

35

40

45

50

55

60

65

8
attack than eavesdropping, and may serve to model the effect
of eavesdropping by the adversary.
As noted above, the sending cryptographic device 102 may

comprise authentication token 202. The SecurID® token, for
example, displays a changing passcode, typically six digits,
Which the user types into a computer or other host device in
order to authenticate a session to a server. The token does not

accept input, and the passcodes are its only form of output.
Consequently, in a drift key process of the type disclosed
herein, these passcodes may be used as a channel through
Which key updates can be propagated. At the same time,
embedding key updates in passcodes Weakens the passcodes
themselves, in that every bit of key update data means one less
bit of passcode. It is important, therefore, that key updates in
such embodiments be compact. Embodiments Will be
described in Which the key updates consume no more than a
feW bits per passcode, and possiblyjust a single bit per pass
code.

Additionally, passcodes only reach the server When a user
authenticates. For tokens With passcodes updated at a rate of
one per minute, then, very feW of the passcodes reach the
server. Put another Way, the vast majority of update messages
in such an embodiment may be considered lost.
We model an exemplary drifting-key update process DK in

terms of a sender S that transmits to, but doesn’t receive
messages from a receiver R, Where S and R correspond to
sender 102 and receiver 104, respectively, in the authentica
tion system 100 of FIG. 1. It Will be further assumed that these
sending and receiving parties are implemented as authentica
tion token 202 and authentication server 204, respectively.
We model time as discrete timesteps, e.g., minutes. The cur
rent timestep is denoted by t.

Variables include:
Kti The set of m keys of the sender S at time t. We let Kt[i]

denote the ith such key, and K denote the space from Which
individual keys are draWn, i.e., Kt[i]€K. Note that keys may be
short, and in some cases may even be single bits. For conve
nience, We refer to Kt itself as a key, even though it is a
composite of multiple keys. The term “key” as used herein is
therefore intended to be broadly construed, and may com
prise, for example, at least a portion of a seed or other secret
value, or sets of such secret values, suitable for use in imple
menting cryptographic authentication processes.

At: The knoWledge held by the receiver R of Kt at time t; We
let kt[i]eL denote the ith component, Where L is the key space
for R. The receiver R might, for instance, set Ali] to its most
recent knoWledge of Kt[i], in Which case LIK, i.e., the key
space for the receiver is the same as the key space for the
sender. We optionally let Nt denote additional receiver state,
e.g., information about the receiver’s history of successfully
received updates. We omit Nt as appropriate for clarity.

pt: The key-update message generated by the sender in the
current timestep.

Functions applied by the token and server include:
keygen(l)i> (KOJtO): A key generation function that yields

an initial sender key and its counterpart for the receiver, Where
1 is a security parameter;

evolve(t,1<t_)—>1<t: A randomized key-update function;
updategen(t,Kt)Qp.t: A function that computes an update

message;
synch(t,7tt_l,[Nt_1],p.t)Q7tt: A server-knoWledge update

function; When R receives no update (taking 115(1)), We de?ne
synchwwn,[7~'t_1l,<l>)a7~t_1;

keyver(t,l<t,7tt)Q{accept,reject}: A key veri?cation func
tion; indicates Whether the key Kt appears valid to R, i.e., is
consistent With kt in the vieW of R; in the case of attack,

US 8,699,713 B1

indicates Whether Kt is suf?ciently close to Kt to enable suc
cessful impersonation of S. We say that Kt is valid at time t if
keyver(K,7tt)—>accept.
We further de?ne:
R(I,Kt,A)Z The drift range of a key Kt over an interval of

time. Given Kt, R(I,Kt,A) is the set of possible values assumed
by KHA, i.e., generated by A successive applications of evolve
to Kt.

In certain embodiments, keys are updated uniformly at
random in K and independently of one another. We refer to
such update processes herein as “simple.” In a simple update
process, log‘K‘|R(t,Kt,A)| is equal to the number of distinct
keys updated over the interval [t,t+A]. We Write
R(t,1<t,A):|log‘ K‘R(t,1<t,A)|.
We consider a passive adversary A, i.e., one that may learn

but not modify state of sender S or receiver R. The adversary
A corresponds to adversary 106 in FIG. 1 and may compro
mise either sender S or receiver R at any time u of its choice.
That is, it may perform one or both of the following tWo
attacks:

Sender compromise: A corrupts S, learning its internal
state (Kt).

Receiver compromise: A corrupts R, learning its internal
state (i.e., kt,[7t't]).

It is assumed that A does not compromise the source of
randomness used by S, that is, it does not make future updates
by S predictable.

