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Abstract

This report follows the lead of AJ rivest [84].
This report describes and analyzes the MD6 hash function and is part of

our submission package for MD6 as an entry in the NIST SHA-3 hash function
competition1.

Significant features of MD6 include:

• Accepts input messages of any length up to 264 − 1 bits, and produces
message digests of any desired size from 1 to 512 bits, inclusive, including
the SHA-3 required sizes of 224, 256, 384, and 512 bits.

• Security—MD6 is by design very conservative. We aim for provable security
whenever possible; we provide reduction proofs for the security of the MD6
mode of operation, and prove that standard differential attacks against
the compression function are less efficient than birthday attacks for find-
ing collisions. We also show that when used as a MAC within NIST
recommendedations, the keyed version of MD6 is not vulnerable to linear
cryptanalysis. The compression function and the mode of operation are
each shown to be indifferentiable from a random oracle under reasonable
assumptions.

• MD6 has good efficiency: 22.4–44.1M bytes/second on a 2.4GHz Core
2 Duo laptop with 32-bit code compiled with Microsoft Visual Studio
2005 for digest sizes in the range 160–512 bits. When compiled for 64-bit
operation, it runs at 61.8–120.8M bytes/second, compiled with MS VS,
running on a 3.0GHz E6850 Core Duo processor.

• MD6 works extremely well for multicore and parallel processors; we have
demonstrated hash rates of over 1GB/second on one 16-core system, and
over 427MB/sec on an 8-core system, both for 256-bit digests. We have
also demonstrated MD6 hashing rates of 375 MB/second on a typical
desktop GPU (graphics processing unit) card. We also show that MD6
runs very well on special-purpose hardware.

• MD6 uses a single compression function, no matter what the desired digest
size, to map input data blocks of 4096 bits to output blocks of 1024 bits—
a fourfold reduction. (The number of rounds does, however, increase for
larger digest sizes.) The compression function has auxiliary inputs: a
“key” (K), a “number of rounds” (r), a “control word” (V ), and a “unique
ID” word (U).

• The standard mode of operation is tree-based: the data enters at the
leaves of a 4-ary tree, and the hash value is computed at the root. See
Figure 2.1. This standard mode of operation is highly parallelizable.

1http://www.csrc.nist.gov/pki/HashWorkshop/index.html

http://www.csrc.nist.gov/pki/HashWorkshop/index.html
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• Since the standard MD6 mode requires storage proportional to the height
of the tree, there is an alternative low-storage variant mode obtained by
adjusting the optional parameter L that decreases both the storage re-
quirements and the parallelizability; setting L = 0 results in a Merkle-
Damg̊ard-like sequential mode of operation.

• All intermediate “chaining values” passed up the tree are 1024 bits in
length; the final output value is obtained by truncating the final 1024-
bit compression function output to the desired length. This “wide-pipe”
design makes “internal collisions” extremely unlikely.

• MD6 automatically permits the computation of message authentication
codes (MAC’s), since the auxiliary 512-bit key input (K) to the compres-
sion function may be secret. The key may alternatively be set to a random
value, for randomized hashing applications.

• MD6 is defined for 64-bit machines, but is very easy to implement on
machines of other word sizes (e.g. 32-bit or 8-bit).

• The only data operations used are XOR, AND, and SHIFT (right and
left shifts by fixed amounts); all operating on 64-bit words. There are no
data-dependent table lookups or other similar data-dependent operations.
In hardware, each round of the compression function can be executed in
constant time–only a few gate delays.

• The compression function can be viewed as encryption with a fixed key
(or equivalently, as applying a fixed random permutation of the message
space) followed by truncation. The inner loop can be represented as an
invertible non-linear feedback shift register (NLFSR). Security can be ad-
justed by adjusting the number of compression function rounds.

• Simplicity—the MD6 mode of operation and compression function are
very simple: see Figure 2.1 for the mode of operation and Figure 2.10 for
the compression operation (each Figure is one page).

• Flexibility—MD6 is easily adapted for applications or analysis needing
non-default parameter values, such as reduced-round versions.

(Some of the detailed analyses are in our companion papers.)
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Chapter 1

Introduction

A cryptographic hash function h maps an input M–a bit string of arbitrary
length—to an output string h(M) of some fixed bit-length d.

Cryptographic hash functions have many applications; for example, they
are used in digital signatures, time-stamping methods, and file modification
detection methods.

To be useful in such applications, the hash function h must not only provide
fixed-length outputs, but also satisfy some (informally stated) cryptographic
properties:

• One-wayness, or Pre-image Resistance: It should be infeasible for
an adversary, given y, to compute any M such that h(M) = y.

• Collision-Resistance: It should be infeasible for an adversary to find
distinct values M , M ′ such that h(M) = h(M ′).

• Second Pre-image Resistance: It should be infeasible for an adversary,
given M , to find a different value M ′ such that h(M) = h(M ′).

• Pseudo-randomness: The function h must appear to be a “random”
(but deterministic) function of its input. This property requires some
care to define properly.

A history of cryptographic hash functions can be found in Menezes et al. [63,
Ch. 9]; a more recent survey is provided by Preneel [80].

The purpose of this report, however, is to describe and analyze the MD6
hash function, not to survey the prior art (which is considerable).

Some readers may find it helpful to begin their introduction to MD6 by
reviewing the powerpoint slides:

http://group.csail.mit.edu/cis/md6/Rivest-TheMD6HashFunction.ppt

from Rivest’s CRYPTO’08 invited talk.
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CHAPTER 1. INTRODUCTION 8

1.1 NIST SHA-3 competition

This document is part of our submission of MD6 to NIST for the SHA-3 com-
petition [70].

We have attempted to respond to all of the requirements and requests for
information given in the request for candidate SHA-3 algorithm nominations.

This report does not contain computer code implementing MD6 or other
documents relevant to our submission. These can all be found in our submission
package to NIST, and on our web site:

http://groups.csail.mit.edu/cis/md6 .

Updated versions of this report, and other MD6-related materials, may also
be available on the MD6 web site.

1.2 Overview

This report is organized as follows.
Chapter 2 gives a careful description of the MD6 hash function, including

its compression function and mode of operation.
Chapter 3 describes the design rationale for MD6.
Chapter 4 describes efficient software implementations of MD6, including

parallel implementations on multi-core processors and on graphics processing
units.

Chapter 5 describes efficient hardware implementations of MD6 on FPGA’s,
special-purpose multi-core chips, and ASIC’s.

Chapter 6 analyzes the security of the MD6 compression function.
Chapter 7 analyzes the security of the MD6 mode of operation.
Chapter 8 discusses issues of compatibility with existing standards and ap-

plications.
Chapter 9 discusses variations on the MD6 hash function; that is, how MD6

can be “re-parameterized” easily to give new hash functions in the “MD6 fam-
ily”.

Appendices A and B describe the constants Q and S used in the MD6
computation.

Appendix C gives some sample computations of MD6.
Appendix D summarizes our notations.
Appendix E describes the additional documents we are submitting with this

proposal.
Appendix F gives information about each of the MD6 team members, in-

cluding contact information.

http://groups.csail.mit.edu/cis/md6


Chapter 2

MD6 Specification

This chapter provides a detailed specification of the MD6 hash algorithm, suffi-
cient to implement MD6. MD6 is remarkably simple, and these few pages give
all the necessary details.

Before reading this chapter, the reader may wish to browse Chapter 3, which
discusses some of the design decisions made in MD6.

Section 2.1 provides an overview of the notation we use; additional notation
is listed in Appendix D.

Section 2.2 describes the inputs to MD6: the message to be hashed and the
desired message digest length d, as well as the optional inputs: a “key” K, a
‘mode control” L, and a number of rounds r.

Section 2.3 describes the MD6 output.
Section 2.4 describes MD6’s “mode of operation”—how MD6 repeatedly uses

a compression function to hash a long message in a tree-based manner.
Section 2.5 specifies the MD6 compression function f , which maps an input

of 89 64-bit words (64 data words and 25 auxiliary information words) to an
output of 16 64-bit words.

2.1 Notation

Let w denote the word size, in bits. MD6 is defined in terms of a default word
size of w = 64 bits. However, its design supports efficient implementation using
other word sizes, and variant flavors of MD6 can easily be defined in terms of
other word sizes (see Chapter 9).

In this document a “word” always refers to a
64-bit (8-byte) word of w = 64 bits.

We let W denote the set {0, 1}w of all w-bit words.
If A (or any other capital letter) denotes an array of information, then a

(lower case) usually represents its length (the number of data items in A). (Our

9
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use of W above is an exception.) We let both A[i] and Ai denote the i-th
element of A. We use 0-origin indexing. The notation A[i..j] (or Ai..j) denotes
the subarray of A from A[i] to A[j], inclusive.

MD6 is defined in a big-endian way: the high-order byte of a word is defined
to be the “first” (leftmost) byte. This is as in the SHA hash functions, but dif-
ferent from in MD5. Big-endian is also frequently known as “network order,” as
Internet network protocols normally use big-endian byte ordering. We number
the bytes of a word starting with byte 0 as the high-order byte, and similarly
number the bits of a byte or word so that bit 0 is the most-significant bit.

(The underlying hardware may be little-endian or big-endian; this doesn’t
matter to us.)

Other more-or-less standard notation we may use includes:

⊕: denotes the bitwise “XOR” operator on words.

∧: denotes the bitwise “AND” operator on words.

∨: denotes the bitwise “OR” operator on words.

¬x: denotes the bitwise negation of word x.

x << b: denotes x left-shifted by b bits (zeros shifting in).

x >> b: denotes x right-shifted by b bits (zeros shifting in).

x <<< b: denotes x rotated left by b bits.

x >>> b: denotes x rotated right by b bits.

||: denotes concatenation.

0x. . .: denotes a hexadecimal constant.

Additional notation can be found in Appendix D.

2.2 MD6 Inputs

This section describes the inputs to MD6. Two inputs are mandatory, while the
other three inputs are optional.

M – the message to be hashed (mandatory).

d – message digest length desired, in bits (mandatory).

K – key value (optional).

L – mode control (optional).

r – number of rounds (optional).

The only mandatory inputs are the message M to be hashed and the desired
message digest length d. Optional inputs have default values if any value is not
supplied.

We let H denote the MD6 hash function; subscripts may be used to indicate
MD6 parameters.
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2.2.1 Message M to be hashed

The first mandatory input to MD6 is the message M to be hashed, which is a
sequence of bits of some finite length m, where

0 ≤ m < 264 .

In accordance with the NIST requirements, the length m of the input mes-
sage M is measured in bits, not bytes, even though in practice an input will
typically consist of some integral number (m/8) of bytes.

The length m does not need to be known before MD6 hashing can begin. The
NIST API for SHA-31 provides the input message sequentially in an arbitrary
number of pieces, each of arbitrary size, through an Update routine. A call to
Final then signals that the input has ended and that the final hash value is
desired.

MD6 is tree-based and highly parallelizable. If the entire message M is
available initially, then a number of different processors may begin hashing
operations at a variety of starting points within the message; their results may
then be combined.

2.2.2 Message digest length d

The second input to MD6 is the desired bit-length d of the hash function output,
where

0 < d ≤ 512 .

The value d must be known at the beginning of the hash computation, as
it not only determines the length of the final MD6 output, but also affects the
MD6 computation at every intermediate operation.

Changing the value of d should result in an “entirely different” hash function—
not only will the output now have a different length, but its value should appear
to be unrelated to hash-values computed for the same message for other values
of d.

MD6 naturally supports the digest lengths required for SHA-3: d = 224, 256, 384
and 512 bits, as they are within the allowable range for d.

2.2.3 Key K (optional)

Often it is desirable to work with a family {Hd,K} of hash functions, indexed
not only by the digest size d but also by a key K drawn from some finite set.
These instances should appear to be unrelated—the behavior of Hd,K should
not have any discernible relation to that of Hd,K′ , for K 6= K ′.

The MD6 user may provide a K of keylen bytes, for any key length keylen,
where

0 ≤ keylen ≤ 64 .
1http://csrc.nist.gov/groups/ST/hash/sha-3/Submission_Reqs/crypto_API.html

http://csrc.nist.gov/groups/ST/hash/sha-3/Submission_Reqs/crypto_API.html
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(It is convenient to use lower-case k to denote the maximum number 8 of 64-bit
words in the key, so we use keylen to denote the actual number of key bytes
supplied.)

There is one MD6 hash function Hd,K for each combination of digest length
d and key K. The default value for an unspecified key is key nil of length 0.
Hd = Hd,nil.

The key may be a “salt,” as is commonly used for hashing passwords.
The key K may be secret. Thus, MD6 may be used directly to compute

message authentication codes, or MAC’s. MD6 tries to ensure that no useful
information about the key leaks into MD6’s output, so that the key is protected
from disclosure.

The key could also be a randomly chosen value [23], for randomized hashing
applications.

Within MD6, the key is padded with zero bytes until its length is exactly
64 bytes. The original length keylen of the key in bytes is preserved and is an
auxiliary input to the MD6 compression function.

The maximum key length (64 bytes) is quite long, which allows for the key
to be a concatenation of subfields used for different purposes (e.g. part for a
secret key, part for a randomization value) if desired.

If the desired key is longer than 512 bits, it can first be hashed with MD6,
using, for example, d = 512 and K = nil; the result can then be supplied to
MD6 as the key.

2.2.4 Mode control L (optional)

The standard mode of operation for MD6 is a tree-based and hierarchical, as
illustrated in Figure 2.1.

Data from the message to be hashed is placed at the leaves of a sufficiently
large 4-ary tree. Computation proceeds from the leaves towards the root. Each
non-leaf node of the tree corresponds to one compression function execution,
which takes n = 64 words of input and produces c = 16 words of output. The
last d bits of the output produced at the root are taken as the hash function
output.

It is straightforward to implement MD6 so that it uses an amount of storage
no more than proportional to the height of the tree.

In some cases (such as with very simple RFID chips), the MD6 standard
mode of operation may nonetheless require too much memory. In such cases, a
variant of MD6 may be specified that uses less memory (but which is also less
parallelizable).

This option is exercised with an optional “mode of operation parameter” L.
By varying L, MD6 varies smoothly between a low-memory Merkle-Damg̊ard-
like sequential mode of operation (L = 0) and a highly-parallelizable tree-based
mode of operation (L = 64).

The standard mode of operation has L = 64, for fully hierarchical operation.
Actually, any value of L ≥ 27 will give a hierarchical hash; L = 64 is chosen as
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the default in order to represent a value “sufficiently large” that the sequential
mode of operation is never invoked.

Section 2.4 gives more details on MD6’s mode of operation.

2.2.5 Number of rounds r (optional)

The MD6 compression function f has a controllable number r of rounds. Roughly
speaking, each round corresponds to one clock cycle in a typical hardware im-
plementation, or 16 steps in a software implementation.

The default value of r is

r = 40 + bd/4c ; (2.1)

so Hd,K,L = Hd,K,L,40+bd/4c. For d = 160, MD6 thus has a default of r = 80
rounds; for d = 512, MD6 has a default of r = 168 rounds. One may increase
r for increased security, or decrease r for improved performance, trading off
security for performance.

However, we also require that when MD6 is used in keyed mode, that r ≥ 80.
This provides protection for the key, even when the desired output is short (as it
might be for a MAC). Thus, when MD6 has a nonempty key, the default value
of r is

r = max(80, 40 + bd/4c) . (2.2)

The round parameter r is exposed in the MD6 API, so it may be explicitly
varied by the user. This is done since reduced-round versions of MD6 may be
of interest for security analysis, or for applications with tight timing constraints
and reduced security requirements. Or, one could increase r above the default
to accommodate various levels of paranoia. Also, if there is a key, but it is
non-secret, then fewer than 80 rounds could be specified if desired.

Arguably, the current need to consider a new hash function standard might
have seemed unnecessary if the API for the prior standards had included a
variable number of rounds.

2.2.6 Other MD6 parameters

There are other parameters to the MD6 hash function that could also be varied,
at least in principle (e.g. w, Q, c, t0 . . . t5, ri, `i, Si for 0 ≤ i < rc). For the
purpose of defining what “MD6” means, these quantities should all be considered
fixed with default values as described herein. But variant MD6 hash functions
that use other settings for these parameters could be considered and studied.
See Chapter 9 for a description of how these parameters might be varied.

2.2.7 Naming versions of MD6

We suggest the following approach for naming various versions of MD6.
In the simplest case, we only need to specify the digest size: MD6-d specifies

the version of MD6 having digest size d. This version also has the zero-length
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key nil, L = 64 (i.e. fully hierarchical operation), and a number r of rounds that
is the default for that digest size. These are the MD6 versions most relevant for
SHA-3:

MD6-224
MD6-256
MD6-384
MD6-512.

Some of our experiments also consider MD6-160, as it is comparable to SHA-1.
Software implementations of MD6 typically use the lower-case version of the

name MD6, as in “md6sum”.
Naming non-standard variants of MD6 is discussed in Section 9.1.
The CRYPTO 2008 invited talk by Rivest also called MD6 the “pumpkin

hash”, noting that the due date for SHA-3 submissions is Halloween 2008. One
could thus also label the MD6 variants as PH-256, etc. ...

2.3 MD6 Output

The output of MD6 is a bit string D of exactly d bits in length:

D = Hd,K,L,r(M) ;

D is the hash value of input message M . It is also often called a “message
digest.” The “MD” in the name “MD6” reflects this terminology.

In some contexts, the MD6 output may be defined to include other parame-
ters. For example, with digital signatures, a hash function needs to be applied
once by the sender, and once again by the recipient, to the same message. These
computations should yield the same result. For this to work, the recipient needs
to know not only the message M and the message digest length d, but also
the values of any of the parameters K, L, and r that have non-default values.
In such applications, these parameters (other than K) could be considered as
part of the hash function output. At least, they need to be communicated
to the receiver along with the hash function value D, communicated in some
other way from sender to receiver, or agreed in advance to have some particular
non-default settings.

2.4 MD6 Mode of Operation

A hash function is typically constructed from a “compression function”, which
maps fixed-length inputs to (shorter) fixed length outputs. A “mode of oper-
ation” then specifies how the compression function can be used repeatedly to
enable hashing inputs of arbitrary nonnegative length to produce a fixed-length
output.

To describe a hash function, one thus needs to describe:
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• its mode of operation,

• its compression function, and

• various constants used in the computation.

The MD6 compression function f takes inputs of a fixed length (n = 89
words), and produces outputs of a fixed but shorter length (c = 16 words):

f : W89 −→W16 .

(Recall that W is the set of all binary words of length w = 64 bits.)
For convenience, we call a c-word block a “chunk”. The chaining variables

produced by MD6 are all “chunks”.
The 89-word input to the compression function f contains a 15-word constant

Q, an 8-word key K, a “unique ID” word U , a “control word V ”, and a 64-word
data block B.

Since Q is constant, the “effective” or “reduced” MD6 compression function
fQ maps 74-word inputs to 16-word outputs:

fQ : W74 −→W16.

via the relationship:
fQ(x) = f(Q||x) .

Thus, the MD6 compression function achieves a fourfold reduction in size
from data block to output—four chunks fit exactly into one data block, and one
chunk is output.

The next section describes the MD6 mode of operation; Section 2.5 then
describes the MD6 compression function.

2.4.1 A hierarchical mode of operation

The standard mode of operation for MD6 is tree-based. See Figure 2.1. An
implementation of this hierarchical mode requires storage at least proportional
to the height of the tree.

Since some very small devices may not have sufficient storage available, MD6
provides a height-limiting parameter L. When the height reaches L + 1, MD6
switches from the parallel compression operator PAR to the sequential com-
pression operator SEQ.

The MD6 mode of operation is thus optionally parameterized by the integer
L, 0 ≤ L ≤ 64, which allows a smooth transition from the default tree-based
hierarchical mode of operation (for large L) down to an iterative mode of oper-
ation (for L = 0). When L = 0, MD6 works in a manner similar to that of the
well-known Merkle-Damg̊ard method [65, 64, 34] construction or to the HAIFA
method [18]. See Figure 2.2.

In our description of the MD6 mode of operation, MD6 makes up to L
“parallel” passes over the data, each one reducing the size of the data by a
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factor of four, and then performs (if necessary) a single sequential pass to finish
up.

Since the input size must be less than 264 bits and the final compression
function produces an output of 210 = 1024 bits (before final truncation to d
bits), there will be at most 27 such parallel passes (since 27 = log4(264/210).
The default value L = 64, since it is greater than 27, ensures that by default
MD6 will be full hierarchical.

Graphically, MD6 creates a sequence of 4-ary trees of height at most L, each
containing 4L leaf chunks (of c = 16 words each), then combines the values
produced at their roots (if there is more than one) in a sequential Merkle-
Damg̊ard-like manner.

If 4L is larger than the number of 16-word chunks in the input message, then
only one tree is created, and MD6 becomes a purely tree-based method.

On the other hand, if L = 0, then no trees are created, and the input is
divided into 48-word (three-chunk) data-blocks to be combined in a sequential
Merkle-Damg̊ard-like manner. (There are now only three data chunks in a data
block, since one chunk is the chaining variable from the previous compression
operation at the node immediately to the left.)

For intermediate values of L, we trade off tree height (and thus minimum
memory requirements) for opportunities for parallelism (and thus perhaps greater
speed).

Figure 2.4 gives the top-level procedure for the MD6 mode of operation,
which is described in a bottom-up, level by level manner.

First, all of the compression operations on level ` = 1 are performed. Then
all of the compression operations on level ` = 2 are performed, etc.

MD6 is described in this manner for maximum clarity. A practical imple-
mentation may be organized somewhat differently (but, of course, in a way that
computes the same function). For example, operations at different levels may be
intermixed, with a compression operation being performed as soon as its inputs
are available. See Chapter 4 for some discussion of implementation issues.

Each such compression operation is by default performed with the PAR
operation, described in Figure 2.5. The PAR operation may be implemented in
parallel (hence its name). Given the data on level `−1, it produces the data on
level `, which will be only one-fourth as large. This is repeated until a level is
reached where the remaining data is only 16 words long. This data is truncated
to become the final hash output.

Figure 2.6 describes SEQ—it is very similar to Merkle-Damg̊ard in opera-
tion. It works sequentially through the input data on the last level and produces
the final hash output.

2.4.2 Compression function input

MD6’s mode of operation formats the input to the compression function f in the
following way. There are n = 89 words, formatted as follows with the default
sizes. See Figure 2.7. The first four items Q, K, U , V , are “auxiliary inputs”,
while the last item B is the data payload.
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0

1

2

3

level

Figure 2.1: Structure of the standard MD6 mode of operation (L = 64). Com-
putation proceeds from bottom to top: the input is on level 0, and the final
hash value is output from the root of the tree. Each edge between two nodes
represents a 16 word (128 byte or 1024-bit) chunk. Each small black dot on
level 0 corresponds to a 16-word chunk of input message. The grey dot on level
0 corresponds to a last partial chunk (less than 16 words) that is padded with
zeros until it is 16 words long. A white dot (on any level) corresponds to a
padding chunk of all zeros. Each medium or large black dot above level zero
corresponds to an application of the compression function. The large black dot
represents the final compression operation; here it is at the root. The final MD6
hash value is obtained by truncating the value computed there.

0

1

level

Figure 2.2: Structure of the MD6 sequential mode of operation (L = 0). Com-
putation proceeds from left to right only; level 1 represents processing by SEQ.
The hash function output is produced by the rightmost node on level 1. This
is similar to standard Merkle-Damg̊ard processing. The white circle at the left
on level 1 is the 1024-bit all-zero initialization vector for the sequential com-
putation at that level. Each node has four 1024-bit inputs: one from the left,
and three from below; the effective “message block size” is thus 384 bytes, since
128 bytes of the 512-byte compression function input are used for the chaining
variable.
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0

1

2

level

Figure 2.3: Structure of the MD6 mode of operation with an intermediate mode
of operation value (L = 1). Computation proceeds from bottom to top and
left to right; level 2 represents processing by SEQ. The hash function output
is produced by the rightmost node on level 2. The white circle at the left on
level 2 is the all-zero initialization vector for the sequential computation at that
level.