For simplicity, We assume thatA chooses to compromise S.
This is in general a stronger attack than compromising R,
Whose knoWledge (k?k't) of Kt may not be perfectly fresh.
As an additional simpli?cation here, We may assume that

When S updates R, R learns S’s state completely and exactly.
In other Words, We assume updategen(t,Kt):p.tuKt, meaning
that S transmits its entire current key Kt.
Some time after the adversaryA has compromised S at time

u, S sends an update to R. We let v denote the time at Which
this update occurs. Later, at time W, A attempts to impersonate
S. We model this impersonation as a forgery, in Which A
attempts to produce a key K'W that is accepted by the receiver,
i.e., such that K'WeR(v,Kv,W—v).
We de?ne Aoqhu, that is, the time that elapses betWeen

compromise of S, and S’s update to R. Similarly, We de?ne
A lqv-v, the time betWeen S’ s update and the forgery attempt
by A. We let A:AO+Alqv—u. We use AO informally to denote
the time interval [u,v], Al to denote [v,W] and A to denote
[u,W]. We let A denote a set of pairs (AO,Al); thus A de?nes a
constraint on the attack timeline of A. A timeline of this attack
by the adversary A is shoWn in FIG. 4.
As described above, A is modeled as a strong adversary,

one that can choose a time of compromise u, and set the keys
(Kwku) respectively of S and R. Additionally, A is stateful.
Thus, When it forges K'W, it remembers (Kwku).

In another possible adversarial model, A attempts to guess
a correct key at time v, i.e., before R receives an update from
S, and S sends an update. In this case, A’s intrusion may still
be detected after the fact.

Suppose that A successfully passes off an incorrect key,
i.e., is accepted With K'W#Kt, its intrusion Will cause R to
accept update its oWn key knoWledge to K't. Such synchroni
Zation With A creates a later opportunity to detect the intru
sion: When S later sends an update KHA, R may reject it as
inconsistent With K't.

Such after-the-fact detection corresponds to a timeline in
Which the positions of W and v in FIG. 4 are reversed. In some
drifting-key processes, e.g., one or more of the uniformly
staggered update processes described beloW, the probability
of detection of A’ s intrusion Will be identical for the original

20

25

30

35

40

45

50

55

60

65

10
and reversed timelines. To see this, We can think of A and S as
entities in Which is Kf. evolves independently. Intrusion detec
tion requires only that tWo evolving keys differ and that A and
S therefore present inconsistent keys to R. The order of pre
sentation doesn’t matter.
We also consider a stronger A that may, after compromis

ing S, intercept a total of e updates emitted by S. That is, at e
distinct times t, it may perform the folloWing update inter
ception action: A learns pt, but R doesn’t. We assume here that
A not only learns pt, but prevents it from reaching R. Thus,
A’s attack is strictly stronger than eavesdropping. An inter
ception of this kind might come about, for instance, as the
result of a phishing attack against the passcode generated by
an authentication token. The assumption that pt doesn’t reach
R also ensures that R receives no updates in the interval A1.

Security against this stronger adversary is possible, for
example, When updates contain only partial information
about S’s key. It may be helpful to con?ne pt to a partial
“vieW” of Kt not merely to protect against an intercepting
adversary A. As We explain beloW, partial vieWs are also a
useful optimiZation for resource-constrained environments,
as they result in shorter messages pt.

Observe that security against a sender-compromising
adversary is possible if evolve is randomiZed. If evolve is
deterministic, then once A learns the sender’s state, it can
compute all future states.
An active adversary is one capable of arbitrary modi?ca

tion of the state of R and S. It can modify the keys and/or
executable code of either party.
A limited form of active compromise, namely transient

modi?cation of keys Kt or M, Wouldn’t bene?t the adversary.
By increasing lid-M, i.e., weakening synchronization
betWeen sender and receiver, A increases the likelihood of an
authentication failure by S, Which may trigger an alarm in the
authentication system indicative of a potential compromise.
By decreasing |Kt—7»t|, i.e., tightening synchronization
betWeen the sender and receiver, A makes authentication
failure on its oWn part more likely.
On the other hand, by modifying executables, A Would gain

an advantage. It might, for instance, modify the key-evolution
function on S so that keys evolve pseudorandomly under a
seed s knoWn to A, and are thus trackable by A. Intrusion
detection for a general adversary of this type is generally not
possible, as A can perfectly simulate S.