Q – a constant vector (giving an approximation to the fractional part of the
square root of 6) of length q = 15 words. See Appendix A.

K – a “key” (serving as salt, tag, tweak, secret key, etc.) of length k = 8
words containing a supplied key of keylen bytes.

U – a one-word “unique node ID”.
V – a one-word “control word”.
B – a data block of length b = 64 words.

2.4.2.1 Unique Node ID U

The “unique node ID” U is a one-word compression function auxiliary input
(`, i). It uniquely specifies the particular compression function operation being
performed, by giving both the level number for this operation and its index
within the level. See Figure 2.9.

• ` — one byte giving the level number.

• i — seven bytes giving the position within the level, with the leftmost
(first) compression function operation labelled as i = 0.

For example, the very first compression operation performed always has
U = (`, i) = (1, 0). A node (`, i) at level `, 1 < ` ≤ L (produced by PAR)
has children at (` − 1, 4i), (` − 1, 4i + 1),(` − 1, 4i + 2), and (` − 1, 4i + 3). A
node (`, i) at level 1 < ` = L+ 1 (produced by SEQ) has children at (`− 1, 3i),
(`− 1, 3i+ 1), and (`− 1, 3i+ 2).

2.4.2.2 Control Word V

The “control word” V is a one-word compression function auxiliary input that
gives parameters relevant to the computation. See Figure 2.8.
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The MD6 Mode of Operation
Input:

M : A message M of some non-negative length m in bits.

d: The length d (in bits) of the desired hash output, 1 ≤ d ≤ 512.

K: An arbitrary k = 8 word “key” value, containing a supplied key of keylen
bytes padded on the right with (64− keylen) zero bytes.

L : A non-negative mode parameter (maximum level number, or number of
parallel passes).

r : A non-negative number of rounds.

Output:

D: A d-bit hash value D = Hd,K,L,r(M).

Procedure:

Initialize:

• Let ` = 0, M0 = M , and m0 = m.

Main level-by-level loop:

• Let ` = `+ 1.
• If ` = L+1, return SEQ(M`−1, d,K,L, r) as the hash function output.
• Let M` = PAR(M`−1, d,K,L, r, `). Let m` denote the length of M` in

bits.
• If m` = cw (i.e. if M` is c words long), return the last d bits of M`

as the hash function output. Otherwise, return to the top of the main
level-by-level loop.

Figure 2.4: The MD6 Mode of Operation. With the default setting of L = 64,
the SEQ operation is never used; the PAR operation is repeatedly called to
reduce the input size by a factor of b/c = 64/16 = 4 until a single 16-word
chunk remains. On the other hand, setting L equal to 0 yields an entirely
sequential mode of MD6 operation.
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The MD6 PAR Operation
Input:

M`−1: A message of some non-negative length m`−1 in bits.

d: The length d (in bits) of the desired hash output, 1 ≤ d ≤ 512.

K: An arbitrary k = 8 word “key” value, containing a supplied key of keylen
bytes.

L : A non-negative mode parameter (maximum level number, or number of
parallel passes).

r : A non-negative number of rounds.

` : A non-negative integer level number, 1 ≤ ` ≤ L.

Output:

M`: A message of length m` bits, where m` = 1024 ·max(1, dm`−1/4096e)

Procedure:

Initialize:

• Let Q denote the array of length q = 15 words giving the fractional
part of

√
6. (See Appendix A.)

• Let f denote the MD6 compression function mapping 89 words of input
(including a 64-word data block B) to a 16-word output chunk C using
r rounds of computation.

Shrink:

• Extend input M`−1 if necessary (and only if necessary) by appending
zero bits until its length becomes a positive integral multiple of b = 64
words. Then M`−1 can be viewed as a sequence B0, B1, . . . , Bj−1 of
b-word blocks, where j = max(1, dm`−1/bwe).

• For each b-word block Bi, i = 0, 1, . . . , j − 1, compute Ci in parallel as
follows:
– Let p denote the number of padding bits in Bi; 0 ≤ p ≤ 4096. (p

can only be nonzero for i = j − 1.)
– Let z = 1 if j = 1, otherwise let z = 0. (z = 1 only for the last

block to be compressed in the complete MD6 computation.)
– Let V be the one-word value r||L||z||p||keylen||d (see Figure 2.8).
– Let U = `∗256 +i be a “unique node ID”—a one-word value unique

to this compression function operation.
– Let Ci = f(Q||K||U ||V ||Bi). (Ci has length c = 16 words).

• Return M` = C0||C1|| . . . ||Cj−1.

Figure 2.5: The MD6 PAR operator is a parallel compression operation produc-
ing level ` of the tree from level ` − 1. With the default setting L = 64, this
routine is used repeatedly at each layer of the tree to generate the next higher
layer, until the value at the root is produced.
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The (Optional) MD6 SEQ Operation
Input:

ML: A message of some non-negative length mL in bits.

d: The length d (in bits) of the desired hash output, 1 ≤ d ≤ 512.

K: An arbitrary k = 8 word key value, containing a supplied key of keylen bytes.

L : A non-negative mode parameter (maximum tree height).

r : A non-negative number of rounds.

Output:

D: A d-bit hash value.

Procedure:

Initialize:

• Let Q denote the array of length q = 15 words giving the fractional
part of

√
6. (See Appendix A.)

• Let f denote the MD6 compression function mapping an 89-word input
(including a 64-word data block B) to a 16-word output block C using
r rounds of computation.

Main loop:

• Let C−1 be the zero vector of length c = 16 words. (This is the “IV”.)
• Extend input ML if necessary (and only if necessary) by appending zero

bits until its length becomes a positive integral multiple of (b− c) = 48
words. Then ML can be viewed as a sequence B0, B1, . . . , Bj−1 of
(b− c)-word blocks, where j = max(1, dmL/(b− c)we).

• For each (b− c)-word block Bi, i = 0, 1, . . . , j− 1 in sequence, compute
Ci as follows:
– Let p be the number of padding bits in Bi; 0 ≤ p ≤ 3072. (p can

only be nonzero when i = j − 1.)
– Let z = 1 if i = j − 1, otherwise let z = 0. (z = 1 only for the last

block to be compressed in the complete MD6 computation.)
– Let V be the one-word value r||L||z||p||keylen||d (see Figure 2.8).
– Let U = (L+ 1) · 256 + i be a “unique node ID”—a one-word value

unique to this compression function operation.
– Let Ci = f(Q||K||U ||V ||Ci−1||Bi). (Ci has length c = 16 words).

• Return the last d bits of Cj−1 as the hash function output.

Figure 2.6: The MD6 SEQ Operator is a sequential Merkle-Damg̊ard-like hash
operation producing a final hash output value. With the default setting of
L = 64, SEQ is never used.
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Q K UV B

0 15 2325 89

Figure 2.7: The compression function input contains 89 64-bit words: a 15-word
constant vector Q, an 8-word key K, a one-word unique node ID U , a one-word
control variable V , and a 64-word data block B. The first four items form the
auxiliary information, shown in grey.

0 r L z p keylen d

4 12 8 4 16 8 12

Figure 2.8: Layout of the control word V . The high-order 4 bits are zero
(reserved for future use). The size (in bits) of each field is given above the field.

` i

Figure 2.9: Layout of the unique node ID word U . The high-order byte is `,
the level number. The seven-byte field i gives the index of the node within the
level (i = 0, 1, . . .).
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• r — number of rounds in the compression function (12 bits).

• L — mode parameter (maximum level) (8 bits).

• z — set to 1 if this is the final compression operation, otherwise 0 (4 bits).

In Figures 2.1, 2.3, 2.2, these final operations are indicated by the very
large black circles.

• p — the number of padding data bits (appended zero bits) in the current
input block B (16 bits).

• keylen — the original length (in bytes) of the supplied key K (8 bits).

• d — the desired length in bits of the digest output (12 bits).

2.5 MD6 Compression Function

This section describes the operation of the MD6 compression function.
The compression function f takes as input an array N of length n = 89

words. It outputs an array C of length c = 16 words.
Here f is described as having a single 89-word input N , although it may

also be viewed as having a 25-word “auxiliary” input (Q||K||U ||V ) followed by
a 64-word “data” input block B.

The compression function f is computed as shown in Figure 2.10.
The compression function may be viewed as consisting of an encryption of

N with a fixed arbitrary key S (which is not secret), followed by a truncation
operation that returns only the last 16 words of ES(N). See Figure 2.11. Here
S determines the “round constants” of the encryption algorithm.

Internally, the compression function has a main loop of r rounds (each con-
sisting of c = 16 steps), followed by the truncation operation that truncates the
final result to c = 16 words.

The main loop thus performs a total of t = rc steps, where each step com-
putes a one-word value. This loop can be implemented by loading the input
into the first n words of an array A of length n + t, then computing each of
the remaining t words in turn. See Figure 2.12. Equivalently, this loop can be
implemented as a nonlinear feedback shift register with 89 words of state. See
Figure 2.14.

The truncation operation merely returns the last 16 words of A as the com-
pression function output (which we also call the “chaining variable”). The
compression function always outputs c = 16 words (1024 bits) for this chain-
ing variable. This is at least twice as large as any possible MD6 hash function
output, in line with the “wide-pipe” strategy suggested by Lucks [55].

The compression function takes the “feedback tap positions” t0, t1, t2, t3, t4,
each in the range 1 to n−1 = 88, as parameters. (Note the slight overloading for
the symbol t: when subscripted, it refers to a tap position; when unsubscripted,
it refers to the number of computation steps t = rc.)
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The MD6 compression function f

Input:

N : An input array N [0..n − 1] of n = 89 words. (This typically consists of a
25-word “auxiliary information” block, followed by a a b = 64-word data
block B, but all inputs are treated uniformly here.)

r : A non-negative number of rounds.

Output:

C: An output array C[0..c− 1] of length c = 16 words.

Parameters: c,r,t0,t1,t2,t3,t4,ri,`i,Si, where 1 ≤ ti ≤ n for all 0 ≤ i ≤ 4, 0 < ri, `i ≤ w/2
for all i, and Si is a w-bit word for each i, 0 ≤ i < t.

Procedure:

Let t = rc. (Each round has c = 16 steps.)

Let A[0..t+ n− 1] be an array of t+ n words.

Initialization:
A[0..n− 1] is initialized with the input N [0..n− 1].

Main computation loop:
for i = n to t+ n− 1: /* t steps */

x = Si−n ⊕ Ai−n ⊕ Ai−t0 [line 1]
x = x ⊕ (Ai−t1 ∧Ai−t2) ⊕ (Ai−t3 ∧Ai−t4) [line 2]
x = x ⊕ (x >> ri−n) [line 3]
Ai = x ⊕ (x << `i−n) [line 4]

Truncation and Output:
Output A[t+n−c..t+n−1] as the output array C[0..c−1] of length c = 16.

Figure 2.10: The MD6 Compression Function f .
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N

ES(N)

C

S E

Figure 2.11: The compression function f viewed as an encryption operation
followed by a truncation operation. The 89-word input N (with the first 15
words shaded to indicate that they are constant) is encrypted under control of
key S to yield ES(N). The key S is arbitrary but fixed and public. The last 16
words of ES(N) form the desired compression function output C.

BVUKQ

0 i− 89..i− 188 t+ 73..t+ 88i

C

Figure 2.12: The compression function main loop. The array portion A[0..88] is
initialized with the compression function input (Q,K,U, V,B) (See Figure 2.7).
Then, for i = 89, 90, . . . , t + 88, A[i] is computed as a feedback function of
A[i−89..i−1]. The portion A[i−89..i−1] can be viewed as a “sliding window”
moving left to right as the computed portion (shown in gray) grows. The last 16
words of final window A[t..t+ 88], that is A[t+ 73..t+ 88], forms the output C.
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MD6 constants

Tap positions:

t0 t1 t2 t3 t4
17 18 21 31 67

Shift amounts:
The values ri−n, `i−n are the initial right-shift amount and the subsequent left-shift amount
within the step with index i; the index i− n is taken modulo c = 16.

(i− n) mod 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ri−n 10 5 13 10 11 12 2 7 14 15 7 13 11 7 6 12
`i−n 11 24 9 16 15 9 27 15 6 2 29 8 15 5 31 9

Round constants:
The values Si−n for i ≥ n are determined as follows. Because Si−n is constant within a
round, but changes from round to round, Si−n is defined in terms of an auxiliary sequence
S′j . The constants S′0 and S∗ determine the entire sequence.

Si−n = S′b(i−n)/16c

S′0 = 0x0123456789abcdef

S∗ = 0x7311c2812425cfa0

S′j+1 = (S′j <<< 1) ⊕ (S′j ∧ S∗) .

Figure 2.13: MD6 Constants

In addition, for each i, 0 ≤ i < t, there are parameters ri, `i denoting
fixed “right-shift” and “left-shift” amounts: these are different nonzero values
0 < ri, `i ≤ w/2 = 32. Finally, there is a one-word “feedback constant” value
Si for each i, 0 ≤ i < t.

Lines 1–2 of the loop in Figure 2.10 are entirely bitwise parallel, with no
mixing between different bit positions. Line 1 contains the constant term Si
and the linear terms Ai−n (the “end-around” term) and Ai−t0 . Line 2 contains
the nonlinear “quadratic terms” (Ai−t1 ∧Ai−t2) and (Ai−t3 ∧Ai−t4).

Note that no information is lost during the compression function computa-
tion until the final truncation to an output of size c words. Indeed, the basic
compression step is invertible, because the recurrence exclusive-ors A[i−n] with
values depending only on the other input elements A[i−1..i−n+1], and because
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1t0t1t2t3t489

⊕⊕⊕

∧∧

⊕ gri,`iSi

Figure 2.14: The main computation loop of the compression function viewed as
a nonlinear feedback shift register. Each shift register cell, each wire, and each
Si represents a 64-bit word. Because the shift register shifts from right to left,
it is convenient to number the cells from 1 on the right to 89 on the left; the
cell labelled 1 in the figure corresponds to location A[i− 1] in Figure 2.10, and
the cell labelled 89 here corresponds to location A[i − 89]. The tap positions
shown are correct for t0 = 17 and for position n = 89, but for t1 . . . t4 are only
illustrative (for ease of drawing). The function gri,`i is the function described in
equation 2.3. Each 64-bit feedback word depends on one Si word and six words
of the register.

xoring a value with a shifted version of itself is invertible. (Xoring a value with
a shift of itself is known as the “xorshift” operator; it is well-known and studied
in the random-number literature [56, 75].) Thus, the mapping inside f of the
first n-words of A to the last n words of A is invertible; this corresponds to the
mapping π given in Figure 2.15.

In hardware, the basic iteration step can be implemented with constant cir-
cuit depth—there are no multiplications, additions, or other operators that re-
quire carry propagation or other potentially non-constant delays. This means a
hardware implementation can be extremely fast. Note that since c ≤ min(t0, t1, t2, t3, t4),
there is no dependence of one step on the output of another for at least c steps.
Since the steps within a round are independent, all steps within a round can be
executed simultaneously. Overall, each round requires only a single clock tick,
and a complete compression function can be computed in r clock cycles.

There are no data-dependent table lookups or other operations whose timing
might be data-dependent. This reduces the vulnerability to side-channel attacks.

2.5.1 Steps, rounds and rotations

The t = rc steps can be thought of as a sequence of rotations, each of which
consists of n = 89 steps and thereby fully cycles/refills the n-word feedback
shift register by computing the next n words of state. We note that one rotation
consists of n/c = 89/16 = 5 9/16 rounds, and two rotations correspond to nearly
11 rounds.
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Each rotation produces a new n-word vector; you can view the computation
as rc/n rotations, each of which produces a n-word state vector invertibly from
the previous n-word state vector. The input is the first n-word state vector; the
output is the last c words of the last n-word state vector. (Note that rc/n isn’t
necessarily an integer. That doesn’t matter here; the description just given is
still accurate.)

The compression function can also be viewed as r 16-step rounds each of
which computes the next 16 words of state.

We prefer the latter view.
The MD6 feedback constants are organized in a manner that reflects the

round-oriented viewpoint. The round constant Si stays the same for all 16
steps of a round and changes for the next round. The shift amounts r(·) and
`(·) vary within a round, but then have the same pattern of variation within
successive rounds.

For a software implementation of MD6, it is convenient to perform 16-fold
loop-unrolling, so that each round is implemented as a branch-free basic block
of code.

2.5.2 Intra-word Diffusion via xorshifts

Some method is required to effect diffusion between the various bit positions
within a word. This intra-word diffusion is provided by the gri,`i operator
implicit in lines 3–4 of the loop in Figure 2.10:

gri,`i(x) = { y = x ⊕ (x >> ri);
return y ⊕ (y << `i)
}

(2.3)

(Here “`” and r are overloaded; `i and ri refer to a shift amounts, while r
refers to the number of rounds, and ` is used in the mode of operation to refer
to the level number; these distinctions should be clear from context.)

The function g is linear and invertible (lossless).
The operators x = x ⊕ (x >> ri) and x = x ⊕ (x << `i) are known as

“xorshift” operators; their properties have been studied in [56, 75].

2.5.3 Shift amounts

The shift values are indexed mod c = 16 (i.e., they repeat every round).
The values given here for MD6 were the result of extensive experiments using

one million randomly generated tables of such shift values. See Section 3.9.3

2.5.4 Round Constants

The round constants S′j provide some variability between round. Each round
j has its own constant S′j ; the steps within a round all use the same round
constant.
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The following recurrence generates these constants:

S′0 = 0x0123456789abcdef

S∗ = = 0x7311c2812425cfa0

S′j+1 = (S′j <<< 1) ⊕
(S′j ∧ S∗) . (2.4)

This recurrence relation is one-to-one—from S′j one can determine S′j+1, and
vice versa. (See Schnorr et al. [89, Lemma 5])

2.5.5 Alternative representations of the compression func-
tion

There is another useful way of representing the compression function. Since the
15-word portion Q of the input is a fixed constant, we can define the function
fQ as

fQ(x) = f(Q||x) ,

where fQ maps inputs of length n − q = 74 words to outputs of length c = 16
words. This representation of f is useful in our security proofs of the compres-
sion function in Section 6.1.2. We may refer to either f or fQ as “the MD6
compression function”; they are intimately related. It is easier to talk about
f when discussing the specification of MD6, but better to talk about fQ when
discussing its security. We may refer to f as the “full” compression function,
and fQ as the “reduced” compresssion function.

Another relevant representation is defined as follows. If we return to the
representation of Figure 2.11, wherein f is defined in terms of an encryption
operation, we note that S (and thus ES(·)) is public and fixed. It may thus
be preferable to view the compression function as a fixed but randomly cho-
sen public permutation π of the input space Wn, followed by truncation to c
words. See Figure 2.15. We make use of this representation in our discussion of
compression function security.

2.6 Summary

This chapter has presented the full specification of the MD6 hash function.
Reference code provided with our submission to NIST for the SHA-3 competition
provides a different, but equivalent, definition.
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N

π(N)

C

π

Figure 2.15: An alternative view: the compression function f viewed as a fixed
public random permutation π of the input space Wn followed by a truncation
operation. The 89-word input N (with the first 15 words shaded to indicate
that they are constant) is mapped by π to a random value π(N). The last 16
words of π(N) form the desired compression function output C.



Chapter 3

Design Rationale

This chapter describes the considerations and reasoning behind many of the
design decisions in MD6.

The landscape for designing hash functions has certainly changed in the last
two decades (since MD5 was designed)! Advances in technology have provided
fewer constraints, and more opportunities. Theoretical advances provide newer
tools for the both the attacker and the designer.

The sections in this chapter summarize some of the considerations that went
in to the design choices for MD6. A related presentation of these issues is
available in Rivest’s CRYPTO’08 slides (included with this submission).

Of course, the primary objective of a cryptographic hash function is security—
meeting the stated cryptographic objectives. And, to the extent possible, doing
so in a provable way. Chapters 6 and 7 provide detailed proofs regarding the
security properties of the MD6 compression function and mode of operation.

Some of the other significant considerations include:

• Increased availability of memory, allowing larger block sizes that include
new auxiliary inputs to each compression function call.

• The forthcoming flood of multicore CPU’s, some of which may contain
hundreds of cores. This consideration demands an approach that can
exploit available parallelism.

• Side-channel attacks that limit the instructions that one deems “safe” in
an application potentially utilizing secret keys.

The following sections document these and related considerations.

3.1 Compression function inputs

It is worthwhile to begin by revisiting the description of the inputs to a com-
pression function and associated terminology.

31
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3.1.1 Main inputs: message and chaining variable

Traditionally, compression functions have two main input ports: one for a
chaining variable and one for a message block.

Such a traditional compression function can be characterized as a mapping
from a c-word input chaining variable and a b-word input message block to a
c-word output chaining variable:

f : Wc ×Wb →Wc (3.1)

Here W denotes the set of w-bit words. The compression function produces a
single chaining variable of length c words as the output.

Such traditional compression functions are “hard-wired” to fit within a cer-
tain mode of operation. More precisely, these input ports are dedicated to their
particular use within the Merkle-Damg̊ard mode of operation.

The compression function signature (3.1) may also relate to the manner
in which the compression function is constructed. For example, the chaining
variable may be used as input to an encryption algorithm, as in the Davies-
Meyer construction [63, Ch. 9].

To move beyond the Merkle-Damg̊ard paradigm, we need to take a some-
what more general and flexible view of compression, along the lines of a general
pseudo-random function with fixed input and output sizes.

Note, for example, in a tree-based hash algorithm like MD6, compression
functions working on the leaves of the tree have only message data as input, while
compression functions higher in the tree contain no message data, but instead
consists of several chaining variables passed up from their children nodes. It thus
doesn’t make sense to have a compression function with dedicated “message”
and “chaining variable” inputs.

We thus consider for the moment revising our compression function signature
by dropping the specific c-word “chaining variable input”, and considering the
compression function to be a mapping from b words of main input to c words
of output:

fB : Wb →Wc . (3.2)

(The subscript B here indicates that we are only considering the inputs corre-
sponding to the B portion–the data payload.) We’ll see in a moment that we’ll
revise this signature again, slightly.

Whether the bw input bits come from the message, or are chaining variables
from previous compression function operations, will depend on the details of the
mode of operation. We still call the output of a compression function compu-
tation a “chaining variable,” even though the computations may be linked in a
tree-like or other manner, rather than as a chain as in Merkle-Damg̊ard.

The compression ratio of a compression function is the ratio b/c of the num-
ber of main input bits to the number of output bits. Ratios in the range 3–5
are typical; MD6 has a compression ratio of 4. For MD6 the b = 4c main input
words may consist of either message data (as for a leaf node) or four chaining
variables (from child nodes) of size c words each.
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3.1.2 Auxiliary inputs: key, unique nodeID, control word

A compression function may have “auxiliary” inputs in addition to the “main”
inputs described above.

A traditional compression function doesn’t have any such auxiliary inputs,
but recently there have been a number of proposals (such as [18, 85]) to include
such inputs. Such auxiliary inputs can have great value in defeating or reducing
vulnerabilities associated with the standard Merkle-Damg̊ard mode of operation.
They also facilitate proofs of security, as one can often treat restrictions of the
compression function to different auxiliary inputs as, essentially, independent-
drawn random functions.

MD6 makes liberal use of such auxiliary inputs, which for MD6 are:

• a k-word “key” K,

• a u-word “unique node ID” U , and

• a v-word “control word” V .

If the total length of such auxiliary inputs is α = k + u + v words, then the
compression function has the signature:

fQ : Wα ×Wb →Wc . (3.3)

(The subscript Q here indicates that we are considering all inputs except the
constant value Q; the actual implementation of the MD6 compression function
also incorporates a fixed constant “input” value Q, but we do not need to discuss
Q further here, as it is constant.)