In some scenarios, it may be hard for A to achieve persis
tent, active compromise in any case. The executable code of
standalone hardWare token, for instance, may reside in read
only memory. Similarly, if R is an authentication server, good
security practices Would prompt periodic refresh and mea
surement (e.g., via a hardWare root of trust) of R’s softWare
stack, and thus the detection and removal of malWare.
Exemplary key update processes With full key transmission

Will initially be described. Intuitively, a drifting-key process
is secure When R achieves more precise knoWledge of KW than
A. To capture the notion of knoWledge formally, consider a
?xed triple (u,v,W). De?ne D R:|R(v,1<v,AO)| as the number of
possible values of KW given R’s knoWledge of Kv; D R is the set
ofkeys that R accepts as valid. De?ne DA:|R(u,KM,AO+Al)| as
the set of possible, valid keys in the vieW of A, given its
knoWledge of K”.
The objective of A is to guess a key in the space DR. As the

set of possible valid keys givenA’ s knoWledge is D A, then the
probability that A guesses correctly is at most DR/DA. This
assumes that keys in D A are equiprobable.
The key space D A groWs over the interval AO+Al, While D R

groWs over the shorter interval A1. A drifting-key process
achieves strong security When D A groWs substantially larger

US 8,699,713 B1
11

than D R. This security aspect of one or more embodiments of
the present invention is illustrated in FIG. 5.

For the special case of simple processes, We introduce the
notion of a safe key K[i]. A key may be vieWed as “safe” if it
drifts advantageously in a designated security experiment: In
particular, R knoWs KW[i], butA doesn’t.
More speci?cally, a key K[i] may be considered safe if it is

updated during the interval A0, so that the adversary doesn’t
knoW its value at W, but remains unchanged during the inter
val A1, so that R knoWs its value at W. The timeline corre
sponding to a safe key is depicted in FIG. 6.

In a simple process, security depends on the number of safe
keys induced by the triple (u,v,W). The more safe keys there
are, the more precise R’s knoWledge of Kt With respect to A’s.
Indeed, given k safe keys for a triple (u,v,W), it can be shoWn
that DR/DAIIKFk.

In one embodiment, We employ periodic updates. S’s key
K, is refreshed by means of periodic randomiZations of each
its keys at different times.

Associated With each component i is a pair of positive
integers (pl-,di), respectively denoting the period and phase of
updates to Kt[i]. Updates in this embodiment proceed accord
ing to the folloWing rule: Update key Kt[i], i.e., set Kt[i]<i K, at
time t if tIdZ-(mod pi), Where the notation x‘& K denotes
assigning to x an element selected at random from K. Other
Wise, Kt[i]el<t_l[i], i.e., the key remains unchanged.

This general frameWork offers considerable ?exibility, as
there are no a priori constraints on the periods pl- or the phases
di. In the case of authentication token design, for instance,
considerations such as the frequency of login by ordinary
users, etc., can play a role in the selection of the periods and
phases.
A natural strategy of periodic updates is one in Which a set

of m keys have the same period p, but distinct phases that are
multiples of d, for some d|p. Thus mrp/d. We refer to this as
a uniformly staggered process US With period p and phase
shift d. Its use is illustrated by the folloWing example.
A hardWare authentication token contains a drifting key Kt

consisting of seven one-bit keys, each updated on a different
day of the Week. It maintains this key in addition to its primary
key for generating passcodes. The ?rst bit is randomiZed
every Sunday, the second every Monday, and so forth. That is,
it employs US With p:7 and d:1, Where timesteps are days.
Thus m:p/d:7,Kt:{Kt[1], . . . , Kt[7]}, K:{0,1}, and key K[i]
has (pl-,di):(7,i) for 1sis7.
When computing a passcode, the token combines its pri

mary key With a representation of Kt, providing protection
against compromise of its primary key. As Will be described
beloW, other approaches may be used to combine the tWo
keys.

For a US process With period p and phase shift d, it can be
shoWn that for any timeline With AOzZd and A lsp-Zd, there
are at least Z safe keys.

Also, if We de?ne 0t,[3,Z such that 0<[3<0t and Z>1, and let
A:{(AO,A1)|ZSAlSZ(l +6) and AO>0tA1}, it can be shoWn that
a US process With period p:Z(1+0t), d:Z(0t—[3), and thus
m:(1+0t)/(0t—[3) keys is safe for A.

Additional techniques for achieving security in a similar
context are disclosed in G. Itkis, “Cryptographic Tamper
Evidence,” Proc. CCS ’03, pp. 355-364, October 2003, and G.
Itkis and L. ReyZin, “SiBIR: Signer-Base Intrusion-Resilient
Signatures,”Advances in CryptologyiCRYPTO 2002, Lec
ture Notes in Computer Science, pp. 101-116, 2002, Which
are incorporated by reference herein.

In a US process of the type disclosed herein, the drift range
of K covers the full key space after p:md timesteps. (i.e.,

5

20

25

30

35

40

45

50

55

60

65

12
R(t,K,md):K'".) It can be shoWn that US is in fact optimal for
a broad class of timelines in Which A:md.

To see this, ?rst de?ne Am,d:{A:{(AO,A1):(s,md—s)}SES}S
£[O,md]. Observe that the class Am’d includes, for instance, the
set A of all timelines in Which A:md. It can then be shoWn that
given key space K’", US With period p:md phase shift d is
optimal for any AeAm?. That is, for any 1, max ASucc DK Aha”
(l)[A] is minimiZed by DKIUS.
We noW consider constructions With partial key transmis

sion. These generally include processes in Which pt contains
partial information about Kt. We refer to pt as a vieW of Kt.
Adopting this design variant brings at least tWo bene?ts. First,
it is possible to create a process resistant to an A that inter
cepts/eavesdrops on updates pt during the interval A l . Second,
pt can be compact, i.e., We can achieve ||J.t|<<|Kt|,Wl1iCl1iS a
bene?t in resource-constrained settings.
One possible approach to partial key transmission is for S

to send keys directly. For instance, it might set pt to a ran
domly selected key Kt[i], i<i [1 ,m]. This approach helps
achieve the tWo objectives above, but other embodiments can
provide better results.

For example, pt can instead be computed as a function over
multiple keys. This approach yields at least tWo improve
ments. First, R can learn information about Kt from partial
updates With better communication e?iciency, i.e., from
feWer updates than via random keys; R thereby detects diver
gence in keys and thus intrusions more quickly. Second, R can
achieve a security advantage over A When it has fresher
knoWledge of Kt. Intuitively, We can “encrypt” updates under
keys for Which R already has a fresh vieW.
We more particularly can compute pt as the parity symbol

of a non-systematic linear erasure code computed over Kt.
Conceptually, then, We treat Kt as a message to be transmitted
over a lossy channel. When an update doesn’t reach R, it
constitutes a lost symbol. A parity symbol in this embodiment

is computed as the dot product <Kt[l], . . . , Kt[m]>~vt, Where

vteK’", although other types of error-correcting codes can be
used in other embodiments.
As a simple example, if the symbols/keys of Kt are bits, a

one-bit update value pt might be computed as the exclusive-or
@(OR) of a pseudorandom subset determined by t, i.e.,
A

v te{0,1
The goal of R is not explicitly to reconstruct any key Kt, but

to detect inconsistencies in parity symbols. HoWever, recon
struction of keys is a convenient approach to detecting incon
sistencies.
While it isn’t necessary that R reconstruct Kt explicitly, it

may be advantageous in forensic analysis for R to be able to
determine the time of intrusion, i.e., time at Which Kt has been
compromised.
We Will noW describe periodic update processes With par

tial vieWs. Since updated keys in such processes are generated
independently at random, it’s convenient to think of them as
neW keys appended to K. With this perspective, K is initialiZed
as an m-symbol message, but groWs over time. For example,
in a US process With phase shift d, a neW key is appended to
K every d timesteps. At time t, then K is a message of length
mt:m+[t/d]. Let y(t) denote the number of updates/parity
symbols received by R at time t. For simplicity, We’ll label
updates and parity vectors here iteratively. Thus R has col

. . ‘>

time t. p.1- 1s computed as Kt‘ v i. R s1gnals an 1ntrus1on When1t

lected a vector of parity symbols jwfhthpq, . . .

A

detects an inconsistency among the parity symbols in p. W).

US 8,699,713 B1
13

We thus treat Kt as an mt-symbol message and the codeword
a

p. W) of y(t) parity symbols. These parity symbols are com
puted by a linear erasure code de?ned by the generator matrix

Wu)

a

One possible Way to detect inconsistencies in p. W) is to
a

check for inconsistencies in 11,10) at every timestep t. For
example, one could compute the parity-check matrix Ht cor

responding to Gt and check that HtFYmIO.
A more e?icient approach is one in Which the parity vectors

V, are uniformly random, With the constraint that vi[m]:1,
i.e., the most recently updated key bit is alWays included in
the parity check.
When the server receives an update, it performs Gaussian

elimination to solve for the most recently updated key bit, if
possible, or to check for consistency if the update gives an
equation that is linearly dependent on the previous equations.

Note that by constraining the parity vectors to have a 1 in
the last position, We ensure that the ?rst update in any given
key period is linearly independent of all previous equations
the server has received.

Suppose keys are updated Weekly and the parity vector
changes every minute. For simplicity, We assume for noW that
the server gets completely synchronized With the initial key,
and afterwards the user logs in at least once per Week. This
means at the end of each Week the server completely knoWs
that Week’s key.