3.2 Provable security

To the extent possible while maintaining good efficiency, MD6 is based on
provable security.

We provide numerous reductions demonstrating that the MD6 mode of op-
eration achieves various security goals, assuming that the MD6 compression
function satisfies certain properties.

We also provide strong evidence that the MD6 compression function has the
desired properties. This includes not only statistical analysis and SAT-solver
attacks, but also provable lower bounds on the workload required by certain
differential attacks.

The tree-based MD6 mode of operation is also interesting in that certain
of its proofs admit a tighter security reduction than the corresponding known
results for the Merkle-Damg̊ard mode of operation.

Our results on the mode of operation security relate to pre-image resistance,
collision-resistance, pseudorandomness, and indifferentiability from a random
oracle.
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3.3 Memory usage is less of a constraint

Continuing improvements in integrated circuit and memory technology have
made memory usage much less of a concern in hash function design. While still
a concern for low-end devices, the situation is overall much improved, and one
can reasonably propose hash functions with significantly larger memory usage
than for designs proposed in the 1990’s. Doing so can provide significant benefits
in flexibility and security.

Indeed, MD5 was designed in 1991; 17 years have since passed. Since then,
the memory capacity of chips has increased at about 60% per year, so such
chips now have over 1000 times as much capacity. Similarly, the cost per bit of
memory has decreased at rate of about 30% per year.

Even “embedded” processors may have substantial amounts of memory. An
embedded processor today is typically an ARM processor: a 32-bit processor
with many kilobytes of cache memory and access to potentially many megabytes
of off-chip RAM. Even simple “smart card” chips have substantial memory. For
example, a typical SIM card in a cell phone is a Java Card with 64KB of code,
16KB of EEPROM and 1KB RAM [26].

RFID chips are the most resource-constrained environment to consider. At
the moment, they are so severely constrained that doing serious cryptography
on an RFID chip is nearly impossible. But even this is evolving quickly; RFID
chips with 8KB memory (ROM, not RAM) are now available. Programming a
respectable hash function onto an RFID chip may soon be a realistic proposition.

Thus, it is reasonable to consider hash function designs that use memory
more freely than the designs of the early 1990’s.

We will thus take as a design goal that MD6 should be implementable using
at most 1KB RAM.

An MD6 compression function calculation can easily be performed within
1KB of RAM, and for L = 0 the entire MD6 hash function fits well within the
1KB RAM limit. Larger systems can use more memory for increased parallelism
and greater efficiency by using the default value L = 64.

3.3.1 Larger block size

A major benefit of the increased availability of memory is the ability to use
compression functions with larger inputs.

MD4 and MD5 have message+chaining sizes of 512 + 128 = 640 bits. SHA-
1 has message+chaining sizes of 512 + 160 = 672 bits. The first members of
the SHA-2 family (SHA-224, SHA-256) have message+chaining sizes of 512 +
256 = 768 bits, while SHA-384 and SHA-512 have message+chaining sizes of
1024 + 512 = 1536 bits.

Such input block sizes are arguably too small for what is needed for SHA-
3, where we want a hash function producing 512-bit outputs. The compression
function function must produce at least 512 bits of output, and preferably more.
With 1536-bit inputs, we can barely get a compression factor of three. There
is little room left over for auxiliary inputs, and no possibility of following the
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“double-width pipe” strategy suggested by Lucks [55], wherein chaining vari-
ables are twice as large as the final hash function output.

Thus, MD6 chooses an input data block size of 512 bytes (i.e. 64 words, or
4096 bits), and a compression factor of four for its compression function. The
compression function output size is 1024 bits—twice as large as any message
digest required for SHA-3, so MD6 can follow the double-width pipe strategy.

Many benefits follow from having relatively large compression function in-
puts.

First, having large inputs allows us to easily incorporate nontrivial auxiliary
inputs into the compression function computation, since these auxiliary inputs
then take up a smaller fraction of the compression function inputs.

Second, large inputs allows for more potential parallelism within the com-
pression function computation. In MD6, all 16 steps within a single round can
be computed at once in parallel.

Third, a large message input block can accommodate a small message within
a single block. For example, 512 bytes is a common size for disk blocks on a
hard drive; such a block can be hashed with a single compression function call.
Similarly, a network packet of up to 512 bytes can be hashed with a single
compression function call.

Fourth, having a larger compression function input block should make crypt-
analysis (even automated cryptanalysis) more difficult, since the number of
compression function computation steps also increases. For example, with a
differential attack, the probability of success typically goes down exponentially
with the number of computation steps. Existing hash functions have a number
of computation steps that may be fewer than the number of hash function out-
put bits desired, whereas MD6 has many more than 512 steps. If each such step
has a probability of at most 1/2 of following a given differential path, then the
large number of computation steps under MD6 makes such attacks very unlikely
to succeed.

3.3.2 Enabling parallelism

A second major benefit of the increased availability of memory is the ability to
enable parallel computation.

SHA-3 should be able to exploit the paral-
lelism provided by the forthcoming flood of
multicore processors.

Yet, a parallel approach requires more memory than a sequential approach.
In the best case, a tree-based approach requires memory at least proportional
to the height of the tree–that is, is, it requires memory at least proportional to
the logarithm of the message size. With a branching factor of 4, a leaf size of
4096 bits, and a maximum message size of 264 bits, this logarithmic factor is 26.
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On a typical desktop computer, storage of 26 · 512 bytes (less than 14KB)
is a trivial consideration. The easy availability of memory enables a multicore
desktop to hash large files and streams very quickly in parallel.

3.4 Parallelism

We are at a transition point in the design of processors.
No longer can we expect clock rates to continue to increase dramatically with

each processor generation. Indeed, clock rates may have plateaued, after having
increased by a factor of 4000 in the last ten years. The reason is that processor
power usage increases linearly with clock frequency, with all other things being
equal. (In practice, all other things aren’t equal, and the power usage increases
nonlinearly, perhaps even quadratically or cubically, with clock frequency.) Fur-
ther increases in clock rate would require exotic cooling technologies to handle
the extremely high power densities that would result from the high clock rates.

Instead, performance gains will now be obtained mostly through the use
of parallelism—specifically, through the use of multicore processors. Dual and
quad-core processors are now easily available, and processors with more cores
are becoming so. We can reasonably expect the number of cores per processor
to double with each successive processor generation, while the clock rates may
change little, or even decline slightly.

Anwar Ghoulum, at Intel’s Microprocessor Technology Lab, says “developers
should start thinking about tens, hundreds, and thousands of cores now.”

A related expected trend is that, an increase in the parallel computational
power of chips (measured as transistors × clock rate) compared to their I/O
bandwidth, as transistor density improves faster than that of I/O pins and pads.
Over the next 15 years, this ratio is expected to roughly quadruple, while serial
computational power (measured in clock rate) compared to chip I/O bandwidth
will decrease by a factor of roughly 10.1 Hence, in the long term parallelizable
functions can afford more computation (and, hopefully, higher security) for a
given level of I/O utilization.

A tree-based design is the most natural approach for exploiting parallelism
in a hash function. Ralph Merkle’s PhD thesis [65] described the first such
approach, now known as “Merkle trees.” The computation proceeds from the
leaves towards the root, with each tree node corresponding to one compression
function computation. If the compression function has a compression factor of
4, then each tree node will have four children. MD6 follows this approach.

Damg̊ard [34] also described parallel approaches to hash functions. These
methods can be viewed as constructing a tree by a level-by-level bottom-up
computation, wherein the nodes within each level of the tree are computed in
parallel. Damg̊ard also suggested stopping the parallel level-by-level compu-
tation after some fixed number of levels, and finishing up what is left with a
sequential computation. MD6 also follows this approach when L is small; here

1These figures apply to high-performance chips and are derived from the International
Technology Roadmap for Semiconductors 2007 [40], specifically Tables 1i/j, 3a/b and AP2a/b.
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L (which he calls j) describes the number of levels to compute in parallel before
switching to a sequential mode of computation.

Other authors have also explored parallel or tree-based hash function design.
Perhaps most relevant to MD6 are various interesting and excellent proposals
by P. Sarkar, such as [88]. His constructions are somewhat different, however,
in that message input values are consumed at every tree node, not just at the
leaves.

MD6 thus adopts a tree-based approach for maximum parallelizability.
However, there is definitely a trade-off between parallelizability and memory

usage; a fully parallelizable approach may have a memory footprint that is too
large for some small embedded devices.

Therefore, MD6 follows Damg̊ard’s lead by parameterizing the amount of
parallelization. MD6 allows the user to set the parameter L to be the number
of parallel passes before switching to a sequential mode. By setting L to 0, MD6
acts in a purely sequential mode and uses minimal memory (under 1KB). By
setting L large, parallelism is maximized and memory usage is proportional to
the logarithm of the input message size. (The value of L should of course be
communicated along with the hash function output in cases where MD6 is used
with a non-standard value.)

3.4.1 Hierarchical mode of operation

The initial design for MD6 did not have a parameter L controlling the mode of
operation; the hash was always fully hierarchical.

However, it was felt that (a) there might be substantial need for an MD6
version that met tighter storage limits, and (b) it was easy to add an optional
control parameter L that limits the height of trees used (and thus the storage
used).

For small L, MD6 makes a collection trees of height at most L (which can
be done in parallel), and then, if there is enough data to make more than one
such tree, combines their root values with a sequential Merkle-Damg̊ard pass.

When L > 0, an implementation with infinite parallelism could compute all
of the trees in time L, leaving a sequential computation requiring time O(m/4L),
where m is the size of the original message.

In practice, infinite parallelism is unavailable, but even so, using MD6 to
hash a long message on a multicore processor with P processors can result in a
speedup by a factor of P , for any P reasonable to imagine over the next several
decades.

Envisioning that multi-core processors will be very common, we set the
default value for an unspecified L to be L = 64 (giving tree-based hashing):
Hd,K = Hd,K,64.

However, applications on very restricted processors may wish to choose L = 0
for a purely sequential hash function with minimal memory requirements.
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3.4.2 Branching factor of four

A very early version of the MD6 design had chaining variables of size 512 bits
and a branching factor of eight (instead of the current branching factor of four).
However, it was felt to be more important to ensure that the wide-pipe principle
was maintained for all values of d (particularly for d = 512, where security
requirements are the toughest), so the chaining variable size was increased to
1024 bits.

It would be possible, of course, to maintain the wide-pipe principle, while
improving the branching factor when d < 512. For example, one could have
c = 1024 for d = 512 or d = 384 (a branching factor of four), and c = 512 for
d = 256 or d = 224 (a branching factor of eight). But this adds complexity and
doesn’t actually do much in terms of improved efficiency (it makes a difference
of about 16%), since almost all of the actual work is in the leaves.

3.5 A keyed hash function

Many existing hash functions, like MD5 and the SHA hash functions, are
“keyless”—there is only one version of a hash function (per digest size). There
is no standardized way to supply a key, salt, or index value to get different
versions of the hash function.

However, it is often proposed to convert a hash function into a MAC (message
authentication code) by augmenting the hash function message input with a
secret key input that is shared between sender and receiver.

The natural ways of doing this, however, turn out to be fraught with unex-
pected risks [49, 82, 83]; the usual Merkle-Damg̊ard iterative structure of a hash
function interacts badly with the idea of just appending and/or prepending the
secret key to the message. With some care, however, it can be done; HMAC is
one such approach [6] that is popular and well-studied.

There are other approaches, such as the “XOR-MAC” of Bellare et al. [7].
For our purposes, XOR-MAC is interesting because (a) the key is involved in
every block of the computation and (b) the position i of the i-th block is involved
in the computation on the i-th block. (MD6 shares these properties.) However,
the XOR-MAC construction doesn’t work at all for unkeyed hash functions or
for applications where the key is public, since the outer XOR’s can be defeated
by suitable use of linear algebra to produce inversions or collisions.

There are also other applications of keyed hash functions. For example, it
is common to “salt” the computation of a hash function on a password before
storing it. Here is salt is effectively a non-secret key (or index). The use of the
salt provides variability so that an adversary can’t easily pre-compute a dictio-
nary of the hashes of commonly used passwords; he has to redo the computation
for each such salt.

See Bellare and Ristenpart [10] for further excellent discussion of keyed hash
functions and their advantages.

In some situations, it is useful to choose keys randomly; this yield randomized
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hashing techniques [23], with many interesting applications and security bene-
fits.

MD6 has a 64-byte (that is, 512-bit) “key” that may be used as a secret
key for a MAC, a public value for a salt, or as a randomized index for the hash
function.

The reasons for making the key input relatively large are: (a) having a large
input block size makes this relatively cheap, (b) it allows for easy use of text-
based keys, and (c) it enables the use of MD6 outputs (even 512-bit outputs)
as keys. The last advantage makes it possible to hash a very long value for use
as a key in some other hash computation.

The MD6 key is actually of variable length (between 0 and 512 bits, inclu-
sive). By preserving the original length of the supplied key in the control word,
we ensure that the MD6 key doesn’t suffer from certain “extension” or “related-
key” attacks—a key K and a key K ′ will cause MD6 to behave differently even
if K is a prefix of K ′.

3.6 Pervasive auxiliary inputs

As noted above, in MD6, auxiliary inputs are supplied to each compression
function computation. This point is worth emphasizing and elaborating.

3.6.1 Pervasive key

For example, the MD6 key is an auxiliary input to every compression function
computation. The key is not just, say, appended or prepended to the message.
The pervasive presence of the key prevents length-extension attacks and other
mischief.

3.6.2 Pervasive location information: “position-awareness”

Also, each compression function operation “knows where it is”—the unique node
ID U specifies exactly where the present compression function invocation lies in
the dataflow graph. We call this “position-awareness”.

Haifa [18] proposed such position-awareness for sequential Merkle-Damg̊ard-
like computations. MD6 generalizes this to tree-based hash functions—the com-
pression function at a node has as input its level number and its position within
the level. Moreover, it knows whether or not it is the “final” (or “root”) node.

Such position-awareness provides major benefits in addressing number of
vulnerabilities for non-position-aware modes of operation. The reason is that
any hash function subcomputation (i.e. a sub-chain or subtree) can only be
used in one place in the overall computation.

In other words, position-awareness precludes “cut-and-paste” attacks—moving
a hash-function computation from one place to another. They also preclude at-
tacks (such as Kelsey’s) that perform hash function subcomputations, hoping
that they will fit in “somewhere” to produce a collision.
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3.6.3 Pervasive control word information

MD6 also has “control words” supplied pervasively to each compression function
computation.

The control words also specify the structure of the tree, by indicating how
many message bits are in each leaf node and how many children are present for
each non-leaf node. The MD6 control words specifies amount of “padding” at
each node and the node’s level number. This representation makes unnecessary
the use of traditional padding techniques (such as appending a one, then as
many zeros as necessary) while still uniquely specifying the tree structure.

Also, the root of the tree is specially marked via a bit in the control word.
That is, the compression function computing the final output value is distin-
guished; it has an input z = 1 that doesn’t occur for any other node. This has
benefits for preventing various forms of “extension attacks” and other mischief.

Such pervasive structural information ensures that the length of the under-
lying message (at the leaves the tree) is uniquely represented. (MD6 does not
explicitly represent the overall length of the message as an explicit input to any
one compression function computation; rather it is uniquely determined by the
tree structure information represented as inputs to each node.)

The control words also specify other information about the desired compu-
tation: the desired hash function output size d, the number r of rounds, the
optional “mode parameter” L, and the length of the key K.

The incorporation of the control word V helps to ensure that the hash func-
tion indeed acts like a “new, unrelated” function whenever any of the compo-
nents of the hash function change. Otherwise, for example, changing the output
hash size or the number of rounds might yield outputs that are clearly related
to the original outputs.

In general, MD6 follows a policy of “pervasive explicitness.” As we have
learned through many painful lessons in cryptographic protocol design, leaving
parameters implicit is a good recipe for introducing vulnerabilities. The same is
true in hash function design (e.g. the lack of position-awareness). It is better to
make sure that each potentially relevant or descriptive parameters is explicitly
an input to each compression function.

3.7 Restricted instruction set

MD6 is defined in terms of a very restricted set of logical operations, giving
advantages in terms of security, simplicity, and efficiency.

3.7.1 No operations with input-dependent timing

Timing attacks have turned out to be surprisingly effective against cryptosys-
tems that utilize primitive operations whose running time depends upon the
input data being manipulated. We have thus learned to avoid whenever possi-
ble:
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• Complex instructions such as multiplications and divisions whose running
time may be faster when their inputs are simpler (as exploited, e.g., by
Brumley et al. [22]).

• Shift or rotate instructions with input-dependent shift or rotate amounts.

• Input-dependent conditional branches (exploited, e.g, by Aciiçmez et al. [1][2]).

• Table-lookup instructions where the table index is input-dependent. Due
to cache effects, such instructions can cause input-dependent running time
for both the cryptographic code itself (e.g., by Tsunoo et al., [93], Bern-
stein [12] and Osvik et al. [74]) and independent adversarial processes on
the same processor (e.g., Osvik et al. [74][92] and Percival [76]).

The last limitation (no table-lookups) precludes the use of one of cryptog-
rapher’s favorite components, the “S-box”, unless the the S-box is sufficiently
small to be implemented purely in registers or via bitslicing.

3.7.2 Few operations

The MD6 compression function is implementable using only a very small set of
logical operations (on 64-bit words):

• XOR: the bit-wise exclusive-or of two words

• AND: the bit-wise and of two words

• FIXED SHIFT: the left-shift or right-shift of an input word by a fixed
amount (with zeros shifted in).

Other operations can be built from these in the usual way:

• NOT: By XORing with 0xFF...FF, the all-ones word:

• OR: Using DeMorgan’s Law: (x ∨ y) = x ∧ y.

• FIXED ROTATE: Using two fixed shift operations, and OR.

3.7.3 Efficiency

All of the above instructions can be implemented in constant time regardless of
the word size; there are no carry-propagations to worry about, for example, as
there would be for an adder.

(A 64-bit adder is rather useful for computing the “unique node ID” U in
the MD6 mode of operation. But here the nodeID is just a counter; there are no
data-dependent inputs. The addition counter increment can be performed using
the above data-independent instructions (somewhat awkwardly), or by using a
regular addition instruction or circuit. Since it is computed outside the inner
loop, it was felt that the use of standard binary notation for the nodeID counter
was more helpful in terms of clarity of design than the “purity” of trying to
purge all possible uses of addition from the design. Conversely, the recurrence
for S inside the inner loop was chosen to avoid the use of additions.)
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3.8 Wide-pipe strategy

The size of the intermediate chaining variables (linking one portion of the hash
computation to another) may have a very significant effect on the security of
the overall scheme.

Stefan Lucks was the first to articulate [54, 55] the important of the size of
these internal variables, stating,

“The size of the internal hash values is a security parameter in its
own right.”

Lucks proposed the “wide-pipe” strategy, wherein the internal chaining vari-
ables have a size that is independent of (and larger than) the final hash function
output. In the double-pipe strategy, the internal variables are twice as long as
the final hash function output.

A double-pipe strategy ensures that the chance that two chaining variables
collide (have the same value) is essentially negligible. The double- (or wide-)
pipe strategy is an effective anti-dote that an adversary might otherwise ob-
tain from the birthday paradox, as in recent “multicollision attacks” studied by
Joux [46], Nandi et al. [68, 69] Hoch et al. [44], and Yu et al. [98].

A wide-pipe strategy has been invoked in other recent designs, such as [13].
MD6 adopts a wide-pipe strategy: all internal chaining variables are cw =

1024 bits in length, which is at least twice the length of the final hash function
output.

3.9 Nonlinear feedback shift register

Many hash functions can be easily viewed as an NLFSR, with the understanding
that each step also makes use of additional inputs. For example, MD4 looks like
a NLFSR with four 32-bit words of state.

MD6 places all inputs in the shift register before the computation begins,
and has no non-constant inputs entering “from the side.”

Because there are no inputs “from the side”, it may be more difficult for a
cryptanalyst to find differential attacks on the collision-resistance of MD6.

The regular structure of the NLFSR also facilitates many aspects of our
security analysis.

The following subsections discuss some of the details of the design choices
made in implementing the MD6 compression function as a NLFSR.

3.9.1 Tap positions

The tap positions t0, t1, and t2 are intentionally chosen to be somewhat small, so
that differences will propagate more rapidly. On the other hand, mini(ti) = 17
is not too small, in order to support parallelism within the compression function
computation.
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Note that gcd(t0, n) = gcd(t1, n) = gcd(t2, n) = gcd(t2 − t1, n) = gcd(t4 −
t3, n) = 1.

The tap positions t0,. . . ,t4 were chosen as follows:

• The tap position t0 = 17 was chosen to be relatively small (for faster
avalanche effect), yet not too small (so that MD6 can exploit parallelism
by computing a full round in parallel), and relatively prime to the length
of a round (so that different shift amounts come in to play during the
feedback propagation). This tap is a linear feedback position for fastest
avalanche.

• The tap position n = 89 was necessarily chosen as a tap position for linear
feedback since we wish the feedback operation to be invertible (that is, we
can compute Ai−n from Ai−n+1..i; that is, we can run the shift register
“backwards”).

• All tap positions were chosen to be nonzero modulo c = 16 and to have
different residues modulo c = 16. This minimizes possible negative inter-
actions from basing shift amounts on the step size modulo 16. The tap
positions must also satisfy t4 − t3 6= t2 − t1, so that the “and” gates will
pair inputs at different distances from each other.

• Tap positions t1,. . . ,t4 were chosen using a computer search. It was de-
termined by a simple brute force search that the chosen values (t1 = 18,
t2 = 21, t3 = 31, and t4 = 67) minimize “dep” (here equal to 102), where
“dep” has the property that if at least “dep” computation steps are per-
formed, then each of the c most recent values computed is guaranteed
to depend (in a formal sense) on all 89 input words to the compression
function. The program (tapopt.c) is available. See Table 9.1.

3.9.2 Round constants

As noted earlier, the recurrence relation 2.4 for the round constants is one-to-one
(see Schnorr et al. [89, Lemma 5]).

Andrew Sutherland, who developed some great algorithms and tools for
determining the orders of elements in groups for his Ph.D. thesis [91], determined
with only a few seconds of computer time that the sequence S′j has period

6052837899185946603
= 3 ∗ 3 ∗ 7 ∗ 59 ∗ 233 ∗ 1103 ∗ 2089 ∗ 3033169
≈ 262.4 .

Of course, for MD6, we don’t need more than the first two hundred of these
elements, so the actual period length doesn’t matter as long as it isn’t very
short.
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3.9.3 Intra-word diffusion operation g

We originally considered obtaining intra-word diffusion by using rotations of
words, but a rotation is typically implemented using two shifts, and it seems
likely that two shifts can yield more benefit than simply using them to implement
a rotation.

Note that whatever shifts are chosen (as long as ri 6= `i), a one-bit change
to the input of g will cause from two to four bits of the output of g to change.

Note also that g is one-to-one (i.e., invertible). An input change of any sort
always causes an output change.

To find shift values ri, `i, 0 ≤ i < c that provide a good diffusion operator
g, we ran a computer search. The shifts in g were determined by a computer
search. The program (shiftopt2.c) is available. It attempts to maximize the
rate of diffusion, given the tap positions and subject to some constraints on the
choice of r and ` values.

The following constraints were observed (they are heuristic in nature, and
were felt to improve the quality of the design, although a straightforward ran-
domly generated table might do nearly as well). Each shift value must be
nonzero and at most w/2, and ri and `i must not be multiples of each other.
The function gri,`i must be such that an output of hamming weight one can-
not be generated by an input word of weight less than five. If w ≥ 32,
then ri and `j must also not be multiples of each other, for any j such that
(i− j) ∈ {t0, t5, t5− t0} (all subscripts taken modulo c). These latter conditions
(which are hard to satisfy for w < 32) help ensure that a left shift in one round
is not followed by a right shift of the same amount (or a multiple thereof) in a
latter round.

A table of shift values was chosen to provide the fastest avalanche effect
among those examined. The program for computing these shift tables is avail-
able.

The operations x = x ⊕ (x << a) and x = x ⊕ (x >> b) are known
as xorshift operations in the random-number literature. They were recently
introduced by Marsaglia [56], and studied by Panneton and L’Ecuyer [75]. Our
usage is vaguely similar to Marsaglia’s proposal, although MD6 is considerably
more complex than Marsaglia’s simple generator. (As it should be, as MD6
must meet cryptographic requirements that are not relevant for a simple random
number generator.)

3.9.4 Constant Vector Q

The presence of the constant vector Q helps to defeat inversion attacks, since
someone working the compression function backwards from a desired output
would need to match all the bits in Q.

For the purposes of security analysis, Q should be considered as hard-wired;
it is truly a constant. Although we talk about it as an “input” to the compression
function, it is a constant input that may not vary. Thus, for example, it doesn’t
count as “inverting” the compression function to come up with an input N =
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(Q,K,U, V,B) where Q has a value other than the standard fixed constant
value. Our calling Q an “input” is merely for for expository convenience; the
true inputs to the compression function are just B, V , U , and K. Producing
“inputs” to the compression function with a different value of Q is no more
legitimate than “solving” an equation 7x5 − y2 = 1 by giving a solution for
“a different value of 7”. In our security analysis, therefore, we focus on the
compression function fQ mapping Wn−q to Wc induced by fixing the Q input
to f .

3.10 Input symmetry

The MD6 compression function doesn’t treat any of its inputs (B,V ,U ,K, or
Q) in any special manner; they are treated essentially “uniformly”. This can be
formalized in the following design principle:

Principle of Input Symmetry: For any fixed permutation π of
the nw input bit positions to the MD6 compression function, the
security properties of MD6 should be effectively unchanged if the
input bits were re-ordered according to π before the compression
function were applied.

3.11 Output symmetry

Similarly, output bits of the MD6 compression function can similarly be treated
uniformly. This can be formalized in the following design principle:

Principle of Output Symmetry: For any fixed permutation π of
the cw output bit positions of the MD6 compression function, the
security properties of MD6 should be unchanged if the output bits
of the compression function were re-ordered according to π.

In particular, it shouldn’t matter that the final output is the first d bits of
the compression function output; it could have been any set of d bits, in any
order.

3.12 Relation to encryption

The compression function mapping may be viewed as a possible encryption
algorithm. The plaintext size and ciphertext size is 89 words. We may consider
the sequence S′j (j ≥ 0) as a sequence of “round keys”; each S′j is used in exactly
one round. These keys could be generated by another process from a supplied
key; in MD6, the values S′j are fixed. The simplicity of the operations used
by MD6 (in particular, no table lookups) makes this encryption algorithm an
interesting alternative to AES, which has suffered heavily due to “cache attacks”
against its table lookup operations (see Section 3.7.1).
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Many previous hash function designs can be viewed as having an encryption
algorithm buried in their compression functions. Such hash functions typi-
cally use the Davies-Meyer construction: given a chaining variable Ci−1 and
a message block Mi, the next chaining variable Ci is computed as Ci−1 ⊕
E(Mi, Ci−1). That is, it is the xor of the previous chaining variable and the
encryption of that variable under the key Mi.

MD6 does not use the Davies-Meyer construction, since we have the luxury
of designing a hash function that includes the message, key, control, and other
variables as uniformly treated inputs. This may make security analysis simpler.

3.13 Truncation

The c-bit output of the compression function at the root is truncated to produce
the final d-bit hash function output.

Although other operations could have been used here (e.g., some form of
“extractor”), truncation should suffice if MD6 with output length d = c is a
good pseudo-random function.

3.14 Summary

This chapter has provided an overview of the reasons for the major design deci-
sions in MD6. Some additional relevant discussion can be found in Chapters 7
and 6 on security.



Chapter 4

Software Implementations

This chapter describes various software implementations of MD6, and reports on
the efficiencies of these implementations. MD6 adapts easily to a wide variety of
platforms with good efficiency, and works extremely well on platforms providing
support for parallel computation. For example, throughput rates in excess of
1GB/second are obtained on a 16-core CPU.

We note that our reference implementation, 32-bit optimized implementa-
tion, and 64-bit optimized implementation are the same code.

All of our software is provided under the open source “MIT License” 1, which
has very liberal terms for copying, redistribution, modification, etc.

4.1 Software implementation strategies

This section discusses various approaches to implementing MD6 in software.

4.1.1 Mode of operation

We first review two approaches to implementing the MD6 mode of operation: a
“layer-by-layer” approach, and then a “data-driven tree-building” approach.

4.1.1.1 Layer-by-layer

Chapter 2 describes the MD6 hash algorithm in a “layer-by-layer” manner: there
are up to L parallel passes that reduce each layer in turn in size by a factor of
four to produce the next layer up, and then if necessary a sequential pass to
produce the final output.

A layer-by-layer approach was chosen for the exposition of MD6 in Chapter 2
since this approach is the simplest to describe.

However, a layer-by-layer approach is not suitable for the software imple-
mentations required by NIST’s SHA-3 competition since it presupposes that

1http://www.opensource.org/licenses/mit-license.php

47

http://www.opensource.org/licenses/mit-license.php


CHAPTER 4. SOFTWARE IMPLEMENTATIONS 48

the entire message is available at once, and since it uses storage proportional to
the length of the message being hashed.

We have explored layer-by-layer implementations during our work on MD6,
but our submitted reference and optimized implementations are based on a
different approach, which we call the “data-driven tree-building” approach.

4.1.1.2 Data-driven tree-building

The API required for SHA-3 allows message data to be provided in pieces of
essentially arbitrary size. After the initial call to Init, a number of calls to
Update may be made, each supplying a piece of the message. (Only the last
call to Update may supply a message piece containing a non-integral number of
bytes, according to NIST.) Then, a call to Final finishes the computation and
produces the desired hash value. The length of the message is not known to the
hash function implementation until the call to Final is made.

Our implementations of MD6 via this API are data-driven. This means that
each compression function operation will be evaluated “greedily”, as soon as all
of its inputs are available.

At any point in time during the computation, there may be one compression
function operation at each level of the tree that is still waiting to have its inputs
determined. These pending operations form a path in the MD6 computation
tree from the current root of the tree down to a leaf node.

Thus, the storage required by an MD6 implementation for a given message
will be proportional to the actual height of the MD6 tree during the hash func-
tion computation for that message.

In the case of MD6, there can be at most 27 nodes awaiting data, since
a message has length at most 264 bits, the final chaining variable output has
length cw = 210 bits, the tree has branching factor four, 264/210 = 254, and
log4(254) = 27. If the message has length less than 2m bits, then at most
(m − 10)/2 nodes will be awaiting data at any time. If L = 0 for a sequential
implementation, at most 1 node will be awaiting input at any time. In general,
the number of nodes waiting for input won’t be larger than L+ 1.

As more data is received, the tree being constructed may grow in height. The
node X that currently represents the root may have its subtree reach capacity,
and a new tentative root node Y may need to be added at the top, as the
parent of X. Note that this growth will only happen when it is truly necessary;
Y shouldn’t be added if no more input is coming.

The tree grows in a “bottom-up, left-to-right” manner.
The final height of the tree, and the final number of nodes at each level,

won’t be known until all input has been received (when Final is called).
When Final is called, the pending computation nodes are completed in a

bottom-up manner, with results passed up to the next level, and with padding
supplied as necessary to provide the missing input at each level. Finally, the
compression function for the root node is performed, yielding the final hash
output.
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(Note that the root node compression can’t be done before Final is called,
since the current root may or may not be the final root node, and isn’t clear
whether the root node should be compressed with input z = 0 or input z = 1
until we know whether more input is coming or not.)

A slight modification is needed in the case that the height of the current
root is L+1, since nodes at level L+1 are processed in a sequential rather than
a hierarchical manner. Such nodes contain an IV (for the first such node) or a
chaining variable “from the left” (for the other such nodes); when such a node
is compressed its output is passed “to the right” (to a new node at level L+ 1)
rather than “up”.

We note that our numbering scheme for unique node ID’s works well within
such a data driven approach, since the level number and index within level of a
node are known without knowing if more data will be coming. This would not
have been true had we numbered nodes in a top-down manner starting at the
root.

This data-driven approach nicely accommodates the requirements of the
NIST SHA-3 API, while retaining formal equivalence to the layer-by-layer ap-
proach.

4.1.2 Compression function

We now review strategies for implementing the MD6 compression function in
software. Fortunately, the MD6 compression function is simple enough that
clever optimization techniques are not required in order to obtain excellent
performance.

The only optimization applied to our program was loop-unrolling: the inner
loop of the compression function is unrolled 16 times. That is, the 16 steps of
the inner loop, comprising one round, were unrolled. This optimization provided
substantial speedup, yet could be done without hurting the clarity of the code.

Other aspects of code generation, such as managing 64-bit values efficiently,
were left entirely to the compiler.

The code spends about 97.5% of its time in the compression function inner
loop, so optimization outside of the inner loop is nearly pointless.

As far as we can tell, it is possible to get essentialy optimal code for the MD6
inner loop from standard C compilers. We don’t know of any optimizations for
the inner loop, even using assembler, that would produce code better than the
best compiler output. This is a nice feature of MD6: the inner loop is so simple
(even when unrolled 16 times) that a good compiler can produce code that is
effectively optimal.

One potential “optimization” is to reduce the memory footprint of the main
compression loop to improve utilization of the cache and/or reduce the overall
memory usage. Instead of allocating rc+n words for the array A, allocate some
smaller number (perhaps only n = 89). This strategy makes sense under cache
memory pressure, e.g., due to very small caches or simultaenous multithreading.
It did not result in any speed improvement in our single-process test platforms.
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4.2 “Standard” MD6 implementation(s)

We have a produced a single implementation of MD6 as our Reference, Opti-
mized 32-bit, and Optimized 64-bit submissions.

This code uses the data-driven tree-building approach and one-round loop
unrolling, as described above.

There are three files defining this implementation:

• md6.h – defining the constants and data structures used by MD6.

• md6 compress.c – defining the MD6 compression function.

• md6 mode.c – defining the MD6 mode of operation.

For compiling on Microsoft Visual Studio, compatible versions of the C99
standard header files inttypes.h and stdint.h need to be supplied (primarily
for the definition of uint64 t). Our submission includes suitable versions.2

In addition, two files are needed to provide compatibility with the NIST
SHA-3 API:

• md6 nist.h – defines the NIST SHA-3 API interface.

• md6 nist.c – implements the NIST SHA-3 API interface.

Thus, for NIST to compile and test the MD6 code supplied, NIST needs the
two header files (md6.h and md6 nist.h, and the three programs (md6 compress.c,
md6 mode.c, and md6 nist.c).

We have also supplied a standard driver program, md6sum, which is similar
to the well-known program md5sum. This program can be used to hash files, run
timing tests, print intermediate results, and experiment with different parameter
settings. Its use is described further in Section 8.4.

4.2.1 Reference Implementation

As noted above, our one submitted implementation is the Reference Implemen-
tation.

4.2.2 Optimized Implementations

4.2.2.1 Optimized 32-bit version

As noted above, our one submitted implementation is also the Optimized 32-bit
implementation.

4.2.2.2 Optimized 64-bit version

As noted above, our one submitted implementation is also the Optimized 64-bit
implementation.

2Source: http://code.google.com/p/msinttypes

http://code.google.com/p/msinttypes
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4.2.3 Clean-room implementation

As part of our development process, a new team member (Jayant Krishna-
murthy) was given only the MD6 documentation, and asked to develop an
MD6 implementation in a “clean-room” manner (i.e., without access to our
pre-existing MD6 code base). This implementation was done in a layer-by-layer
manner, to minimize the chance of incompatibilities with the documentation.
Since the clean-room implementation is only for testing, and not for submission,
the fact that the clean-room implementation had overall length limitations was
not too much of a concern.

The two implementations were then tested extensively for equivalence on
random inputs.

A few corner-case bugs in the documentation and in the programs were
uncovered and fixed. At this point the programs agree on all inputs we have
tested, and we have high confidence that they correctly implement MD6 as
documented in this report.

4.3 MD6 Software Efficiency Measurement Ap-
proach

This section describes the approach used to measure the running time of our
code, and the results we obtained. We report results separately for the code as
compiled by GCC and the code as compiled by Microsoft Visual Studio 2005,
since the results are somewhat different (especially for 32-bit code).

We report elapsed time in seconds and in “ticks” (clock cycles, as measured
by the RDTSC instruction).

4.3.1 Platforms

We describe here the platforms (processors) used for testing the efficiency of our
code.

4.3.1.1 32-bit

Our 32-bit test platform is a Lenovo ThinkPad T61 laptop with an Intel Core
2 Duo T7700 processor running at 2.39GHz and 2GB of RAM, running Win-
dows XP Professional (Service Pack 2). This CPU has L1/L2 caches of sizes
(128KB,4MB). (The L1 cache has 32KB instruction cache and 32KB data cache
in each of its two cores.)

This is essentially equivalent to the 32-bit NIST Reference Platform de-
scribed in Section 6.B (page 62219) of the NIST Federal Register Notice [70]
describing the SHA-3 submission requirements (modulo running Windows XP
rather than Windows Vista).

The compilers we used are Visual Studio 2005, and GCC 3.4.4 under Cygwin.
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4.3.1.2 64-bit

We used three 64-bit platforms: one running Windows and two running Linux.
The Windows platform (aka “lumen”) runs Windows 64-bit XP Professional.

This platform has a 3.0GHz clock rate and an Intel E6850 Core 2 Duo processor
with L2 cache of size 4MB and and L1 data cache of 32KB per core (64MB
total).

The first Linux platform (aka “scooby-doo”) is a 64-bit Core 2 Quad Xeon
running at 2.6GHz. It has L1/L2 data caches of size (32KB,2MB).

The second Linux platform (aka “T61-Ubuntu”) is a Lenovo ThinkPad T61
laptop with an Intel Core 2 Duo T7700 processor running at 2.39GHz and 2GB
of RAM, runing Ubuntu. This is the same laptop as our 32-bit T61 laptop,
but booted into Ubuntu rather than into Windows XP. Since the Core 2 Duo
supports 64-bit instructions, we can use this platform for 64-bit testing as well.
The GCC compiler version is 4.2.3.

4.3.1.3 8-bit

Our 8-bit platform is the Atmel AVR [5, 4]. We chose this platform because
of its popularity, robust development tool support, and clean architecture. The
AVR is a RISC CPU with a load/store architecture and thirty-two 8-bit regis-
ters. Logical and arithmetic operations are only performed on data in registers.
Among its architectural advantages are single-cycle operations on data con-
tained in registers, offering up to 1 MIPS/MHz. Loading (or storing) a byte
from SRAM takes two cycles. Given the simplified instruction set, producing
code from a high-level language like C is comparatively easy. Among the tools
available for the AVR is avr-gcc, a cross-compiler based on the same toolchain
as GCC. Support for this compiler meant minimal code changes to produce a
working implementation on the AVR.

The AVR family consists of embedded processors with a wide variety of
features, from 64 bytes of SRAM up to 32 KB and a maximum clock frequency
of 1 MHz up to 20 MHz. For testing and debugging purposes, we chose the
Atmel ATmega1284p, a part available with up to 16 KB of SRAM, and up
to 20 MHz clock. In addition, it is supported by WinAVR, allowing for full
software simulation and cycle counts.

4.4 MD6 Setup and Initialization Efficiency

The setup time for MD6 is independent of the desired length d of the output
hash function digest.

Figure 4.1 gives the number of clock cycles required for MD6 initialization
on various platform/compiler options. These were obtained using our md6sum
application, e.g.

md6sum -s1e6

to obtain the time and cycle counts needed for one million initializations.
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Platform+compiler ticks/initialization
(32-bit) Cygwin + GCC (T61) 1156
(32-bit) XP + MSVS (T61) 1450
(64-bit) Cygwin + GCC (scooby-doo) 2111
(64-bit) Ubuntu + GCC (T61-Ubuntu) 2062
(64-bit) XP + MSVS (lumen) 2070

Figure 4.1: MD6 initialization times. (Here a “tick” is one clock cycle.)

Setup is very efficient: less than 7% of the cost of a typical compression
function call.

4.5 MD6 speed in software

This section provides the results of timing tests on our software MD6 imple-
mentation on various platforms.

The timing results are made using our md6sum application, e.g.

md6sum -t -d160 -B1e9

to measure the time and cycles taken to produce a 160-bit hash value for a
one-gigabtye dummy file.

4.5.1 32-bit processors

Compiling MD6 on a 32-bit processor relies on the ability of the compiler to
produce good code for handling 64-bit quantities.

Figure 4.2 gives the speed of MD6 on our 32-bit Cygwin Linux platform
using GCC 3.4.4. Here the compiler optimization switch is -O3.

32-bit Core 2 Duo 2.4GHz (T61)
Cygwin+GCC

ticks/byte ticks/comp. fn speed (MB/sec)
MD6-160 76 29545 31.2
MD6-224 91 35043 26.3
MD6-256 98 37638 24.4
MD6-384 126 48639 18.9
MD6-512 155 59707 15.4

Figure 4.2: 32-bit MD6 speed using Cygwin + GCC 3.4.4

MS Visual Studio 2005 produced code that was significantly better (about
35% better), as shown in Figure 4.3. Here the compiler optimization switch is
/O2.
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32-bit Core 2 Duo 2.4GHz (T61)
XP + MSVS 2005

ticks/byte ticks/comp. fn speed (MB/sec)
MD6-160 54 20855 44.1
MD6-224 63 24363 37.7
MD6-256 68 26464 34.7
MD6-384 87 33607 27.4
MD6-512 106 40975 22.4

Figure 4.3: 32-bit MD6 speed using MSVS

hash algorithm speed (MB/sec)
MD4 509
MD5 370
SHA-1 209
SHA-224 108
SHA-256 106
SHA-384 37
SHA-512 38
RIPEMD-160 138
Tiger 108
HAVAL (5 passes) 171
Whirlpool 30

Figure 4.4: Speed of some other hash functions, as measured by sphlib, on our
32-bit T61 laptop, with compiler gcc.

For comparison, we can measure other hash functions using sphlib, as shown
in Figure 4.4.

4.5.2 64-bit processors

Because the MD6 is 64-bit oriented, and because the inner loop of the com-
pression function is so simple, a good compiler can produce excellent or optimal
code for the MD6 inner loop on a 64-bit processor.

For example, GCC compiles the inner loop of MD6 so that each step takes
only 16 instructions on a modern 64-bit processor (3 loads, 2 ands, 6 xors,
2 register-to-register transfers, 2 shifts, and 1 store). We don’t know how to
improve on this, even coding by hand.

Figure 4.5 gives the running time for MD6 on our 64-bit Linux platform,
using GCC. (Note: the clock rate here, 2.6GHz, is slightly higher than for the
standard 64-bit Windows platform.)

Ubuntu + GCC 4.2.3 produced code that was close, but slightly better (note
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64-bit Xeon 2.6GHz (scooby-doo)
Cygwin+GCC

ticks/byte ticks/comp. fn speed (MB/sec)
MD6-160 25 9625 106.3
MD6-224 29 11292 90.5
MD6-256 31 12059 84.7
MD6-384 39 15351 66.6
MD6-512 48 18680 54.8

Figure 4.5: 64-bit MD6 speed using GCC (2.66 GHz processor)

the different clock rates); see Figure 4.6.

32-bit Core 2 Duo 2.4GHz (T61)
Ubuntu + GCC 4.2.3

ticks/byte ticks/comp. fn speed (MB/sec)
MD6-160 22 8717 105.0
MD6-224 26 10257 89.7
MD6-256 28 11057 83.2
MD6-384 36 14165 64.9
MD6-512 44 17278 53.2

Figure 4.6: 64-bit MD6 speed using Ubuntu + GCC 4.2.3

Windows Visual Studio gave the following results. (The MD6 software was
compiled by MS Visual Studio on our T61 laptop on the Visual Studio 2005
x64 Cross Tools Command Prompt, then the executable was ported to lumen
for execution.)

Here Microsoft Visual Studio produces code that takes very nearly the same
number of clock cycles as the code produced by our two GCC platforms. (When
comparing charts 4.7 and 4.5 it is best to focus on the clock ticks per byte or
per compression function call, and not the megabytes/second, as the clock rates
for the machines used in these two charts differ.)

For comparison, we can measure other hash functions using sphlib:
Compared to SHA-512, this single-threaded implementation of MD6 is slower

by a factor of 1.7 (for 32-bit code) to 4 (for 64-bit code).

4.5.3 8-bit

The NIST Federal Register notice [70, 2.B.2] requires that submitters supply
efficiency estimates for “8-bit processors.”

NIST does not specify any particular 8-bit processor to consider, so we focus
on the Atmel AVR and the ATmega1284p in particular. See [5, 4].
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64-bit Windows XP (lumen)
XP + MSVS 2005

ticks/byte ticks/comp. fn speed (MB/sec) speed(MB/sec)*2.4/3.0
MD6-160 24 9505 120.8 96.6
MD6-224 29 11251 102.2 81.6
MD6-256 31 11984 96.0 76.8
MD6-384 40 15483 74.3 59.4
MD6-512 48 18617 61.8 49.4

Figure 4.7: 64-bit MD6 speed using MSVS (3.0 GHz processor); last column
scales speed down to 2.4 GHZ clock.

hash algorithm speed (MB/sec)
MD4 769
MD5 477
SHA-1 238
SHA-224 158
SHA-256 158
SHA-384 202
SHA-512 202
RIPEMD-160 197
Tiger 396
HAVAL (5 passes) 241
Whirlpool 55

Figure 4.8: Speed of various hash algorithms on our 64-bit cpu “scooby-doo” (a
Linux machine; speed measured with sphlib as compiled with GCC).

MD6 implementations are possible on more-constrained members of the AVR
family, but our motivation here was to measure results using as much of the
existing reference implementation as possible, leading us to favor parts with
relatively larger SRAM sizes. In addition, this experience allows us to examine
GCC’s disassembled output in order to make accurate estimates of what could
be achieved using custom assembly code.

These two approaches allow us to report results for code size optimization
(C code compiled with the -Os flag) and speed optimization (assembly esti-
mates). Practical embedded implementations are often optimized for code size,
rather than pure computation speed, as limited flash storage for program code
discourages typical speed vs. code size tradeoffs like loop unrolling and function
inlining.

The reference implementation uses a working array of rc+n 64-bit words. To-
gether with overhead such as the call stack, the code fits MD6-160 and MD6-224



CHAPTER 4. SOFTWARE IMPLEMENTATIONS 57

into the 16 KB memory of the ATmega1284p and actual timing measurements
were taken, reflected in the table. With the memory strategy of the reference im-
plementation (where A occupies rc+n words), even using the sequential (L = 0)
MD6 option, the working array for the larger digest sizes exceeds the 16 KB
available on the AVR, so by measuring that a step of MD6 takes 1,443 cycles,
we calculate the number of cycles required overall for the larger digest sizes.
These measurements and calculations for the inner loop of MD6 are reflected in
the table.

d r rc cycles time (20 MHz)
160 80 1280 1,848,013 92 ms
224 96 1536 2,217,549 110 ms
256 104 1664 2,401,152 (est.) 120 ms
384 136 2176 3,139,968 (est.) 157 ms
512 168 2688 3,878,784 (est.) 194 ms

Figure 4.9: Efficiency of MD6 on an Atmel 8-bit processor (one compression
function call).

As noted earlier, an implementation of MD6 with smaller memory footprint
is possible. Such an implementation uses 89 × 8 = 712 bytes of RAM to store
the current state of the NLFSR. Longer messages would use the sequential MD6
option, so that working memory usage would stay under 1KB. Our standard x86
platforms have sufficiently large L1 cache that such an implementation strategy
appears to have little or no benefit.