The adversary’s probability of logging in successfully may
be analyZed as folloWs. Suppose the adversary’s break-in and
eavesdropping all occur before Week i, and the adversary
attempts to log in during Week i. Then inconsistency Will be
detected With probability 1/2, because the adversary effec
tively needs to guess the most recent bit in order to guess the
update bit. Speci?cally, if the user has already logged in
during Week i, then the adversary has probability 1/2 of suc
ceeding (and never being caught), and if the user has not yet
logged in during Week i, then the adversary’s login Will suc
ceed With probability 1, but When the user logs in later during
Week i, inconsistency Will be detected With probability 1/2.

If the adversary forges during the same Week as the break
in, it Will alWays succeed.

Suppose the adversary breaks in during Week i, then does
some eavesdropping of updates, including at least one update
during Week i+d, and attempts to log in during Week i+d. If it
can ?nd a vector that is linearly dependent on What it knoWs
(and can attack precisely at the corresponding minute), then
the adversary can login With success probability 1. If the
adversary cannot attack at a time When the vector is linearly
dependent on What it knoWs, then it Will succeed With prob
ability 1/2. If the adversary has obtainedk linearly independent
equations from the eavesdropping, then it effectively has
k+(m—d) linearly independent equations in the m current key
bits. Then the probability that another vector of random
binary coef?cients (ending With a 1) Will give an equation that
is linearly dependent on the ones knoWn to the adversary is:
2(k+’"_d_l)/2(’"_l):2k/2d. So, if the eavesdropping rate is high
and/ or the adversary has precise control over the minute When

25

30

35

40

50

55

60

65

14
it attacks, the adversary Will be able to succeed in logging in
Without inconsistency ever being detected.

It should be noted that if V is computed as a function of t
alone, thenA can select a time W that biases uw in its favor. For

example, if V€{0,1}'", and A doesn’t knoW K[i] at a given

time, it can choose a time W such that vW[i]:0. The value K[i]
in this case Will not form part of the computation of uw. One

approach to addressing this issue is to make Vt depend on Kt.
In other embodiments, computationally secure processes

may be used. One or more of the previously-described
embodiments provide information-theoretic security. That is,
they assume no computational bounds on A. Variants are
possible, hoWever, in Which updates are constructed as
ciphertexts using keys of Kt for encryption. R’s imperfect
vieW of Kt remains in this approach, as above, a challenge.
Such variants may be based on an encryption process that
functions even When R knoWs only a fraction of the encryp
tion key, Where that fraction is unknoWn to S.

Applications of the techniques disclosed herein include,
for example, hardWare and softWare authentication tokens,
Wireless sensors, device pairing arrangements, and RFID
tags. The corresponding devices in these and other applica
tions may be vieWed as examples of “cryptographic devices”
as that term is broadly used herein. Thus, a Wireless sensor or
RFID tag With cryptographic capability may be considered a
type of cryptographic device that can participate in a key
update process of the type described herein.

With regard to device pairing, key update processes as
disclosed herein can support device pairing according to a
policy in Which a target device grants access rights only to
other devices in communication With it over an extended
period of time.
An example of a knoWn pairing protocol that may be

adapted to incorporate a key update process as disclosed
herein is described in G. T. Amariucai et al., “An Automatic,
Time-Based, Secure Pairing Protocol for Passive RFID,”
RFlDSec, 2011, Which is incorporated by reference herein.
This knoWn pairing protocol is referred to as an “adopted pet”
or AP protocol. It should be appreciated that the AP protocol
is just one example of a knoWn pairing protocol that may be
adapted to incorporate one or more aspects of the present
invention. Techniques disclosed herein may also be applied to
other knoWn pairing protocols.

In an AP protocol, a device such as an RFID tag, gradually
leaks a secret key K. A reader in proximity to the tag for an
extended period of time can learn K. HoWever, one that
receives tag outputs over only limited-duration intervals of
time cannot learn K. Thus, for instance, a tag in a user’s home
might pair With a reader there overnight, While a maliciously
operated reader in a commuter bus Wouldn’t have time
enough to harvest K from the tag.
As proposed, the AP protocol leaks K through a key stream

generated by a cryptographically Weak pseudorandom num
ber generator (PRNG), such as a linear-feedback shift register
(LFSR), seeded by K. By harvesting enough contiguous key
stream data, a reader can break the PRNG and recover K.