By contrast, available SRAM is at a premium on 8-bit devices. The NLFSR
realization would allow us to implement d = 256, 384 and 512 on the AVR, or
the smaller d values with much less memory. The memory savings come at the
cost of more overhead for pointer arithmetic, amounting to about 5% of the
total. With this approach, we can implement the NLFSR by using pointers
to represent the head, tail, and tap positions instead of explicitly shifting the
locations of values in SRAM.

When using the -Os flag to optimize for code size, the compiler takes the
obvious approach to the word-wise AND and XOR operations. The two 64-
bit operands are loaded from SRAM, consuming 32 cycles. Eight byte-wise
logical operations consume 8 cycles, followed by 16 cycles to store the eight-
byte result, taking a combined total of 56 cycles. Apart from the possibility of
careful register allocation to save some load/store operations, it is unclear how
to improve on this approach given the simplicity of the processor.

By contrast, in the SHIFT operation, the compiler takes a somewhat con-
servative approach to save code size. The AVR is an 8-bit processor that can
shift one byte by one position in one cycle. Rather than being lost, the former
bit of the least or greatest significance is stored in the carry flag. This feature
simplifies shifting across multiple bytes, as the shift instruction automatically
propagates the carry flag’s value into the newly-vacated bit position. Naturally
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at the beginning of a multi-word shift operation, one must be sure to clear the
carry flag.

Greater shift distances are handled by repeating the shift instruction. To
handle multi-word shifting, the compiler emits a subroutine: the shift distance
is loaded and used as a loop index. The overhead for subroutine setup, call, and
return, along with the housekeeping required for looping is substantial.

In MD6, the number of places li and ri by which our operands need be
shifted is not data-dependent. Because the shift distances are known in advance,
at the cost of increased code size, one can eliminate loops and subroutine calls.
Moreover, we can take advantage of an optimization due to the byte-wise nature
of the AVR: we can shift any multiple of eight positions merely by register
renaming. In effect, the register file becomes a sort of sliding window: if a word
is stored in registers R0-R7, we can shift it right by eight positions by zeroizing
R8 and considering the register R1 to represent the least-significant eight bits.
Handling the remaining positions mod 8 can be achieved in an unrolled loop.

Recall the operation we are computing is

y = x XOR (x >> r_i);
return y XOR (y << l_i);

To handle the first line, we spend 32 cycles loading x from SRAM, storing
a copy in registers before the SHIFT, and finally storing a copy in registers
afterward. For the the SHIFT itself, we need ri/8 cycles to zeroize the “free”
bytes as part of the shift-by-8 optimization described above. Then (8− ri/8 +
1)× [ri mod 8] cycles to handle the number of bytes to be right-shifted times the
number of bits to shift each one. Finally, we need to account for 8 additional
cycles for the XOR operation itself.

The second line proceeds similarly with the exception that instead of spend-
ing 32 cycles loading and copying data, we need only 16 cycles to store the
final result. Plugging the actual values for li and ri into these equations yields
a combined total of 2,113 cycles to handle all the shifting in one iteration of
the main compression loop. The table below gives the overall timing estimates
for a speed-optimized assembly implementation. We estimate that the NLFSR
approach consumes 5% more cycles overall than the figures below.

d r rc cycles time (20MHz)
160 80 1280 742,480 37 ms
224 96 1536 890,976 44 ms
256 104 1664 965,224 48 ms
384 136 2176 1,262,216 63 ms
512 168 2688 1,559,208 78 ms

Figure 4.10: Speed estimates for assembly implementation of MD6 on an Atmel
8-bit processor (one compression function call).
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4.5.3.0.1 Whither small processors? When measured by total units sold,
8-bit processors are still the world’s most popular. Their low cost continues
to make them the processor of choice in embedded systems. The high sales
volumes mean that fast-paced innovation continues, especially as vendors offer
more features while remaining at relatively low price points. The immense cost
pressures dictate that the 8-bit market will remain highly fragmented, with
parts being highly optimized for a particular application.

Eight-bit processors remain popular in smart cards, for example. Given their
need for a standardized I/O interface, custom hardware accelerators for sym-
metric and public-key algorithms, and physical tamper-resistance, these devices
often have a very different architecture and feature set than the typical micro-
controller deployed in a television remote control, for instance. Because of the
broad diversity of processor architecture and instruction set, algorithm perfor-
mance will vary from processor to processor. Simple things like the number of
clock cycles needed to read (or operate on) SRAM can make a big difference,
making comparisons difficult. But because much of the time in the implementa-
tion is spent ferrying data to and from memory, the time needed for a processor’s
load-operate-store sequence (or equivalent) will make a big difference. The AVR
has a relatively fast path to memory (only two cycles), so given slower memory
access, an MD6 implementation would be correspondingly slower.

Product roadmaps for 8-bit microcontrollers tend to focus on the integration
into the processor of components formerly requiring a separate chip. Obvious
examples are on-chip display-driver capabilities, with some processors now di-
rectly carrying the circuitry to control a small liquid-crystal display. In addition,
the communication features continue to expand. A variety of low-power wired
and wireless data transports are now available including CAN, Bluetooth, Zig-
Bee, WiBree and many proprietary schemes. To better support this kind of data
I/O, some processors are gaining features like Direct Memory Access (DMA)
that speed the flow of data to and from off-chip resources.

Closer to our purposes, some 8-bit microcontrollers like the AVR XMEGA
(even those not packaged for inclusion in a smart card) now offer hardware DES
and AES accelerators. Naturally, smart card processors have had unique needs
for both symmetric and public-key hardware acceleration as well as tamper-
resistance for quite some time. The fact that these features are cropping up in
more general-purpose processors is a testament to the increasing connectivity
even among these smallest of systems.

Ultimately, in a few years’ time, we can expect hardware accelerators for the
new hash standard to appear in 8-bit processors just as AES accelerators are
widely available.

4.6 MD6 Memory Usage

The size of the MD6 state, as implemented, is 15504 bytes. Most of this is for
the stack of values: there are 29 levels to the stack, each holds 64 words of data,
and each word is 8 bytes; this gives 14,848 bytes just for the stack.
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The reference implementation provides for handling the full maximum mes-
sage length of 264 − 1 bits. Should there be a smaller limit in practice, a
correspondingly reduced stack size could be used. For example, if in an applica-
tion there was a known maximum message size of 32GB (240 bits), then a stack
size of 17 levels would suffice, reducing the necessary size of the MD6 state to
roughly 9K bytes.

When L = 0, so that MD6 is operating entirely sequentially, the size of MD6
state is even further reduced. In this case, MD6 should be implementable using
not much more than the size of one 89-word compression input, which is 712
bytes.

4.7 Parallel Implementations

Computing platforms are quickly becoming highly parallel, as chip manufac-
turers realize little more performance is available by increasing clock rates. In-
creased performance is instead being obtained by utilizing increased parallelism,
as through multi-core chip designs.

Indeed, typical chips may become very highly parallel, very soon.
Anwar Ghoulum, at Intel’s Microprocessor Technology Lab, says “developers

should start thinking about tens, hundreds, and thousands of cores now.”
Section 4.7.1 shows how the speed of MD6 can be dramatically increased by

utilizing the CILK software system for programming multicore computers.
Then Section 4.7.2 shows how the speed of MD6 can be dramatically increase

by implementing MD6 on a typical graphics card (which is highly parallel in-
ternally).

4.7.1 CILK Implementation

We implemented MD6 for multicore processors using the CILK extension to
the C programming language developed by Professor Charles Leiserson and
colleagues. CILK began as an MIT research project, and is now a startup
company based in Lexington, Mass.

The CILK technology makes multicore programming quite straightforward.
The CILK programmer identifies her C procedures that are to be managed by
the CILK runtime routines by the cilk keyword. She can identify procedure
calls to be potentially handled by other processors by the spawn keyword. She
synchronizes a number of spawned procedure calls using the sync statement.
Details can be found at the MIT CILK web site3 or at the company’s web site4.

Our implementation of MD6 in CILK used the layer-by-layer approach (so
it assumes that the input message is available all at once). It processes each
layer in turn, but uses parallelism to process a layer efficiently.

3http://supertech.csail.mit.edu/cilk/
4http://www.cilk.com

http://supertech.csail.mit.edu/cilk/
http://www.cilk.com
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Bradley Kuszmaul, Charles Leiserson, Stephen Lewin-Berlin, and others as-
sociated with CILK have been extremely helpful in our experiments with MD6
(thanks!).

Using CILK, MD6’s parallel performance is the best one can hope for: its
throughput increases linearly with the number of processors (cores) available.

We have experimented with 4-core, 8-core, and 16-core machines using our
CILK implementation.

The 16-core machine shows best how MD6 scales up with more cores. This
machine is a 2.2 GHz AMD Barcelona (64-bit) machine. See Figure 4.11.

Number of cores Processing speed (MB/sec)
1 40.4
2 121.6
3 202.2
4 270.2
5 338.3
6 407.7
7 474.1
8 539.8
9 607.2
10 674.2
11 740.0
12 805.8
13 875.9
14 940.0
15 1004.0
16 1069.9

Figure 4.11: Speed of MD6 using various numbers of cores on a 16-core machine
using CILK.

4.7.2 GPU Implementation

A typical desktop or laptop computer contains not only the main CPU (which
may be multicore, as noted earlier), but also a potentially high-performance,
highly-parallel graphics processor (GPU).

Such general purpose graphics processing units are beginning to be used as
cryptographic processors (e.g. Cool et al [29] and Harrison et al. [43]), since
they provide a rich set of general-purpose logical instructions and a high degree
of parallelism.

Current GPGPUs trade a traditional cache hierarchy and complex pipeline
control for expanded vector-parallel computational resources. For example, the
8800GT (release in 2007) has 112 vector processing elements (PEs) arranged
in gangs of 8, forming a cluster of 14 SIMD thread processing units (TPUs).
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Figure 4.12: Chart of MD6 speed using various numbers of cores on a 16-core
machine using CILK.
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The TPU operate on blocks of threads each of which must operate on the
same vector instruction. If divergent control flow exists across the threads in
a TPU thread block, the PEs revert to slow serial execution. TPUs, however,
may follow different control paths from one another. Unlike traditional out-of-
order processors, which hide high-latency operations with instructions from the
same computation thread, the TPUs hide latency by running multiple blocks
of threads in parallel. Indeed, the TPU cannot even execute back to back
instructions from the same thread block in back to back cycles – the TPU will
idle if there are no other thread blocks to execute. Thus, to exploit the resources
of the GPU fully, a program must have suffcient vector parallelism to saturate
a TPU, limited control flow within the TPU, and enough data-parallel tasks to
keep all of the TPUs in the system busy.

MD6 is ideally suited to exploit the parallelism presented by such GPGPU
architectures. The 16 steps in a compression round are vector parallel, and the
compression function itself has statically determined control flow. Since indi-
vidual compression functions are data parallel, multiple compression functions
maybe run in parallel on the processing units of the GPGPU, thereby achieving
high GPU utilization. MD6 can achieve throughputs as high as 610 MB/s on a
single GPU,

We tested several GPU implementations by hashing a 512MB block of mem-
ory. Performance was determined by measuring the wall clock time between the
completion of data initialization until the completion of hashing. In particu-
lar, heap memory allocation is not accounted for in the reported performance.
Although memory allocation incurs substantial performance overhead, MD6 is
likely to be used as part of a library in which the cost of memory allocation is
amortized across many hash operations.

The GPU implementation of MD6 operates on the MD6 compression tree
in the same manner as the multicore implementation, that is layer by layer (see
Section 4.1.1.1). The routine uses the GPU to compress blocks of data, com-
puting a minimum of 64 compression functions in parallel (32 kilobytes) per
GPU invocation. Smaller data sizes, including the tip of the compression tree
are calculated on the main system processor, which is faster than the GPU if
insuffcient parallelism is available. In contrast to the traditional software imple-
mentation detailed in Section 4.1.2 which required little manual modification to
achieve good performance, a number of transformations must be made to the
MD6 reference code in order to achieve any reasonable performance on the GPU.
Unfortunately, many of these transformations depend on detailed knowledge of
the GPU processor and memory architecture. The following paragraphs will
present some details about the transformations required to achieve high GPU
performance, but may be bypassed without affecting the remaining discussion.

Running the reference implementation of MD6 on the GPU results in the
abysmal compression performance of 3MB/s. The naive parallel decomposition
of the code into multiple data-independent compression functions, similar to
the algorithm used in CILK, gives a low throughput of 14MB/s. The original
compression function is not expressed in a vector parallel fashion; as such, the
GPU has many idle processing elements and as a result gives low performance.
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Unfortunately, vectorizing the code provides a throughput of only 23 MB/s.
A major performance issue with the original code is that it uses a large

array in which each element is written exacly once. While this approach is
fine for a general purpose processor with a managed cache as discussed in Sec-
tion 4.1.2, the GPU incurs a substantial performance penalty each time the
on-board DRAM, the only place where such a large array can be stored, is ac-
cessed. In MD6 compression, the ratio of computation per load is low and so the
GPU is unable to hide the latency of main memory accesses with computation,
resulting in severly degraded performance. To avoid this memory access penalty,
the GPU implementation uses a smaller wrap-around shift register mapped in
the TPU scratch pad memory. Since vector parallel instructions may write be-
yond the end of the data array, the wrap-around arrays require a halo of memory
around them to avoid data corruption. Thus, the shift register is sized at 121
words, which includes a 32 word halo. The wrap-around implementation solves
the memory access latency problem, but introduces costly modulo arithmetic
to compute array indices. However, the benefit of high memory bandwidth
outweighs the cost of modular indexing, and this implementation achieves a
throughput of 140MB/s. As an aside, it might seem that increasing the shift
register to size 128 would reduce the modulo operator to a simple right shift.
However, this optimization results in an array of shift registers that does not fit
in the 16KB TPU scratchpad memory.

Although modular arithmetic is needed to compute indices into the reduced
shift register, the index progression is fixed and index values can be precom-
puted and stored in a lookup table in scratchpad memory. This optimization
raises GPGPU thoughput to 224 MB/s. However, the table lookups still require
modulo arithmetic operator. By removing the modulus operators and statically
unrolling the entire compression loop, a performance of 360 MB/s was achieved.

To this point, the GPU kernel has operated on large blocks consisting of
a constant number of MD6 compression functions, but by operating the GPU
at a finer granularity some speedup can be obtained. However, large scale
parallelism is required to obtain good GPU performance. MD6 is no exception
- the larger the block processed, the greater the processing effciency. It was
empirically determined that 64 parallel compressions was the point at which
GPU and CPU performance were roughly equivalent. Support for smaller block
sizes increased MD6 throughput to 400 MB/s.

Modern machines have the capability to copy large pieces of physical memory
to bus devices, such as the GPU. These direct memory access or DMA transfers
are high-bandwidth and may be performed in parallel with computation - either
at the GPU or CPU. By enabling GPU DMA, a further speedup to 475 MB/s
was obtained for MD6-512. Unfortunately, configuring memory for use with
DMA has non-neglidgable cost. However, if MD6 were used in the context
of library, this cost would be amortized over many calls to the compression
function.

Utilizing these methods on the newer, faster 9800GTX card we can achieve
MD6 throughput of 610 MB/s for MD6-512. We also obtain high throughput
for shorter hash lengths, as shown in Figure 4.13. In particular for extremely
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short hash lengths, we obtain throughputs in excess of 1600 MB/s. Although
short hash lengths are not crytographically interesting, their high throughput
gives some notion of the maximum throughput that can be achieved with future,
higher-performance GPUs.

One can install multiple graphics cards in a single desktop to obtain a higher
MD6 throughput. The MD6 processing tree can be trivially partitioned and
subtrees allocated to various graphics cards within the system, theoretically
obtaining a linear speedup in operation. The multi-GPU version of MD6 naively
partitions the the MD6 tree into equally sized subtrees and assigns the subtrees
to the available GPUs in the system. Once the subtree computation is complete,
the host CPU gathers the subtree results and finishes the hash computation.

Figure 4.14 shows the MD6 throughputs achieved for MD6 on two multi-
GPU platforms. The first used platform has two 9800GTX+ cards. The second
of the platforms has four 9800GX2 cards, each of which has two 9800 series
GPUs. The second platform has more aggregate compute, although the indi-
vidual 9800GTX+ GPUs are superior to the GPUs used in the 9800GX2. For
small increases in the number of GPUs, some performance increase is obtained.

The rapidly diminising return for using multiple graphics cards can be at-
tributed to two main causes. The first is the decreased GPU efficiency due to
smaller problem size. To achieve good throughput GPUs require hundreds or
thousands of threads. If the hash tree is partitioned at too fine a grain, GPUs
suffer idle cycles during computation. The second is the competition for mem-
ory bandwidth among the cards. Current motherboards multiplex the PCI-E
bus when multiple graphics cards are in use, decreasing the effective memory
bandwidth to the all cards in the system.

4.8 Summary

MD6 has efficient software implementations on 8-bit, 32-bit, and (especially)
64-bit processors, without complex optimization techniques.

Because of its tree-based mode of operation, MD6 is particularly well-suited
for parallel implementions on multicore processors and GPU’s. Speeds of many
hundreds of megabytes per second are easily obtained, and speeds of 1-2 giga-
bytes/second are very achievable.

Processor architecture is currently trending to larger numbers homogenous
cores—both CPUs and GPUs are following this trend. Becuase the performance
individual cores is not improving, the throughput of traditional sequential algo-
rithms, which used to have exponential performance growth, has stagnated. On
the other hand, highly parallel algorithms, like MD6, are likely to continue to see
improved throughput well into the forseeable future as coarse-grained machine
parallelism increases. Approximately nine months passed between the release of
the 8800GT GPU (October 2007) and the 9800GTX GPU (July 3008), which
runs MD6 nearly 30% faster than the 8800GT; it is unlikely that any existing
sequential algorithm would have demonstrated such a marked performance gain
over the same time period.



Chapter 5

Hardware Implementations

Cryptographic operations are often computationally intensive – MD6 is no ex-
ception. In our increasingly interconnected world, embedded platforms require
cryptographic authentication to establish trusted connections with users. How-
ever, the limited general-purpose compute that is typically present in such
systems may be incapable of satisfying the power-performance requirements
imposed on such systems. To alieviate these issues, dedicated hardware im-
plementations are deployed in these devices to meet performance requirements
while using a fraction of the power required by general-purpose compute. Recent
general-purpose processors [52] have included cryptographic accelerators, pre-
cisely because these common operations are compute-intensive. Therefore, any
standard cryptographic operation must be efficiently implementable in hard-
ware.

MD6 is highly parallelizable and exhibits strong data locality, enabling the
development of efficient, extremely low power hardware implementations.

Section 5.1 first discusses our general hardware implementation strategy,
paying particular attention to important hardware design tradeoffs.

We then present implementation results for a number of hardware designs
for FPGA in Section 5.2. For example, throughputs as high as 233 MB/s are
obtained on a common FPGA platform while consuming only 5 Watts of power.

Section 5.3 provides some discussion of ASIC implementations; this is fol-
lowed in Section 5.4 with a discussion of MD6 implementations on a custom
multi-core embedded system.

5.1 Hardware Implementation

Our hardware implementation matches the version of MD6 submitted for the
NIST contest. Therefore, some options and operational modes included in the
definition of the algorithm, but not included in the proposed standard, were
omitted to reduce the complexity of the hardware. We have obtained a func-
tional FPGA implementation of MD6 that achieves throughput on par with a

68
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modern quad-core general-purpose processor. We also give some intial metrics
for an ASIC implementation of MD6 in a 90nm technology. We use the same
RTL source to generate both FPGA and ASIC implementations.

All hardware source code is provided under the open source “MIT License”
and can be obtained from OpenCores1.

5.1.1 Compression Function

U V Key Q

From Memory 
Control

To Memory 
Control

Figure 5.1: Compression Function Hardware

The MD6 compression function is essentially a linear feedback shift register,
as depicted in Figure 5.1. To reduce the hardware overhead of the shift register,
we constrain shifts to have a constant length, the number of compression steps
performed per cycle. Since the shift length is constant, low-cost direct-wire
connections between logically adjacent registers can be made. The logic used
to compute the MD6 feedback function is similarly wired directly to the correct
points in the shift register. Input to and output from the shift register are
achieved by tying multiplexors to certain word registers. Some additional logic
is used for bookkeeping during operation, but this state logic has limited impact
on the operation of the compression function.

The compression occurs in four stages: initialization, data input, compres-
sion, and data output. In the initialization stage, the 25-word auxilliary input
block is loaded into the shift register. During data input, the data input values
are shifted into the shift register. During compression, the step function is ap-
plied to the shift register, until the compression operation is completed. During
data output, the hash result is streamed out.

The fundamental operation of compression is the application of the step
function , 16 of which comprise a round; in hardware, to achieve high through-
put, multiple steps and rounds may be composed within a single cycle. Since
the first feedback tap of the shift register is located at index 17, up to 16 steps

1http://www.opencores.org

http://www.opencores.org


CHAPTER 5. HARDWARE IMPLEMENTATIONS 70

may be carried out in parallel, without extending the circuit critical path. Of
course, multiple 16-step rounds may be further composed to obtain as much
parallelism as necessary; this lengthens the critical path, introducing a design
tradeoff between throughput and clock frequency.

Since the number of hash rounds is a dynamic parameter, some hash lengths
are not computable by some multiple-round per cycle implementations. For
example, a 3-round-in-parallel implementation cannot compute a 256 bit hash
(104, the number of rounds for this hash size, is not divisible by 3). Although
this implementation will compute the correct hash result for all round lengths,
the result will have a variable location in the shift register. To generalize such
an implementation, additional control and multiplexing logic would be required
to collect to the hash result.

5.1.2 Memory Control Logic

The hardware implementation can be viewed as a gang of compression func-
tion units orchestrated by a memory controller. The function of the memory
controller is simple: it maintains top-level status information and issues mem-
ory requests to and from a memory store, or, in the case of a streaming im-
plementation, I/O buffers. As in the case of software, there are two possible
implementations of the control logic, as discussed in Section 4.1.

The layer-by-layer approach uses the least amount of logic: fewer memory
pointers must be mantained, resulting in slightly less complicated control logic;
this implementation is also amenable to exteremly long burst transfers, which
may have a power-performance advantage in some systems. However, the layer-
by-layer approach requires the entire message to be present in the system at
the beginning of the run, requires large amounts of memory, and exhibits poor
temporal locality.

As was the case in software, the tree-building approach solves the problems
of the layer-by-layer approach at the cost of slightly increased logic area. Mor-
ever, the tree building approach introduces the possiblity of a layer cache. The
layer cache temporarily stores recently computed portions of the compression
tree, that will be used in the near future and some coherence status bits. As
compression nodes are computed, their results are stored in the layer cache.
Values in the layer cache are loaded as needed for computation. The highest
levels of the compression tree need not be stored in the cache – the performance
and power impact of caching these values is negligible.

Irrespective of architecture, the memory requests that the memory controller
issues take the form of long DMA bursts, which maximize memory bandwidth.
The MD6 compression function, by design, expects input data beginning with
the least significant word and ending with the most significant word. This word
ordering conforms to the burst word transfer order for all bus specifications
of which the authors are aware, and greatly simplifies the memory controller
implementation, since a re-order buffer is not required to handle burst transfers.

Two versions of the controller were implemented. One implementation is-
sues memory requests in-order. A second version of the controller adds a module
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that does coherence bookkeeping between loads and stores, allowing loads and
stores to proceed in dataflow rather than in the temporal ordering in which
they were issued. This ordering allows some memory requests to be overlapped
with computation, since future loads may be serviced before present computa-
tion has completed. Overlapped memory accesses provide a great opportunity
for system-level parallelism, but typically require extra hadware. In general,
load-store bypassing also require a large amount of logic to ensure correctness,
however, in the constrained case of MD6 it is fairly straightforward to track
inter-level dependencies with a handful of status bits. Our relaxed memory im-
plementation requires some extra buffering to achieve full memory utilization,
since requested transactions may not be immediately serviced.

5.2 FPGA

FPGAs are a reprogrammable, highly parallel substrate commonly used for
prototyping hardware. Structurally, the FPGA is comprised of a grid of ho-
mogenous logic slices surrounded by a configurable interconnect network. Slices
are comprised of a lookup table used to implement logic functionality and a
handful of registers used to store state. To first order, FPGA implementation
area can be estimated by the number of slices required to implement the de-
sign. FPGA synthesis tools seamless map Register-Transfer-Level, i.e. Verilog,
logic onto the FPGA substrate to obtain a cycle-accurate emulator of the RTL
design. FPGAs may additionally contain small SRAM and DSP blocks which
are used to reduce the overhead of implementing common but logically complex
structures like multipliers. FPGAs are fundamentally more constrained than ap-
plication specific integrated circuits (ASIC); as a result the silicon area required
for an FPGA implementation is larger and the maximum operational frequency
is lower than an implementation in a comparable ASIC process. Nonetheless
FPGAs serve as an useful platform for evaluating microarchitecture, and most
production RTL designs are at least partially verified on an FPGA platform.

Several implementations of MD6 were benchmarked using the Xilinx XUP
development platform, which features a Xilinx Virtex-II Pro V30 FPGA. The
test system consisted of the MD6 hardware, a PowerPC core (embedded in th
FPGA), and a DDR DRAM. The PowerPC served to orchestrate the other
hardware and to provide some debugging capacity. All hardware components
in the system were run at 100 MHz. All synthesis results were obtained using
Synopsis Synplify Pro for synthesis and the Xilinx PAR tool for backend place
and route.

The hardware was benchmarked by writing a memory array to the DRAM
memory, and then invoking a driver to begin the hardware hash. The result of
the hash was then verified against the reference software implementation. All
reported benchmark statistics are derived from hardware performance registers
embedded in the MD6 FPGA design. Although the harware was tested with
many bit lengths to ensure the correctness of the implementation, only whole
block results are reported here, since partial blocks effectively take the same
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Submodule Slice Usage Percent
Step Function 3249 43.1
Shift Register 3286 43.6
S Generation 206 2.7
Control Logic 788 10.5

Total 7529 100

Figure 5.2: Compression Function Area Breakdown, 32-Parallel

Parallel Steps Cycles per Compression Slice Usage freqMAX MHz
1 3778 151.9
2 4070 146.1
4 4233 144.8
8 556.1 4449 150.6
16 249.1 5313 150.3
32 165.7 7529 141.7

Figure 5.3: Compression Function Parallelism

amount of time to process as a full block.
Currently, we have only benchmarked the level-by-level implementation of

the MD6 hardware. In general, the performance on the FPGA was quite good,
with throughputs as high as 233 MB/s obtained for MD6-512, on par with a
quad-core CPU implementation. As shown in Figure 5.4, some inefficiencies ex-
ist in processing small messages. Most of these inefficiencies can be attributed to
the overhead of filling and draining the processing pipeline. For large messages
and low degrees of parallelism, the cycles per compression reaches its asymptote
at the point suggested by the level of parallelism in the compression function,
indicating that the compression function bottlenecks the system.

Figure 5.2 and Figure 5.3 relate some synthesis results. The shift register

Message Blocks Cycles per Compression
1 540.0
4 263.6
16 189.3
64 173.6
256 167.9
1024 166.3
2048 165.7

Figure 5.4: Cycles per Compression, MD6-512, 32-Parallel
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Hash Size PPC 405 32 Parallel IP Core (100Mhz)
(Bits) 32-bit Risc In-order Out-of-Order

64 93000 163.2 163.1
224 155000 178.1 163.1
256 167000 181.8 163.2
384 217000 196.7 165.2
512 256000 213.5 165.7

Figure 5.5: Cycles per Compression, various implementations

hardware takes a large portion of all the designs – its size is rougly 3200 slices
in all cases. The dominance of the shift register is not a surprise; MD6 requires
a long memory which helps provide increased security. As the step parallelism
increases, the size of the step function increases linearly with the number of steps
performed. The control logic and S generation logic make up a small portion of
the total area. In general, the size of the control logic scales linearly with the
number of parallel steps, since most of the control logic area is comprised of the
I/O muxes. These muxes get larger as more steps are performed in parallel.

Usually, increasing the size of a circuit reduces the maxmimum attainable
clock frequency. However, the maximum clock frequency increases with the
number of parallelel steps between 4 and 16 steps. This is likely due to the
simplification of the logic generating the S and constant propagation for the
left and right shift amounts, which repeat every 16 cycles. At 32 parallel steps,
a longer critical path is introduced by the second round circuitry, some of which
depends upon the result of the first round.

The maximum memory bandwidth of the system is approximately 427 MB/s,
simplex. Our non-overlapped controller architecture is unable to fully utilize the
available memory bandwidth, since it must sometimes stall waiting for compu-
tation to complete. Conversely, our out-of-order memory controller, coupled
with highly parallel (32 steps or more) compression functions fully utilizes all
available memory bandwidth. This can be seen in Figure 5.5, in which the cycles
per compression are nearly the same for MD6-512, MD6-256, and the shorter
bit lengths, even though the shorter bit lengths require far less computation
than MD6-512.

In our FPGA designs, increasing the number of parallel steps per cycle in an
individual compression unit was preferable to introducing a new compression
function unit, mostly due to the high overhead of the shift register. Indeed,
two compression functions could be implemented in the Virtex-II Pro 30 only
if the number of parallel steps in each compression function was constrained
to be less than 4. In the FPGA implementation a single compression function
with 32-step parallelism was able to fully saturate the memory bandwidth for
MD6-512, roughly 427 MB/s.

Our benchmark implementation of MD6 uses a single 100 MHz clock domain,
but higher MD6 performance could be obtained by using multiple clock domains.
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Algorithm Slice Usage freqMAX MHz Throughput(Mbps)
Whirlpool [78] 1456 131 382
Whirlpool [62] 4956 94.6 4790
Whirlpool [51] 3751 93 2380

SHA-1 [66] 2526 98 2526
SHA-2,256 [90] 2384 74 291
SHA-2,384 [90] 2384 74 350
SHA-2,512 [90] 2384 74 467
SHA-2,256 [28] 1373 133 1009
SHA-2,512 [28] 4107 46 1466

MD5 [45] 5732 84.1 652
MD6-512, 16-Parallel 5313 150.3 1232
MD6-512, 32-Parallel 7529 141.6 1894

Figure 5.6: Various Cryptographic Hash FPGA Implementations

The critical paths in the FPGA implementation run through the system bus and
DDR control, rather than through the MD6 hardware. By running the MD6
hardware in a faster clock domain, it is possible to saturate the DDR bandwidth
using less hardware.

The PowerPC processor on the Xilinx FPGA is a 32-bit, in-order, scalar
RISC pipeline with 8-KB of code and data cache, and can be clocked at 300
Mhz. For the sake of comparing the performance of embedded processors and
the MD6 hardware in a similar environment, we measure the performance of
the reference MD6 code on the PowerPC embedded in the FPGA. The software
implementation requires 256,000 cycles per MD6-512 compression, three orders
of magnitude more time than the hardware requires. We estimate that the
system implementation without hardware acceleration draws 4.6 Watts, while
the system implementation with hardware acceleration draws 5.2 Watts. From
a power perspective, this implies that the energy consumption of an embedded
processor running MD6 is much greater than that of the hardware accelerated
MD6, since the software implementation takes orders of magnitude longer to
complete. Power consumption was determined by tying an ammeter to the
system power supply and then testing various system configurations.

It is useful to compare MD6 to existing FPGA implementations of other
cryptographic hash functions. A number of implementations of Whirlpool,
MD5, SHA-1, and SHA-2 are presented in Figure 5.6, although this list is by
no means complete. In general, MD6 compares quite favorably with these im-
plementations, both in terms of throughput and area usage, particularly since
MD6 requires a longer memory and more computation rounds than any of these
hash algorithms.
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Parallel Steps Gate Count Synthesis Area (µm2)
1 65595 148946
2 69119 156948
4 74571 169329
8 77691 176414
16 87627 198975
32 114862 260819
48 144717 328610

Figure 5.7: Compression Function PAR Results

Compression Cores Parallel Steps Gate Count Synthesis Area (µm2)
1 16 105102 238655
2 16 194379 441376

Figure 5.8: Full Implementation PAR results

5.3 ASIC/Custom

Although we have not implemented MD6 in silicon, we have run a common
backend toolchain on our design to estimate the silicon implementation area of
MD6. Cadence RTL compiler was used for synthesis and Cadence Encounter
was used for place and route. We target a 200 MHz operating frequency using
the GPDSK 90nm library. Synthesis results are provided in terms of gate count
and implementation area.

Figure 5.3 contains the synthesis results for the compression function only.
As was the case with FPGA synthesis, the ASIC synthesis area is dominated by
the MD6 shift register. The marginal cost per parallel step initially decreases,
e.g. for 8 parallel steps each step costs 3924 µm2, but for 16 parallel steps the
cost is 3335 µm2 per step. As the number of parallel steps gets large (above
16 steps in parallel), the marginal cost per parallel step increases due to the
increased size of the gates needed to drive the longer critical path that arises
due to computing multiple rounds in parallel.

Figure 5.3 shows synthesis results for the compression function and memory
control logic. The system-specific glue logic, i.e. a bus adapter, necessary
to attach the ASIC core to the rest of the system is not inicluded; this glue
logic is minimal. Although the memory control logic is not seperable from
the compression function logic, the area required for the implementation of the
memory control logic is 39680 µm2. Most of the area in the control logic is due
to the small I/O buffers required to support overlapped burst transfers.
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5.4 Multi-core

To explore the parallelism of MD6 on multi-core chips, we implemented it on
the Tile64 Processor chip using the iLib API.

The Tile64 Processor began as an MIT project and is now a startup company,
Tilera Corporation2.

The Tile64 Processor chip has 64 32-bit, 3-way VLIW, general-purpose pro-
cessor cores with 5 MB of on-chip distributed cache. It boasts 32 Tbps of
on-chip interconnect bandwidth, 40 Gbps of I/O bandwidth and 200 Gbps of
main memory bandwidth.

The iLib API from Tilera is a library/run-time system that allows program-
mers to effectively utilize the resources of the Tile64 Processor architecture
from C programs. iLib’s interprocessor communication features include chan-
nels, message passing and shared memory.

We implemented MD6-512, keeping all variables at their default values ex-
cept for r which was set to 178 and L which was set to 31. The parallelism of
MD6 was explored at two levels: the compression function and the tree struc-
ture.

There was little parallelsim to be exploited in the compression function.
The steps within a round can be computed on different cores, but because
of the dependencies between two consecutive rounds a lot of data needs to
be communicated among cores. The computation involved in each step is not
intensive enough to mitigate the high communication cost. Hence, it was decided
to divide the steps within a round among two or four cores. The results are
presented in Figure 5.9.

Cycles Speedup

1 core sliding window 754,290 1.0
1 core circular buffer 2,551,111 0.3
2 cores with channels 464,161 1.6
4 cores with channels 358,302 2.1

Figure 5.9: Results for different implementations of the compression function.
Cycles represent the number of cycles utilized to compute one compression func-
tion. 1 core sliding window implementation is treated as the base case and
speedups are calculated relative to its cycle count.

The base case has the entire compression function implemented on one core
as a sliding window. We also provide the results for the circular buffer imple-
mentation of the compression function to compare against hardware implemen-
tations. As expected, there was a considerable slow down because of the pointer
manipulation involved. Both the 2-core and 4-core parallel implementations uti-
lize channels to communicate among processors because they provide the fastest

2http://www.tilera.com

http://www.tilera.com
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means of communication for our purposes. Both these implementations show
modest speedups.

The tree structure of MD6 presents many opportunites for parallelism. We
took two different approaches to exploit this parallelism.

Figure 5.10: 16-4-1 Sub-tree Structure.

In the first approach, we connected 21 cores in a 16-4-1 sub-tree structure
as shown in Figure 5.10. The cores were connected using channels. This struc-
ture computed three levels of the MD6 tree structure in one iteration. The
progression of the computation is shown in Figure 5.11.

In the second approach, we used 17 cores to form a work queue. One core was
connected to the remaining 16 cores using bidirectional channels and served as
the scheduler. The other 16 cores carried out all the computation. The structure
of the connections of cores is shown in Figure 5.12 and the progression of the
computation is shown in Figure 5.13.

The results are presented in Figure 5.14. We used two different input sizes:
512 KB and 32 MB. The speedups obtained from both the approaches clearly
demonstrate the potential that MD6 has for exploting parallelism, while the
subtree structure shows promise for larger input sizes.

5.5 Summary

It is clear from most of the previous software implementation discussion the MD6
has abundant parallelism – extremely high throughputs can be obtained using
either multi-core servers or speciality vector processors. Of course, most digital
systems do not have the monetary or power budget that these general- purpose
systems are permitted to have. In this section, we demonstrate that MD6 may
also be efficiently implemented in hardware, and that high throughput may still
be obtained even if the system is constrained by a tight area or power budget.
Indeed many features of MD6 – its simple, highly-parallel compression function,
its amenability to low-power, high-speed burst transfers, its easy computation
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Figure 5.11: Progression of computation for the sub-tree structure. Each gray
triangle represents a 16-4-1 sub-tree of the MD6 computation tree structure,
which is represented by the large triangle. The gray triangle at the bottom left
is computed first, followed by the gray triangle to its right, until the gray triangle
at end of the level is reached. The computation then proceeds on to the leftmost
gray triangle of the next higher level. This progression of the computation ends
at the gray triangle at the root of the MD6 tree.

partitioning – make it an excellent candidate for high-quality cryptographic
hashing in situations where power-performance is at a premium.
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Figure 5.12: Work Queue Model. The middle node represents the scheduler
core which assigns work to and collects results from the 16 peripheral cores,
represented by the 16 outer nodes. Each peripheral core is connected to the
schedular core through a bidirectional channel.

Figure 5.13: Progression of computation for the work queue model depicted by
the gray lines. The large triangle depicts the MD6 computation tree structure.
Computation starts at the left corner of the bottom gray line and proceeds along
the line to the right. When it reaches the end of the gray line, it moves to the
left corner of the next higher gray line. This progression of the computation
ends at the gray dot at the root of the MD6 tree.
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512KB 32MB
Processing Rate Speedup Processing Rate Speedup

Sequential 0.34 MB/sec 1.0 0.34 MB/sec 1.0
Sub-Tree 4.54 MB/sec 13.4 5.36 MB/sec 15.8
Work Queue 3.90 MB/sec 11.5 4.30 MB/sec 12.6

Figure 5.14: Results for different implementation of the tree structure. Two
different input sizes were used: 512KB and 32MB, and two differnt parallel
implementaions were explored: sub-tree and work queue. Sequential implemen-
tation is treated as the base case and speedups are calculated relative to its
processing rate.



Chapter 6

Compression Function
Security

This chapter analyzes the security of the MD6 compression function. Since
the compression function is the “heart” of a hash function, it is important
to investigate its security from all possible angles. This chapter does so for
the MD6 compression function, looking at theoretical foundations, statistical
attacks, algebraic attacks, SAT-solver attacks, reductions, etc. MD6 stands up
very well; we were not able to discern any significant weakness in the design of
the MD6 compression function.

Section 6.1 provides theoretical support for the architecture of the MD6
compression function, which can be viewed both as a blockcipher-based hash
function, or a permutation-based hash function. This section proves that the
MD6 compression function is indifferentiable from a random oracle—a major
confirmation of the soundness of the MD6 compression function design.

Section 6.2 discusses the choice of the constants in MD6, and their security
implications. The use of the programs tapopt.c and shiftopt.c to choose the
MD6 tap positions and shift amounts is explained. This section also reviews the
“avalanche properties” of MD6, and discusses how MD6 is designed in a way
that makes “trapdoors” extremely implausible.

Section 6.3 reviews evidence presented for the collision-resistance of the MD6
compression function.

Section 6.4 similarly reviews evidence for the preimage-resistance of the
MD6 compression function, while Section 6.5 presents evidence for the second
preimage-resistance of the MD6 compression function.

Section 6.6 discusses the pseudorandomness of the MD6 compression func-
tion. This includes results from a standard statistical test suite (testu01) as
well as results from another heuristic statistical test we designed for testing the
MD6 hash function.

Section 6.7 discusses evidence for the unpredictability of the MD6 compres-
sion function (thus making it useful for message authentication codes).

81
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Section 6.8 studies a compression function property called “key blinding”
that we use in our study of the MD6 mode of operation; this supports the use
of the key-blinding property in our analysis of the MD6 mode of operation.

Section 6.9 gives a major result, that the MD6 is not vulnerable to “stan-
dard” differential attacks. More precisely, it presents a lower bound on the work
needed by an adversary to find a collision in MD6 using a standard differen-
tial attack, and show that it is greater than the work required by a “birthday
attack”, for all digest sizes required by NIST for SHA-3.

Section 6.10 similarly presents a major result on the ability of MD6 to resist
linear cryptanalysis. Specifically, it shows that a cryptanalyst following NIST
key management guidelines (changing secret keys every two years) would not be
able to successfully mount a linear cryptanalytic attack against MD6 (used in
MAC mode), because the number of required input/output pairs (2210) is just
too large.

Section 6.11 gives some preliminary experimental and heuristic evidence that
MD6 is resistant to “algebraic” attacks. These include estimates of the degrees
of algebraic normal form polynomials representing the MD6 compression func-
tion output bits, as well as some experimental results kindly provided to us
by others on algebraic attacks, such as the Dinur/Shamir “cube” attack and
somewhat related attacks developed by Aumasson.

Section 6.12 discusses the applicability of SAT solver techniques, and shows
experimental evidence that generic SAT solver (minisat) attacks are ineffective
on MD6 beyond 11 rounds for finding collisions in MD6 or for inverting MD6.

Finally, Section 6.13 revisits and discusses the issue of the default number of
rounds in MD6. In brief, we note that we have seen no evidence of weakness in
MD6 for greater than 18 rounds, while MD6 as defined has 96–168 rounds for
the required NIST SHA-3 output sizes; MD6 has a very substantial “margin of
safety” built-in.

6.1 Theoretical foundations

This section studies the theoretical foundations of the MD6 compression func-
tion. It establishes that the overall structure of the MD6 compression function
is theoretically sound. That is, if the components of the MD6 compression
function are secure, then so is the compression function itself.

We first consider in Section 6.1.1 the perspective that the MD6 compression
function is created from an embedded blockcipher. However this approach is
unrealistic, as the “encryption key” is public.

Section 6.1.2 thus considers the perspective that the MD6 compression func-
tion is based upon a single fixed public random permutation π of Wn.

We show that fixing some portion of π’s input to a fixed value, and then
truncating the output, yields a compression function that is indifferentiable
from a random oracle. This implies that such a compression function will exhibit
the properties expected of a random oracle, such as collision-resistance, first-
preimage resistance, second-preimage-resistance, etc.
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6.1.1 Blockcipher-based Hash Functions

The blockcipher embedded within the MD6 compression function, which we
denote here as ES(N), is implemented by the inner-loop of the compression
function. Here N is an 89-word input, and S is the “encryption key” for the
encryption operation (it generates the round keys S0, S1, . . . ); see Figure 2.11.

For notational convenience, we define the “chop” function χβ : {0, 1}∗ →
{0, 1}β , which returns the last β bits of its input, for any β. Thus, the MD6
compression function f : Wn →Wc can then be defined by the equation

f(N) = χcw(ES(N))

for any N ∈Wn.
Blockcipher-based hash functions have been studied extensively recently [20,

19, 79]. In particular, Black et al. [20] prove a negative result: namely, that a
highly efficient blockcipher-based hash function cannot be provably collision-
resistant, in that a computationally unbounded adversary can find a collision
with a small number of queries to the underlying blockcipher (which is available
as an oracle to the adversary). Here “highly efficient” means that the blockcipher
is called at most once for each compression function call.

Even though MD6 can be viewed as using one block-cipher call per com-
pression function call, the Black et al. negative result does not apply to MD6,
because MD6’s input block size for the encryption algorithm is large enough to
include both the chaining variable and the message input block. This violates
the assumptions of their framework and renders their proof inapplicable.

On the positive side, we can show the following simple lemma about this
view of the MD6 compression function.

Lemma 1 If E is indistinguishable from an ideal block cipher, then

f(N) = χcw(ES(N)) (6.1)

is indistinguishable from a pseudorandom function.

Here the “encryption key” S is unknown to the adversary, so the encryp-
tion key S becomes in effect the PRF key. The security parameter here is c, the
length of the final result, not n, the length of the input N . (Here the assumption
that E is indistinguishable from an ideal block cipher implies that the length of
the key S is sufficiently large.) The proof of the lemma is straightforward, since
viewing S as a key makes ES a pseudorandom permutation, which is indistin-
guishable from a pseudorandom function (modulo the usual birthday bound),
and truncating a pseudorandom function leaves it pseudorandom. However, this
simple observation is only marginally relevant because in MD6 the “encryption
key” S is public.
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6.1.2 Permutation-based hash functions and
indifferentiability from random oracles

Instead of viewing the MD6 compression function as blockcipher-based, it is
more realistic to view it as permutation-based. Since the “encryption key” S is
fixed to a constant, the fixed encryption operation ES(·) can be modeled as a
single fixed public random permutation π(·). (See Figure 2.15.)

Since S is public, an adversary can compute both π and π−1 easily. So, we
need to consider an adversarial model where the adversary has these powers.

Note that in this model the adversary can both invert f and find collisions
for f easily, if we don’t do something additional. (This is because the adversary
can take the c-word output C, prepend n− c words of random junk, then apply
π−1 to get a valid pre-image for C. He can do this twice, with different junk
values, to get a collision.) However, MD6 does have an important additional
feature: a valid compression function input must begin with a fixed constant Q.
We now proceed to show that this yields a compression function that behaves
like a random oracle when π is a random permutation.

Recall that W = {0, 1}w denotes the set of all w-bit words, that f takes
n-word inputs, and that fQ(x) = f(Q||x) denotes the reduced compression
function that takes (n− q)-word inputs, prepends the fixed prefix Q, and runs
f . To make it explicit that in this section we are modeling f and fQ in terms
of a random permutation π on Wn, we will write

fπQ(x) = χcw(π(Q||x)) , (6.2)

where χcw(y) returns the last cw bits of y, and where x is in Wn−q.
Let the ideal functionality be represented by F : Wn−q → Wc, a random

oracle with same signature as fπQ. We want to show that fπQ is indistinguishable
from F even when the distinguisher has oracle access to π. This notion, known
as indifferentiability, is formalized as follows [59].

Definition 1 A Turing machine CG with oracle access to a function G is
indifferentiable from a function F if there exists a simulator S such that no
distinguisher D can distinguish (except with negligible probability) between the
following two scenarios:

(A) D has oracle access to C and G.

(B) D has oracle access to F and S.

In (B), the simulator program S may invoke F , but it does not know what
calls D has made to F . In terms of concrete security, we will say that CG

is (t, qF , qS , ε)-indifferentiable from F if any distinguisher D making at most
qF queries to C or F and qS queries to G or S has advantage at most ε in
distinguishing the above experiments. Further, the simulator S should run in
time at most t.

Indifferentiability is a powerful notion: Coron et al. [31] show that if fπQ is
indifferentiable from F , then F may be replaced by fπQ in any cryptographic
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applications, with only negligible loss of security (even against adversaries that
can invoke π or π−1).