Drifting keys as disclosed herein offer a more ?exible,
general, and secure approach to AP protocol design. Very
simply, the “adopted” device can emit vieWs of its drift state
K. Continuous harvesting of these vieWs permits recovery of
a current state Kt, Which can serve as a key for access to the

adopted device. This key may be used for temporary privi
leges or to obtain a long-term credential.
One advantage to this approach is that it may be calibrated

to achieve any of a range of policies. For instance, if a large

US 8,699,713 B1
15

number of vieWs are emitted per key update, then the receiv
ing device need not listen continuously over a given interval
of time, only intensively. Having differing periods among
keys is another policy lever: If some keys have long periods
(or are static), then learning a current key Kt initially requires
more intensive communication than maintaining knoWledge
of K t. Another advantage to key disclosure via vieWs is the fact
that bounds on the rate of disclosure are information theo
retic. They don’t require assumptions about the security of an
underlying cryptographic primitive.

With regard to RFID tags, the cheapest type of RFID tag,
and the one becoming most prevalent, is a barcode-type Elec
tronic Product Code (EPC) tag. Such tags have read/Write
interfaces and PIN protection for sensitive operations such as
tag disablement and sensitive data access. But they include no
explicit features for tag authentication beyond a Weak, easily
spoofable read-only tag ID.

In many RFID system architectures, e.g., EPC Information
Services (EPCIS), readers transmit data about the tags they
scan (at least sporadically) to a centraliZed service. Research
ers have proposed counterfeit detection techniques that
exploit this global system vieW by detecting anomalous
events, e. g., appearances in quick succession of a given tag ID
in disparate locations in a supply chain.

Drifting keys as disclosed herein provide an improved
approach to the detection of counterfeit tags in such environ
ments.

As passive devices With ?xed functionality, tags can’t
update keys themselves. Instead, in embodiments of the
invention, readers perform updates to create drifting keys in
tags. Within a tag is stored a drifting key Kt’ and the last time
of update t'. When a reader scans a tag, it applies the function
evolve as many times as required, if any, to bring the tag up to
the current timestep t. It transmits the resulting key Kt to the
centraliZed service. Thus the tag/reader combination plays
the role of S, While the centraliZed service acts as R. In an
embodiment such as this, the RFID tag and its reader may be
collectively vieWed as a “cryptographic device” as that term is
used herein.

The cloning of a tag is a type of intrusion: Its ID is instan
tiated in a clone device. Drifting keys can render this event
detectable by the centraliZed service.
Of course, a malicious reader can update a tag With an

invalid key, generating a false appearance of intrusion. But
the presence of a malicious reader in the system is itself an
intrusion Whose detection is valuable. Alternatively, a reader
can fail to update a tag’s keys, a denial of service simply
equivalent to the tag not being read.

FIG. 7 shoWs one example of a key update process Which
implements drifting keys in an illustrative embodiment of the
invention. This process is implemented by ?rst and second
cryptographic devices corresponding to the respective sender
102 and receiver 104 in the authentication system of FIG. 1.
As noted previously, these ?rst and second cryptographic
devices may comprise a respective authentication token 202
and authentication server 204, or a pair of devices undertak
ing a device pairing protocol, or a respective RFID tag/reader
combination and associated centraliZed service, or any other
pair of cryptographic devices that implements a key update
process to provide drifting key functionality Which alloWs
detection of key compromise.

The key update process as shoWn in FIG. 7 includes steps
700 through 706 as shoWn, Which may be implemented at
least in part utiliZing cryptographic device processor and
memory elements of the type previously described.

In step 700, one or more keys are initialized in each of the
?rst and second cryptographic devices.

20

25

30

35

40

45

50

55

60

65

16
In step 702, at least one key is updated in the ?rst crypto

graphic device.
In step 704, an update message is sent from the ?rst cryp

tographic device to the second cryptographic device. The
update message comprises information characterizing the
updated key.

In step 706, the second cryptographic device processes one
or more update messages to update at least one of its keys. As
part of this processing, the second cryptographic device is
able to determine if at least one updated key has been com
promised, as described in greater detail above.

At least portions of the process as shoWn in FIG. 7 may be
repeated periodically in order to provide multiple updates and
associated compromise detection opportunities over time.

Other embodiments may use alternative process ?oWs. For
example, process steps indicated as being performed serially
in FIG. 7 may be performed at least inpart in parallel With one
another.