Theorem 1 If π is a random permutation and Q is arbitrary, the reduced MD6
compression function fπQ defined by equation (6.2) is (t, qF , qS , ε)-indifferentiable
from a random oracle F , for any number of queries qF and qS, for distinguishing
advantage

ε =
(qS + qF )2

2nw
+

qS
2qw

+
qSqF

2(n−c)w (6.3)

and for the running time of the simulator t = O(qSnw).

Proof: We use the approach of Coron et al. [31], who showed that the in-
differentiability framework can be successfully applied to the analysis of hash
functions built from simpler primitives (such as block ciphers or compression
functions). We note that related results have been obtained by Bertoni et al. [14]
in their proof of indifferentiability of “sponge functions.”

In our case, because π is a permutation, the oracle G contains both π and
π−1, and we need to simulate them both. Slightly abusing notation, we will
write S for the simulator of π and S−1 for the simulator of π−1. Thus, we
need to construct simulator programs S and S−1 for π and π−1 such that no
distinguisher D can distinguish (except with negligible probability) between the
following two scenarios:

(A) The distinguisher has oracle access to fπQ, to π, and to π−1.

(B) The distinguisher has oracle access to F , S, and S−1.

We define the simulators S, S−1 for π, π−1 as follows:

1. S and S−1 always act consistently with each other and with previous
calls, if possible. If not possible (i.e., there are multiple answers for a
given question), they abort.

2. To evaluate S(X) where X = Q||x: compute y = F (x), then return R||y
where R is chosen randomly from in Wn−c.

3. To evaluate S(X) where X does not start with Q: return a value R chosen
randomly from Wn.

4. To evaluate S−1(Y ): return a random N in Wn which does not start with
Q (i.e., from Wn\(Q||Wn−q)).

The running time of the simulators is at most t = O(qSnw). Next, we
argue the indifferentiability of our construction. To this end, consider any
distinguisher D making at most qS to queries to S/π and S−1/π−1 and at
most qF queries to F/fπQ. To analyze the advantage of this distinguisher,
we consider several games G0, G1, . . . , G7. For each game Gi below, let pi =
Pr(D outputs 1 in Gi). Intuitively, G0 will be the “real” game, G7 will be the
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“ideal” game, and the intermediate game will slowly transform these games into
each other.

Game G0. This is the interaction of D with fπQ, π, π
−1.

Game G1. The game is identical to G0 except the permutation π is cho-
sen in a “lazy” manner. Namely, one can imagine a controller Cπ which keeps
the current table Tπ consisting of all currently defined values (X,Y ) such that
π(X) = Y . Initially, this table is empty. Then, whenever a value π(X) or
π−1(Y ) is needed, Cπ first checks in Tπ whether the corresponding value is
already defined. If yes, it supplies it consistently. Else, it chooses the corre-
sponding value at random subject to respecting the “permutation constraint”.
Namely, if Tπ = {(Xi, Yi)}, then π(X) is drawn uniformly from Wn\{Yi} and
π−1(Y ) is drawn uniformly from Wn\{Xi}. It is clear that G1 is simply a
syntactic rewriting of G0. Thus, p1 = p0.

Game G2. This game is identical to G1 except the controller Cπ does not
make an effort to respect the permutation constraint above. Instead, it simply
chooses undefined values π(X) and π−1(Y ) completely at random from Wn, but
explicitly aborts the game in case the permutation constraint is not satisfied.
It is clear that |p2 − p1| is at most the probability of such an abort, which, in
turn, is at most (qS + qF )2/2nw.

Game G3. This game is identical to G2 except the controller Cπ does
not choose the values starting with Q when answering the new inverse queries
π−1(Y ). Namely, instead of choosing such queries at random from Wn, it
chooses them at random from Wn\(Q||Wn−q). It is easy to see that |p3 − p2|
is at most the probability that Cπ would choose an inverse starting with Q in
the game G2, which is at most qS/2qw.

Game G4. This game is identical to G3 except we modify the controller
Cπ as follows. Recall, there are three possible ways in which Cπ would add an
extra entry to the table Tπ:

1. D makes a query π(X) to π, in which case a new value (X,Y ) might be
added (for random Y ). We call such additions forward.

2. D makes a query π−1(Y ) to π−1, in which case a new value (X,Y ) is added
(for random X not starting with Q). We call such additions backward.

3. D makes a query fπQ(x) = χcw(π(Q||x)), in which case Cπ needs to eval-
uate π(Q||x) and add a value (Q||x, Y ) (for random Y ). We call such
additions forced.

We start by making a syntactic change. When a forced addition (Q||x, Y )
to Tπ is made, Cπ will mark it by a special symbol, and will call this entry
marked. Cπ will keep it marked until D asks the usual forward query to π(Q||x),
in which case the entry will become unmarked, just like all the regular forward
and backward additions to Tπ. With this syntactic addition, we can now make
a key semantic change in the behavior of the controller Cπ.
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• In the game G3, when a backward query π−1(Y ) is made, Cπ used to scan
the entire table Tπ to see is an entry of the form (X,Y ) is present. In the
new game G4, Cπ will only scan the unmarked entries in Tπ, completely
ignoring the (currently) marked entries.

We can see that the only way the distinguisher D will notice the difference
between G3 and G4 is if D can produce a backward query π−1(Y ) such that the
current table Tπ contains a marked entry of the form (Q||x, Y ). Let us call this
event E, and let us upper-bound the probability of E. For each forced addition
(Q||x, Y ), the value Y is chosen at random from Wn, and the distinguisher D
only learns the “chopped” value y = χcw(Y ). In other words, D does not see
(n− c)w completely random bits of Y . Thus, for any particular forced addition,
the probability that D ever “guesses” these missing bits is 2−(n−c)w. Since D
gets at most qS attempts, and there are at most qF forced values to guess, we
get that Pr(E) ≤ qSqF /2(n−c)w. Thus, |p4 − p3| ≤ qSqF

2(n−c)w .

Game G5. We introduce a new controller CF , which is simply imitating
a random function F : Wn−q → W c. Namely, CF keeps a table TF , initially
empty. When a query x is made, CF checks if there is an entry (x, y) in TF .
If so, it outputs y. Else, it picks y at random from Wc, adds (x, y) to TF and
outputs y. Now, we modify the behaviors of the controller Cπ for π/π−1 from
the game G4 as follows. In the Game G4, when a new forward query (Q||x) was
made to π, or a new query x was made to fπQ, Cπ chose a random Y from Wn

and set π(Q||x) = Y . In the new game, in either one of these cases, Cπ will
send a query x to the controller CF , gets the answer y, and then set Y = R||y,
where R is chosen at random from Wn−c.

We notice that the game G5 is simply a syntactic rewriting of the game G4,
since choosing a random value in Wn is equivalent to concatenating two random
values in Wn−c and Wc. Thus, p5 = p4.

Game G6. Before describing this game, we make the following observations
about the game G5. First, we claim that all the entries of the form (Q||x, Y )
in Tπ, whether marked or unmarked, have come from the explicit interaction
with the controller CF . Indeed, because in game G3 we restricted Cπ to never
answer a backward query so that the answer starts with Q, all such entries in T
have come either from a forward query π(Q||x), or the fπQ-query fπQ(x). In either
case, in game G5 the controller Cπ “consulted” CF before making the answer. In
fact, we can say more about the fπQ-query fπQ(x). The answer to this query was
simply the value y which CF returned to Cπ on input x. Moreover, because of
the rules introduced in game G4, Cπ immediately marked the entry (Q||x,R||y)
which it added to Tπ, and completely ignored this entry when answering the
future backward queries to π−1 (until a query π(Q||x) to π was made).

Thus, we will make the following change in the new game G6. When D asks
a new query fπQ(x), the value x no longer goes to Cπ (who would then attempt
to define π(Q||x) by talking to CF ). Instead, this query goes directly to CF ,
and D is given the answer y. In particular, Cπ will no longer need to mark any
of the entries in Tπ, since all the fπQ queries are now handled directly by CF .
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More precisely, Cπ will only “directly” define the forward queries π(X) and the
backward queries π−1(Y ) (in the same way it did in Game G5), but no longer
need to worry about defining π(Q||x) due to D’s call to fπQ(x).

We claim that the new Game G6 is, once again, only a syntactic rewriting
of the Game G5. Indeed, the only change between the two Games is that,
in Game G5, Tπ will contain some marked entries (Q||x,R||y), which will be
anyway ignored in answering all the inverse queries, while in Game G6 such
entries will be simply absent. There is only one very minor subtlety. In Game
G5, if D first asks fπQ(x), and later asks π(Q||x), the latter answer R||y will
already be stored in Tπ at the time of the first question fπQ(x). However, it will
be marked and ignored until the second question π(Q||x) is made. In contrast,
in Game G6 this answer will only be stored in Tπ after the second question.
However, since in both cases Cπ would answer by choosing a random R and
concatenating it with CF ’s answer y to x, this minor difference results in the
same view for D. To sum up, p6 = p5.

Game G7. This is our “target” game where D interacts with S/S−1 and a
true random oracle F . We claim this interaction is identical to the one in Game
G6. Indeed, CF is simply a “lazy” evaluation of the random oracle F . Also,
after all our changes, the controller Cπ in Game G6 is precisely equivalent to
our simulators S and S−1. Thus, p7 = p6.

Collecting all the pieces together, we get that the advantage of D in distin-
guishing Game G0 and Game G7 is at most the claimed value

ε ≤ (qS + qF )2

2nw
+

qS
2qw

+
qSqF

2(n−c)w

(In practice, there are other inputs to consider, such as the key input K,
the unique ID U , and the control word V . The above proof applies as given,
assuming that these inputs are available for the distinguisher to control. This
is the correct assumption to make from the viewpoint of the MD6 mode of
operation or the viewpoint of other applications using the MD6 compression
function.)

Corollary 1 (Preimage Resistance)
It is infeasible for an adversary, given access to a random permutation π, its

inverse π−1 and a random c-word value C, to find any n-word input N = Q||x
on such that f(N) = C, where f(N) = χcw(π(N)).

Corollary 2 (Collision Resistance) It is infeasible for an adversary, given ac-
cess to a random permutation π and its inverse π−1, to find two distinct n-word
inputs N and N ′ such that f(N) = f(N ′), where f(N) = χcw(π(N)).

The term “infeasible” in Corollary 1 means complexity 2−cw, and in Corol-
lary 2 means complexity 2−cw/2.
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6.1.3 Can MD6 generate any even permutation?

We conjecture that the structure of the MD6 compression function is sufficiently
“expressive” and “robust” that it can express any even permutation of Wn.

Coppersmith and Grossman [30] give related results about block ciphers
similar to the Data Encryption Standard. It follows from their results that
MD6 can only generate even permutations, since its basic operations can all be
formulated as a combination of simpler operations that update a single word of
the shift-register state by xoring it with a function of (less than all of) the other
words.

Conjecture 1 Let π be an arbitrary even permutation of Wn. Then there
exists a number r of rounds, a sequence S0, S1, S2, . . . , Src−1 of words, and two
sequences ro, r1, . . . , rrc−1 and `o, `1, . . . , `rc−1 of shift amounts such that the
MD6 compression function—not including the final truncation— implements π.

Note that in the above conjecture the constants Si and the shift amounts ri
and `i may change arbitrarily every step.

Because all of the MD6 operations are even permutations of Wn, the group
they generate is at most the alternating group rather than the symmetric group.
(The alternating group is half the size of the symmetric group, and contains all
the even permutations.)

If this conjecture can be proved, it provides evidence that the MD6 compres-
sion function is not handicapped by being only able to generate a proper subset
of the set of all even permutations of Wn. (If the conjecture is false, however,
there may well be no negative implications for the security of MD6, due to the
presence of the truncation operation.)

We note (without proof) that the indifferentiability proof of the previous
section can be easily modified to handle the requirement that π is restricted to
be an arbitrary even permutation, rather than an arbitrary permutation.

We have performed some experiments on reduced-round and reduced-wordsize
variants of MD6 to verify this conjecture for those cases. In particular, we have
verified that the basic MD6 operations generate the entire alternating group on
Wn when n = 6 and w = 2. These (rather nontrivial) experiments used the
Bratus-Pak method [21]. They provide, we believe, strong support for the above
conjecture.

6.1.4 Keyed permutation-based hash functions

The results of the preceeding section are for the“unkeyed” case, where π and
π−1 are public.

MD6 does have an (optional) key, but it is provided through the input. That
is, there is a key input K (of length k words) that is also part of the n-word
input. Rather than viewing S as the “key” as in Lemma 1—which wasn’t very
satisfactory because S is public—we now turn to the way MD6 really keys its
compression function: by including K as part of the input.
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If fQ is indifferentiable from a random oracle, as proven in Theorem 1,
then using a portion of its bits for a secret key clearly gives something like
a “keyed random oracle”—a family of functions, each indifferentiable from a
random oracle, with one such function for each key. In other words, the MD6
compression function is then a pseudorandom function with seed K.

6.1.5 m-bit to n-bit truncation

The NIST requirements state (where n denotes the size of the message digest
output) in Section 4.A.iii:

Any m-bit hash function specified by taking a fixed subset of the
candidate function’s output bits is expected to meet the above re-
quirements with m replacing n. (Note that an attacker can choose
the m-bit subset specifically to allow a limited number of precom-
puted message digests to collide, but once the subset has been cho-
sen, finding additional violations of the above properties is expected
to be as hard as described above.)

To respond to this requirement, we note that:

• MD6 was designed to follow the principle of “output symmetry” (see Sec-
tion 3.11): each output bit is intended to be equivalent to any other output
bit in terms of its effect on security.

• The indifferentiability proof given above suggests that MD6 should not
suffer in any surprising ways if its output is truncated, since the security
of a random oracle does not suffer in any surprising way if its output is
truncated.

• MD6 follows the “wide-pipe” strategy suggested by Lucks [54, 55], wherein
the internal chaining variables have at least twice as many bits as the
final output hash value. The 1024-bit output at the root of the MD6
computation tree is truncated to d bits to obtain the final MD6 output.
MD6 was designed to be “truncation friendly.”

However, we note that the truncation approach suggested in the NIST pro-
posal is at variance with the MD6 design philosophy, since to change the output
digest size for MD6, one also changes the input to every compression function
call, in order to avoid the situation where a d-bit hash output and a d′-bit hash
output are obviously related to each other in a trivial way.

6.2 Choice of compression function constants

6.2.1 Constant Q

The constant Q is chosen rather arbitrarily as the binary representation of the
fractional part of

√
6. (Why 6? Because it is MD6!)
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Other values for Q could have been chosen, even 0. Our proofs do not depend
on Q having any particular value; merely that it is fixed.

However, it was felt that a “complex” value such as
√

6−2 might have some
advantages over an all-zero value; having many 1-bits in Q would force some
AND gates to have non-zero inputs early on. Some of the algebraic attacks do
seem to suggest that fewer rounds are needed for security if Q is chosen to be
non-zero in a “random-looking” way as MD6 does.

6.2.2 Tap positions

The tap positions were computed by a program, tapopt.c, which is included
with our MD6 submission to NIST.

The program takes as input the desired values for n and c, and produces as
output “optimal” values for the tap positions t0, t1, t2, t3, t4, and t5, subject
to the constraints that

•
c < t0 < t1 < t2 < t3 < t4 < t5 = n

• The tap positions must all be nonzero modulo c.

• The tap positions must not be equal to each other modulo c.

• The tap positions, other than t5 must be relatively prime to n. (This is a
trivial condition if n is prime.)

• The difference t4 − t3 must not be equal to the difference t2 − t1.

The search for an optimal set of tap positions is brute-force; every seqeuence
of possible tap positions satisfying the above constraints is considered.

For a given set of tap positions, the computation of the compression function
is simulated, and for each value A[i] computed, it is recorded which of the input
words A[0..n − 1 it “formally depends upon.” A word A[i] formally depends
upon input A[j] if i = j or if i > n and at least one of the words A[i− t0], A[i−
t1], A[i− t2], A[t3], A[t4], or A[i− t5] formally depends upon A[j].

We can say a word A[i] is “complete” if it formally depends upon all input
words A[0] . . . A[n− 1].

The “measure” of a set of taps is i − (n − 1) + c, where i is the largest i
such that A[i] is not complete. This value is the least number of steps needed
to ensure that all c outputs are formally dependent on all n inputs (and that
running more steps won’t change this fact).

The optimization for n = 89, c = 16 takes just a few minutes on a laptop.
As discussed and illustrated in Chapter 9, the program tapopt.c can be

used to find optimal tap positions for other choices of n and c.
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6.2.3 Shift amounts and properties of g

Once the tap positions were determined, the shift amounts were determined by
a second program, shiftopt.c.

Because none of the shift amounts are zero, the function g is one-to-one (i.e.,
invertible). Thus, an input change always causes an output change.

Also, as noted in Section 3.9.3, a one-bit change to the input of g will cause
from two to four bits of the output of g to change.

Furthermore, the shift amounts were chosen so that in order to get a one-bit
output change, at least five bits of input must be changed.

These properties were used in our proof in Section 6.9 of the resistance of
MD6 to differential attacks.

6.2.4 Avalanche properties

The tap positions and the shift amounts were both selected by programs “tapopt”
and “shiftopt” in a heuristic but deterministic way that attempts to optimize
the influence of each input bit on each output bit in a minimum number of
steps.

The tap positions were chosen as described in Section 3.9.1. This “optimiza-
tion” only paid attention to word-level dependencies, and ignored bit-position
(intraword) effects. It was found that after 102 steps (i.e. just over six rounds)
each word computed depends, in a formal sense, on each input word.

After the tap positions were chosen, the shift amounts were chosen deter-
ministically from a large pseudorandom sample of shift tables to heuristically
optimize the rate of diffusion at the bit-level. The program “shiftopt” ex-
plicitly considers the constant and linear terms of the algebraic normal form
representing each output bit as a function of the input bits, and measures how
close each such polynomial is to having approximately half of the maximum
number of possible linear terms present. After a total 11 rounds, the selected
shift amounts heuristically optimized this measure; the output bits appeared
“random” based on this metric.

These optimization methods support the hypothesis that the MD6 compres-
sion function begins to look “fairly random” after only 11 rounds.

Once the tap positions and shift amounts were selected, other tests, de-
scribed in the following sections, help to assess the cryptographic strength of
the resulting compression function.

6.2.5 Absence of trapdoors

MD6 was designed to be demonstrably free of trapdoors.
The architecture of MD6 is remarkably simple; such simplicity makes the

insertion of trapdoors infeasible.
Moreover, the various constants of MD6, such as Q =

√
6 − 2, the tap

positions, and the shift amounts, are all computed deterministically by programs
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that are available for inspection. The computations and optimizations they
implement are directed towards maximizing the cryptographic strength of MD6.

Thus, while there is of course no guarantee that MD6 is free from crypto-
graphic weakness, it is arguably free of maliciously inserted trapdoors.

6.3 Collision resistance

This section studies the security of the MD6 compression function against
collision-finding attacks. Since a “birthday attack” requires effort only O(2d/2)
to find a collision for a hash function with d-bit outputs, the goal here is to find
evidence supporting the hypothesis that no attack on MD6 is more efficient, i.e.,
that MD6 is collision-resistant.

The theoretical foundations for the MD6 compression function presented
in Section 6.1 support this hypothesis that MD6 is collision-resistant, since a
birthday attack is the most efficient collision-finding attack on a random oracle,
and MD6 is indifferentiable from a random oracle (under the assumptions of
Section 6.1.2).

There could nonetheless be efficient collision-finding attacks against MD6 —
perhaps the underlying assumptions are flawed somehow? It is thus worthwhile
to consider known specific collision-finding attacks, to see how well they might
work. Studies like this also shed light on the question of the number of rounds
needed in MD6.

The two most powerful attacks we know of for finding collisions in a com-
pression function are SAT-solver attacks, and differential attacks. Section 6.12
presents our results on SAT solver attacks; Section 6.9 presents a major result:
that MD6 is resistant to collision-finding based on standard differential attacks.

As we shall see, neither SAT solver attacks nor standard differential attacks
are able to find collisions better than the traditional “birthday attacks,” once
the number of rounds is sufficiently large.

6.4 Preimage Resistance

A good hash function will be preimage-resistant: an adversary will need effort
roughly 2d to find any preimage of a d-bit hash.

Again, the theoretical foundations for the MD6 compression function pre-
sented in Section 6.1 support the hypothesis that MD6 is preimage-resistant,
since a brute-force attack is the most efficient inversion attack on a random or-
acle, and MD6 is indifferentiable from a random oracle (under the assumptions
of Section 6.1.2).

Nonetheless, it is worthwhile studying specific attacks that might defeat the
preimage-resistance of MD6. Section 6.12 presents our results on SAT solver
attacks. Again, such studies can also help guide the choice of the appropriate
number of rounds in MD6.
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6.5 Second Preimage Resistance

A good hash function will also be second preimage-resistant: an adversary will
need effort O(2d) to find any preimage of a d-bit hash that is different than an
initially given first preimage.

Again, the theoretical foundations for the MD6 compression function pre-
sented in Section 6.1 support the hypothesis that MD6 is second preimage-
resistant, since a brute-force attack is the most efficient pre-image attack on a
random oracle, and MD6 is indifferentiable from a random oracle (under the
assumptions of Section 6.1.2).

Of course, a hash function that is not preimage-resistant is also not second
preimage resistant. But a hash function may be preimage-resistant but not
second preimage resistant.

We do not know of any attacks on the second preimage resistance of MD6
that are not just attacks on its preimage resistance.

In particular, it is not clear how one might adapt a SAT-solver attack on
the preimage resistance of MD6 to become an attack on the second preimage-
resistance of MD6. Our efforts to devise such an adaptation were unsuccessful.

6.6 Pseudorandomness (PRF)

A good (keyed) hash function will appear to be a pseudorandom function (fam-
ily). For each key, the hash function will appear to be an independent random
function.

The theoretical foundations for the MD6 compression function presented
in Section 6.1 support the hypothesis that MD6 is a pseudorandom function
family, since that section argues for the hypothesis that the MD6 compression
function is indistinguishable from a random oracle, (under the assumptions given
in Section 6.1.2), and if you declare part of the input of a random oracle to be
“key” and the remainder to be “input” (as MD6 does), you end up with a
pseudorandom function family.

Conversely, any adversary that could distinguish MD6 (as keyed) from a
pseudorandom function family could be correctly interpreted as an adversary
for distinguishing the MD6 compression function fQ from a random oracle.

We know of no effective attacks for distinguishing (keyed) MD6 compression
function from a pseudorandom function family with the same key, input, and
output sizes.

The following subsections discuss our attempts to distinguish MD6 from a
pseudorandom function family by various statistical tests.

6.6.1 Standard statistical tests

A good hash function will pass any standard statistical tests for randomness,
such as the NIST Statistical Test Suite. This section reports our efforts to distin-
guish the MD6 compression function from a random oracle using two statistical
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test suites: the NIST Statistical Test Suite, and TestU01.
Both of these statistical test suites are designed to test pseudorandom num-

ber generators. We created a pseudorandom number generator from MD6 by
running MD6 in counter mode. Let hr,d denote the MD6 hash function pa-
rameterized with with digest size d and r rounds. hr,d(m) is the d-bit output
of the parameterized MD6 function on input m. Given a 64-bit seed s, our
PRNG generates the sequence hr,d(s)||hr,d(s + 1)||.... We report the results of
the chosen statistical tests for d = 512, s = 0 and various choices of r.

These statistical tests fail to detect any nonrandomness in MD6 when MD6
has 11 or more rounds.

6.6.1.1 NIST Statistical Test Suite

The NIST Statistical Test Suite is available from http://csrc.nist.gov/groups/
ST/toolkit/rng/index.html. The test suite contains implementations of 15
different randomness tests.

We ran the NIST statistical tests on MD6 for all r ∈ [0, 35]. For each r, we
generated 1000 sequences of 1 million bits. Every test from the NIST Test Suite
was run against every bit sequence, generating a list of p-values for every test. To
determine if a test was successful at distinguishing MD6 from a random number
generator, we tested the output p-values for uniformity using a Kolmogorov-
Smirnov test. We also compared the actual number of statistically-significant
p-values to the expected number. Running the NIST suite for all r ∈ [0, 35]
took approximately 10 days.