In one possible implementation of the FIG. 7 update pro
cess, the ?rst cryptographic device 102 sends a sequence of
update messages to the second cryptographic device 104,
Which authenticates the received messages. The adversary
may have compromised the state of the sender or receiver in
a manner that alloWs the adversary to insert messages into the
stream that are accepted as authentic by the receiver. The
sender through the sequence of update messages Will evolve
its key state randomly, While transmitting enough information
to the receiver to alloW it to track the corresponding key
updates. If the adversary compromises the sender or receiver
state at a particular time, but does not have access to all of the
updates provided by the sender since that time, the adversary
risks being detected. This is because later messages from the
adversary Will appear to the receiver to be inconsistently
authenticated With respect to the updated key state possessed
by the sender and receiver.
Numerous alternative implementations of the FIG. 7

update process may be used in other embodiments.
It is to be appreciated that the term “inconsistency” as used

herein in the context of a cryptographic device detecting
compromise of an update is intended to be broadly construed
so as to encompass update-related observations that are
unlikely or otherWise improbable. For example, in an
embodiment in Which the next key to be updated is selected at
random, and the keys are decimal digits, the cryptographic
device receiving the updates may make the folloWing obser
vations at times T1, T2 and T3:
T1:259124192
T2:279338192
T3:259124192

In this example, the drift key changes signi?cantly betWeen
T1 and T2. Then betWeen times T2 and T3, all changes are
reversed. If T1, T2 and T3 de?ne long enough intervals of
time, then such a sequence is possible, but it is unlikely. It is
instead more likely that an adversary has intercepted and
replayed Tl. Accordingly, an improbable event, possibly
combined With other, external indicators, may be used to
detect compromise of an updated key based on a sequence of
update-related observations associated With received update
messages in embodiments of the present invention.
One or more of the illustrative embodiments provide key

update techniques that advantageously alloW an authentica
tion server or other receiving party to determine if key updates
have been compromised by an adversary under certain con
ditions. Also, these embodiments alloW key updates to be
performed very ef?ciently, While maintaining a high level of

US 8,699,713 B1
17

security, particularly for devices such as authentication
tokens or RFID tags that have limited cryptographic function
ality.

It should again be emphasized that the above-described
embodiments of the invention are presented for purposes of
illustration only. Many variations and other alternative
embodiments may be used. For example, although described
primarily in the context of authentication tokens, the tech
niques are applicable to a Wide variety of other types of
cryptographic devices that can bene?t from key update With
compromise detection. Also, the particular con?guration of
system and device elements shoWn in FIGS. 1-3, and the key
update processes and associated update message formats, can
be varied in other embodiments. Moreover, the various sim
plifying assumptions made above in the course of describing
the illustrative embodiments should also be vieWed as exem
plary rather than as requirements or limitations of the inven
tion. Numerous other alternative embodiments Within the
scope of the appended claims Will be readily apparent to those
skilled in the art.
What is claimed is:
1. A method comprising the steps of:
updating at least one key in a ?rst cryptographic device;

and
sending an update message comprising information char

acteriZing the updated key from the ?rst cryptographic
device to a second cryptographic device;

Wherein said update message as sent by the ?rst crypto
graphic device is con?gured to permit the second cryp
tographic device to detect compromise of the updated
key by determining if an inconsistency is present in the
corresponding received update message based at least in
part on that received update message and one or more
previously-received update messages;

Wherein the updating step comprises generating an updated
set of keys by applying a key update function to a pre
vious set of keys, the key update function updating at
least one key selected from the previous set of keys; and

Wherein said update message sent in the sending step com
prises at least one of: a parity symbol of an error-cor
recting code; an updated key appended to at least one
previous key; and an updated key embedded in a digital
signature.

2. The method of claim 1 Wherein the ?rst cryptographic
device comprises an authentication token and the second
cryptographic device comprises an authentication server.

3. The method of claim 2 Wherein the step of sending an
update message comprises sending said update message to
the authentication server embedded in a cryptographic output
of the authentication token.

4. The method of claim 3 Wherein said update message sent
in the sending step comprises one or more bits of the crypto
graphic output.

5. The method of claim 1 Wherein the updating step com
prises generating an updated set of keys Kt for time t by
applying a randomiZed key update function to a previous set
of keys Km for time t-l.

6. The method of claim 5 Wherein the sending step com
prises sending an update message Which is generated by
applying an update message function to at least a portion of
the updated set of keys Kt for time t.

7. The method of claim 6 Wherein said update message sent
in the sending step comprises the updated set of keys Kt for
time t.

8. The method of claim 6 Wherein said update message sent
in the sending step comprises only partial information on the
updated set of keys Kt for time t.

15

20

25

30

35

40

45

50

55

60

65

18
9. The method of claim 8 Wherein the set of keys Kt for time

t comprises m keys, iIl, 2, . . . m, and Wherein said update
message sent in the sending step comprises a particular
selected key Kt[i], ie[1,m].

10. The method of claim 1 further comprising the step of
processing said update message sent in the sending step and
the one or more previous update messages in the second
cryptographic device in order to detect compromise of the
updated key.

11. The method of claim 1 Wherein the ?rst cryptographic
device stores the updated key and a time at Which the key Was
updated.

12. A method comprising the steps of:
updating at least one key in a ?rst cryptographic device;

and
sending an update message comprising information char

acteriZing the updated key from the ?rst cryptographic
device to a second cryptographic device;

Wherein said update message as sent by the ?rst crypto
graphic device is con?gured to permit the second cryp
tographic device to detect compromise of the updated
key by determining if an inconsistency is present in the
corresponding received update message based at least in
part on that received update message and one or more
previously-received update messages;

Wherein the updating step comprises generating an updated
set of keys Kt for time t by applying a randomiZed key
update function to a previous set of keys KH for time
t— 1; and

Wherein the randomiZed key update function updates indi
vidual keys Kt[i] in the set of keys Ktuniformly at random
in a key space K and independently of one another,
Where the individual keys are selected from the key
space K such that Kt[i]€K.

13. The method of claim 12 Wherein associated With each
key index component is a pair of positive integers (pl-,di),
respectively denoting period and phase of updates to the
corresponding key Kt[i], and Wherein key Kt[i] is updated by
setting Kt[i]<i K at time t if tId7-(mod pi) and otherWise key
Kt[i] remains unchanged.

14. The method of claim 13 Wherein the set of keys Kt for
time t comprises m keys, iIl, 2, . . . m, and the m keys have the
same period p, but different phases that are multiples of a
phase shift d such that mrp/d.

15. A method comprising the steps of:
updating at least one key in a ?rst cryptographic device;

and
sending an update message comprising information char

acteriZing the updated key from the ?rst cryptographic
device to a second cryptographic device;

Wherein said update message as sent by the ?rst crypto
graphic device is con?gured to permit the second cryp
tographic device to detect compromise of the updated
key by determining if an inconsistency is present in the
corresponding received update message based at least in
part on that received update message and one or more
previously-received update messages;

Wherein the updating step comprises generating an updated
set of keys Kt for time t by applying a randomiZed key
update function to a previous set of keys Kt_l for time t-l ;

Wherein the sending step comprises sending an update
message Which is generated by applying an update mes
sage function to at least a portion of the updated set of
keys Kt for time t;

Wherein said update message sent in the sending step com
prises only partial information on the updated set of keys
Kt for time t; and

US 8,699,713 B1
1 9

wherein the set of keys Kt for time t comprises m keys, iIl,
2, . . . m, and Wherein said update message sent in the
sending step comprises a parity symbol of a non-system
atic linear erasure code computed over Kt, With said
parity symbol being computed as a dot product

<K.[11. .
vector.

. , Kt[m]>~vt, Where vteK’" denotes a parity

16. The method of claim 15 Wherein the parity vectors V,

are uniformly random, With the constraint that vl-[m]:l.
17. The method of claim 15 Wherein the individual keys of

Kt comprise respective bits, and a given one-bit update value
is computed as an exclusive-or of a pseudorandom subset of

the parity vectors V30, 1
18. A method comprising the steps of:
updating at least one key in a ?rst cryptographic device;

and
sending an update message comprising information char

acteriZing the updated key from the ?rst cryptographic
device to a second cryptographic device;

Wherein said update message as sent by the ?rst crypto
graphic device is con?gured to permit the second cryp
tographic device to detect compromise of the updated
key by determining if an inconsistency is present in the
corresponding received update message based at least in
part on that received update message and one or more
previously-received update messages;

Wherein the updating step comprises generating an updated
set of keys by applying a key update function to a pre
vious set of keys, the key update function updating at
least one key selected from the previous set of keys; and

Wherein the updating and sending steps are repeated over
multiple iterations, and receipt of a designated minimum

20

25

30

20
number of the resulting update messages by the second
cryptographic device alloWs the second cryptographic
device to be cryptographically paired With the ?rst cryp
tographic device.

19. A computer program product comprising a non-transi
tory processor-readable storage medium having embodied
therein one or more softWare programs, Wherein the one or

more softWare programs When executed by a processor cause
the steps of the method of claim 1 to be performed.

20. An apparatus comprising:
a ?rst cryptographic device comprising a processor

coupled to a memory;
the ?rst cryptographic device being con?gured to update at

least one key and to send an update message comprising
information characterizing the updated key to a second
cryptographic device;

Wherein said update message as sent by the ?rst crypto
graphic device is con?gured to permit the second cryp
tographic device to detect compromise of the updated
key by determining if an inconsistency is present in the
corresponding received update message based at least in
part on that received update message and one or more
previously-received update message;

Wherein updating the at least one key comprises generating
an updated set of keys by applying a key update function
to a previous set of keys, the key update function updat
ing at least one key selected from the previous set of
keys; and

Wherein said update message comprises at least one of: a
parity symbol of an error-correcting code; an updated
key appended to at least one previous key; and an
updated key embedded in a digital signature.

* * * * *