To our surprise, a few of the NIST tests found MD6 non-random beyond
25 rounds. We believe, however, that these tests are incorrectly implemented.
We tested this hypothesis by running the NIST tests on SHA-1 (with the full
number of rounds), and found that several of the NIST tests also deem SHA-1
non-random.

The following table lists the maximum number of rounds of MD6 that each
NIST test is able to distinguish from a random oracle. We have included the
results of the tests we believe to be correctly implemented, i.e. the tests passed
by SHA-1.

SHA-1 failed the FFT, OverlappingTemplate, RandomExcursionsVariant
and Serial tests, and we have omitted the results for MD6 on these tests. We
replicated these four tests with the TestU01 suite, however, and found MD6
passes these tests for r ≥ 9. The following section describes our experiments
with TestU01 in more detail.

6.6.1.2 TestU01

We also ran MD6 through the TestU01 suite of tests for random number gen-
erators. TestU01 was developed by Pierre L’Ecuyer and Richard Simard and is
available from http://www.iro.umontreal.ca/~simardr/testu01/tu01.html.
Further details on TestU01 are available in [53].

http://csrc.nist.gov/groups/ST/toolkit/rng/index.html
http://csrc.nist.gov/groups/ST/toolkit/rng/index.html
http://www.iro.umontreal.ca/~simardr/testu01/tu01.html
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Test Name r0

Runs 8
Frequency 8
Maurer’s Universal Statistic 7
Rank 7
Longest Run 7
Block Frequency 8
Approximate Entropy 8
Non-overlapping Template 8
Linear Complexity 4
Cumulative Sums 9
Random Excursions 6

Table 6.1: Table showing the maximum number r0 of rounds of MD6 each of
the NIST tests can distinguish from random.

TestU01 contains a wide variety of statistical tests organized into several
test batteries. We selected three of the provided batteries, SmallCrush, Crush
and BigCrush, to test MD6. We also created a test battery to mimic the failing
NIST tests by following recommendations in the TestU01 documentation. We
ran these tests on MD6 for 0 < r ≤ 20, to determine how many rounds of MD6
these tests can distinguish from random.

The SmallCrush test battery runs in a few minutes, and all of the tests
in the SmallCrush test battery pass for r ≥ 9. The Crush battery requires
approximately 8 hours per round tested. All of the tests in the Crush test battery
pass for r ≥ 11. The only test that fails for r = 10 is the LongestHeadRun test.
The BigCrush test takes approximately 4 days to run, so we only ran it for
r = 10 and r = 11. MD6 passes the BigCrush battery for both r = 10 and
r = 11.

Our NIST test battery contains the following three tests:

• sspectral Fourier1,

• smultin MultinomialBitsOver, and

• swalk RandomWalk1 .

These tests are similar to the four NIST tests SHA-1 failed. We ran the
test smultin MultinomialBitsOver and the test swalk RandomWalk1 on 1000
1000000-bit strings, that is, under the same conditions as the NIST tests. MD6
passes these tests for r ≥ 9. We ran the TestU01 sspectral Fourier1 test on
46 1000000-bit strings, as the test is only valid for a small number of input
bit strings. Under these conditions, MD6 passes the sspectral Fourier1 test for
r ≥ 9. All three of these tests run in a few hours.

Our experiments with both the NIST test suite and TestU01 show that the
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standard statistical tests for pseudorandom number generators cannot distin-
guish MD6 from a random oracle when MD6 has 11 or more rounds.

6.6.2 Other statistical tests

This section reports our efforts to distinguish the MD6 compression function
from a random oracle using other statistical tests we have devised or adapted
from the literature.

We created several influence tests to measure correlations between input and
output bit positions. Given an input bit position b and an output bit position
c, our tests measure pbc, the probability that flipping bit b causes bit c to flip.
For a random oracle, we expect pbc = 1

2 for any choice of b and c.
Our tests measure pbc by using the following procedure:

1. Choose an input bit position b, an output bit position c, a number of
rounds r, and a number of trials n.

2. Use RC4 to generate n random 89-word inputs x1, x2, ..., xn to the MD6
compression function f .

3. For each input xi, generate a corresponding input x′i by flipping the bth
bit of xi.

4. Compare the outputs of the r-round compression function fr(x′i) and
fr(xi). Compute the output difference o = fr(x′i)⊕ fr(xi).

5. Count cbc, the number of times o has a 1 in output position c. Compute
pbc = cbc

n .

For a given input bit b, our influence test simultaneously computes pbc for
all output bits c. To test if MD6 behaves significantly differently from a ran-
dom oracle, we compared the distribution of the measured pbc values with the
expected distribution from a random oracle. In a random oracle, the pbc values
are drawn from a binomial distribution with p = 1

2 and n trials. For large n, this
distribution is essentially normal with mean 1

2 and standard deviation 1
2
√
n

. We
used an Anderson-Darling test and a chi-square test to measure the probability
of our pbc values being drawn from this theoretical distribution.

Table 6.2 reports the results of running the above test on input bit 3648 with
1000000 trials. We chose this bit because it is one of the worst-case inputs; it is
the first bit of the 57th input word, which is the last word to be incorporated
into the hash function computation. Therefore, we expect the influence of bits
in the 57th word to be more detectable than the influence of bits in any other
word.

An Anderson-Darling A∗2 score above 1.035 is significant at the P = 0.01
level. Our χ2 test results in a Z-score, for which a score above 2.57 is significant
at the P = 0.01 level. These results show that the basic influence test cannot
differentiate between MD6 and a random oracle beyond 10 rounds. Running
this test required only a few minutes.
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r Mean Standard Deviation Anderson-Darling A∗2 χ2 Z-Score
1 0.00000 0.000000 DNE 22627394.37055
2 0.00098 0.022112 DNE 22583200.31969
3 0.00880 0.070245 DNE 22284642.00478
4 0.04094 0.120308 269.07229 20383323.51708
5 0.10784 0.165396 124.15361 16395698.58622
6 0.19551 0.187628 42.07427 11577960.41165
7 0.32541 0.179635 29.50064 5679459.06660
8 0.43923 0.110198 123.03832 1433321.38957
9 0.49252 0.028513 262.46513 78630.41306
10 0.49984 0.001440 138.43952 167.39026
11 0.50001 0.000515 0.29285 1.43492
12 0.50002 0.000495 0.84664 -0.40540
13 0.50001 0.000506 0.47437 0.59054
14 0.50000 0.000509 0.30570 0.79043
15 0.50001 0.000494 0.25221 -0.54828
16 0.49998 0.000488 0.31075 -1.01786
17 0.49998 0.000503 0.63886 0.33177
18 0.49998 0.000507 0.51248 0.64595
19 0.50001 0.000497 0.22655 -0.29475

Table 6.2: Table of test statistics for the influence test on reduced-round MD6
compression functions. A∗2 > 1.035 or χ2 > 2.57 are significant at the P = 0.01
level.

We ran another influence test called the dibit influence test. This test is
similar to the previous influence test, except it operates on pairs of adjacent bits,
called dibits. A dibit can take on 4 values: 00, 01, 10, 11. The intuition behind
this test is that adjacent bits tend to stay together through the MD6 compression
function, so adjacent input bits may have undue influence on adjacent output
bits.

For this test, we treated the input to the compression function as an array of
89 words of 32 dibits. We followed the same procedure as the previous influence
test, except we created 3 inputs from each random input xi (since there are
3 possible ways an input can differ in one dibit position). In the final step,
we counted each of the 4 possible output difference patterns independently,
resulting in 4 output counts, c00, c01, c10 and c11. For large n, the c values of
a random oracle are normally distributed with mean n

4 and standard deviation√
3

16n . We again used an Anderson-Darling test and a χ2 test to compare the
measured c values to the expected distribution.

Table 6.3 reports the results of the first dibit of the 57th word, for the same
reason for using the first bit of the 57th word in the standard influence tests.
The following table shows the most and least significant dibit pairs for each of
the included rounds.
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An Anderson-Darling A∗2 score above 1.035 is significant at the P = 0.01
level. Our χ2 test results in a Z-score, for which a score above 2.57 is significant
at the P = 0.01 level. Our results show that the dibit influence test cannot dif-
ferentiate between MD6 and a random oracle beyond approximately 10 rounds.
Although there are some statistically significant results for beyond 10 rounds,
around 2.4 statistically significant scores are expected since there are a total of
240 measurements for each statistic. Running this test took only a few minutes.

Our work with the influence test and its variants shows that these tests
cannot distinguish MD6 from a random oracle beyond 10 rounds.

6.7 Unpredictability (MAC)

A good (keyed) hash function will also be unpredictable, and thus be usable as
a MAC. Unpredictability is implied by pseudorandomness, but is potentially a
weaker condition.

We have argued above for the pseudorandomness of the MD6 compression
function. We do not have further evidence specific to unpredictability.

6.8 Key-Blinding

In Section 7.6, we set out to prove that the overall MD6 hash function has
the property of unpredictability, assuming that the compression function used
also has this property. Unfortunately, we were not able to provide such a proof
with only that base assumption; however, if we make an additional non-trivial
assumption about the compression function we are able to prove the unpre-
dictability of MD6.

The idea for the following is that the flag bit z which indicates that the
compression function application is the final one in the computation of MD6
should “blind” the key values. That is, if we are given oracle access to two
functions defined as follows

f0
Q(·) = fQ(z = 0,K = κ0, ·)
f1
Q(·) = fQ(z = 1,K = κ1, ·)

then we should not be able to guess whether κ0 and κ1 are equivalent or not
with any significant advantage. The intuition behind this assumption is that we
need fQ to behave in a “pseudorandom” fashion, but only on the z bit of the
input.

Definition 2 (Key-Blinding Assumption) Let D be a distinguisher given
oracle access to two functions f0

Q and f1
Q that map Wk ×Wn−q−k−1 → Wc.

We define its advantage as follows.

Advblind
D,fQ

(t, q) =

∣∣∣∣∣ Pr

[
κ0

$←Wk;κ1
$←Wk; b $← {0, 1};

a← DfQ(z=0,κ0,·),fQ(z=1,κb,·)
: a = b

]
− 1

2

∣∣∣∣∣
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r in out mean std dev Anderson-Darling A∗2 χ2 Z-Score
1 1 0 1.00000 0.000000 DNE 47999984.0000
1 1 1 0.00000 0.000000 DNE 5333317.33333
2 2 0 0.99804 0.031241 197.39955 47833178.56519
2 3 1 0.00097 0.015569 DNE 5312484.05495
3 2 0 0.98387 0.096617 181.11400 46754145.47520
3 3 2 0.01050 0.064672 DNE 5251459.45638
4 1 0 0.92969 0.161478 113.54763 41647769.59913
4 3 2 0.04078 0.095791 112.42278 4518137.30509
5 2 0 0.82394 0.233163 48.31323 32748717.20545
5 3 2 0.09269 0.111891 46.85176 3179889.04078
6 2 0 0.69010 0.263053 13.72142 22432777.23596
6 3 2 0.14815 0.104830 26.92808 1822935.90528
7 2 0 0.49774 0.251650 17.06451 10641313.29884
7 3 2 0.20608 0.078529 46.12267 690808.84310
8 2 0 0.33130 0.149265 69.57594 2465222.03179
8 3 2 0.24315 0.030481 109.51572 83269.25936
9 2 0 0.25928 0.036741 DNE 122520.00014
9 3 2 0.24997 0.003609 DNE 1095.64469
10 2 0 0.25020 0.001607 DNE 207.90828
10 3 1 0.24998 0.000435 0.65544 0.21589
11 1 2 0.25001 0.000431 0.33894 -0.13039
11 3 1 0.25001 0.000450 0.20539 1.30168
12 1 3 0.25003 0.000457 0.29739 1.91450
12 2 1 0.24998 0.000433 1.01729 0.01331
12 2 2 0.25002 0.000428 1.06135 -0.33905
13 2 0 0.24998 0.000455 0.76901 1.66687
13 2 1 0.25003 0.000434 0.42587 0.18333
14 2 0 0.25000 0.000470 0.58531 2.88009
14 3 1 0.25000 0.000433 0.22131 0.03616
15 1 3 0.25002 0.000401 0.17983 -2.26640
15 2 0 0.24999 0.000434 0.19632 0.07774
16 3 1 0.24999 0.000435 0.18534 0.19229
16 3 3 0.25002 0.000408 0.39370 -1.73557
17 1 2 0.24997 0.000431 0.25114 -0.09631
17 2 2 0.24997 0.000424 1.03184 -0.63054
17 3 0 0.25001 0.000462 0.13665 2.20993
18 2 3 0.24999 0.000434 0.29173 0.08666
18 3 3 0.25004 0.000460 0.26491 2.21393
19 2 1 0.25001 0.000396 0.65036 -2.60010
19 2 3 0.25001 0.000433 0.39709 0.00462

Table 6.3: Table summarizing test results of the dibit influence test on reduced-
round MD6 compression functions. For each number of rounds, the table shows
the most and least significant input and output dibit values. A∗2 > 1.035 or
χ2 > 2.57 are significant at the P = 0.01 level.
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The goal of D is to try to determine the value of b, i.e. whether f0
Q and f1

Q use
the same key or not. We can define the overall insecurity of the key-blinding
property of fQ to be

InSecblind
fQ

(t, q) = max
D

{
Advblind

D,fQ
(t, q)

}
,

where D is given resource constraints of (t, q).

Given our work above supporting the proposition that MD6 is a pseudoran-
dom function, the restriction of this proposition to the weaker proposition that
MD6 satisfies the key-blinding assumption appears quite reasonable.

6.9 Differential cryptanalysis

Differential cryptanalysis was pioneered by Biham and Shamir [15] in the early
90s, and it was the first type of sophisicated analytical attacks on block ciphers
including the Data Encryption Standard. Subsequently, Preneel et al. [81] pro-
posed the differential cryptanalysis of hash functions based on block ciphers.

Differential attacks have in fact been surprisingly successful and effective
against a number of hash functions. MD4, RIPEMD, and 3-pass HAVAL [94,
98], MD5 [96], SHA-0 [27, 16, 17, 97] and SHA-1 [17, 95] have all fallen. Professor
Xiaoyun Wang has led these attacks.

In this section, we analyze the security of MD6 with respect to differential
cryptanalysis. As in most security analysis, our goal is two-fold—we hope to
provide both “attacks (upper bounds)” and “lower bounds”. Our major result
is a lower bound showing that there is no standard differential attack against
MD6 that is more effective than a naive “birthday” attack.

The rest of the section is organized as follows. In Section 6.9.1, we describe
some useful definitions in differential cryptanalysis. In Section 6.9.2 we ana-
lyze differential properties of the MD6 step function by analyzing individual
operations. Throughout our discussions, we will pay special attention to defi-
nitions and properties that are important in the later lower bound analysis. In
Section 6.9.3, we prove a lower bound on the workload of any differential-style
collision attacks. Finally, in Section 6.9.4, we present some preliminary results
related to upper bound analysis.

6.9.1 Basic definitions and assumptions

Differential cryptanalysis of block ciphers falls into the category of chosen plain-
text attacks. The basic idea is that two plaintexts with a carefully chosen dif-
ference can encipher to two ciphertexts such that their difference has a specific
value with non-negligible probability, and by taking sufficiently many plain-
text/ciphertext pairs and analyzing their differences, certain bits of the secret
key may be revealed.

In the context of a (keyless) hash function, the goal of differential cryptanal-
ysis is to find message pairs with an appropriately chosen difference such that
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the pair of hash function outputs would have no difference—meaning a collision.
If the probabilty for such collisions is non-negligible, then by hashing enough
input messages, a collision of the hash function can be found.

The first step of differential cryptanalysis is to define a proper measure of
differences relating the computations, and the choice of differences may vary,
depending on the mathematical operations involved in the hash function or
block cipher. The most commonly used measure of difference is exclusive-or.
Let A and A′ be a pair of values. Their difference is defined to be ∆A = A⊕A′.
So an exclusive difference identifies individual bit positions for which the pair
of values differ.

A differential path for a given hash function is the set of differences between
the pair of inputs, all corresponding intermediate states, and the final hash
outputs. Since MD6’s state variables form a simple sequence, the differential
path for the MD6 compression function can be expressed concisely as

{∆Ai} for i = 0, ...t+ n− 1.

A differential path with the property that ∆Ai = 0 for i = t+n− c, ..., t+n−1
is called a collision differential path for the compression function.

The most important property of a differential path is its associated probability.
The probability of the differential path in step i, denoted by pi, is defined to
be the probability that the pair of outputs (from step i) follows the differential
path given that the pair of inputs (to step i) satisfy the difference specified by
the differential path. So we can express pi as

pi = prob[∆Ai|∆Ai−tj , j = 0, 1, ..., 5].

The input difference {∆Ai−tj , j = 0, 1, ..., 5} and the output difference ∆Ai,
together with its associated probability pi, are often referred to as a differential
characteristic of step i. The total probability p of the entire differential path is
the product of probability pis from individual steps, assuming that computations
in individual steps are independent.

While the definition seems fairly straightfoward, we need to pay special at-
tention to a few issues and implicit assumptions in the analysis of differential
paths and their probabilities.

First, in most existing work on differential cryptanalysis of hash functions
and block ciphers, it is commonly assumed that, after a certain number of
rounds, the output from each step appears random and the computations in
different steps are independent of each other. Such randomness and indepen-
dence assumptions are made in terms of statistical properties of the underlying
function, and they are generally necessary to carry out the probability analysis.
(The same assumptions are needed for linear cryptanalysis as well.)

More specifically, in our differential cryptanalysis of MD6, the probability pi
is computed by assuming that the pair of inputs to step i are chosen at random
with the only constraint that they satisfy the given difference. In addition, it
is assumed that computations in different steps are independent, and so the
probability pis can be multiplied when computing the total probability p.
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We remark that, for MD6, the above assumptions are well supported by our
statistical analysis results. Recall that in Section 6.6, we show that MD6 passes
a variety of statistical tests after 10 rounds.

Next, the workload of a differential collision attack (using a given differential
path) is computed as the inverse of some probability p′, which can generally be
much larger than p for two reasons. First, by choosing appropriate inputs to
the hash function, we can force pi = 1 for a number of steps at the beginning
of the computation (message modification). Second, for given input difference
and output difference, there can potentially be multiple differential paths (with
different intermediate differences ∆Ai) that satisfy the input and output con-
straints. The overall probability would then be the sum of the probabilities for
these individual paths.

Lastly, we introduce the notion of differential path weight pattern. Let
{∆Ai} be a differential path of MD6. The corresponding differential path weight
pattern is the sequence {Di}, where

Di = |∆Ai|

is the Hamming weight of ∆Ai. That is, Di is the number of bits that differ
between Ai and A′i.

Differential path weight pattern turns out to be a useful notion in the security
analysis of MD6. As we will see, it allows us to separate the effect of tap positions
and shift amounts with respect to differential cryptanalysis. Roughly speaking,
the tap positions help to propagate the differences forward from one step to
the next, while the shift amounts help to spread the differences within a word.
Since the sequence {Di} mainly reflects how the differences propagate forward,
it facilitates us to study the effect of the tap positions without paying too much
attention to how the bit differences line up within a word. This also greatly
simplifies our analysis.

6.9.2 Analyzing the step function

The MD6 step function consists of three operations: XOR, AND, and the g
operator. We will analyze differential properties of each operation in terms
of how a difference and its Hamming weight propagates from the input to the
ouput. Then, we will study differential properties of the step function and derive
some inequalities that will be useful in the later lower bound proof.

For ease of discussion, we first introduce some notations. For each operation
to be studied, we use uppercase letters X,Y, Z to denote the w-bit inputs and
output. We use ∆X,∆Y,∆Z to denote the differences and DX , DY , DZ to
denote the Hamming weight of these differences. We use lowercase letters x, y, z
to denote a single bit in the w-bit words.

6.9.2.1 XOR gate

Differential properties of XOR is straightforward. In particular, the equation
∆Z = ∆X ⊕∆Y holds with probability one. In terms of the Hamming weight
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of the difference, we have

max(DX , DY )−min(DX , DY ) ≤ DZ ≤ DX +DY .

6.9.2.2 AND gate

We can view the AND operation between two w-bit words as a layer of w
independent AND gates, with each AND gate taking two input bits x and y
and producing one output bit z. The differential behavior of the AND gate
depends on its input differences ∆x and ∆y. We consider the following two
cases.

• If ∆x = ∆y = 0, then Pr[∆z = 0] = 1. We will call this AND gate
“inactive”.

• If ∆x = 1 or ∆y = 1, then Pr[∆z = 0] = Pr[∆z = 1] = 1/2. We will call
this AND gate “active”. 1

In terms of the Hamming weight of the difference, we have

0 ≤ DZ ≤ DX +DY .

The notion of active AND gates plays an important role in the later lower
bound proof. In particular, an active AND gate always contributes a probability
of 1/2 to the overall probability of the differential path, no matter what the
output difference of the AND gate is. Since the AND operation is the only non-
trivial operation in terms of differential probabilities2, the total number of active
AND gates in the differential path is closely related to the total probability of
the path.

In a way, the role of AND gates in MD6 resembles that of S-boxes in AES.
The main distinction is that an AND gate operates at the bit level in MD6 while
an S-box operates at the byte level in AES.

6.9.2.3 g operator

The gr,` operator provides intra-word diffusion by mixing up data within a word.
Let Z = gr,`(X). We know that ∆Z = gr,`(∆X) holds with probability one.

It is easy to derive an upper bound on DZ . Since the combination of one
shift and XOR can at most double the number of differences, we have

DZ ≤ 4DX . (6.4)

Lower bound analysis on DZ is more interesting, and it relates to the design
choices for the shift amounts. More specifically, each pair of shift amounts (r, `)
in MD6 were chosen in such a way that

DX ≤ 4 would imply DZ ≥ 2. (6.5)
1We assume that the inputs (x, y) and (x′, y′) are chosen at random with the constraint

that they follow the required difference.
2That is, probabilities associated with the input and output differences are not always zero

or one.
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In other words, in order for the output to have only a single bit difference,
the minimum Hamming weight of the input difference is at least 5. The main
purpose of such a design choice is to prevent an adversary from constructing
differential paths of MD6 with very low Hamming weight in every step. For
example, given Inequality 6.5, it would be impossible to construct a sparse
differential path in which Di = |∆Ai| is at most one for all i.

For DX > 4, we do not have any non-trivial lower bounds on DZ other
than it has to be positive, since non-zero input difference would imply non-zero
output difference. So DX > 4 would imply that DZ ≥ 1.

In a way, the role of the g operator in MD6 is similar to that of the MDS
matrix in AES. It effectively imposes a non-trivial lower bounds on the Ham-
ming weight sum of the input and output difference. The main distinction is g
operates at the bit level while the MDS operates at the byte level.

6.9.2.4 Combining individual operations

We have studied differential properties of the three operations in the MD6 step
function, and the results are summarized in Figure (6.1) and Figure (6.2).

operation output difference ∆Z probability
Z = X ⊕ Y ∆Z = ∆X ⊕∆Y 1

if ∆x = ∆y = 0, then ∆z = 0 1
z = x ∧ y if ∆x = 1 or ∆y = 1,

then ∆z = 0 or 1 1/2
Z = g(X) ∆Z = g(∆X) 1

Figure 6.1: Differential characteristics for ⊕, ∧, and g. Note that for ∧, the
result is for an AND gate at the bit level.

operation upper bound lower bound
Z = X ⊕ Y DZ ≤ DX +DY DZ ≥ max(DX , DY )−min(DX , DY )
Z = X ∧ Y DZ ≤ DX +DY DZ ≥ 0
Z = g(X) DZ ≤ 4DX DZ ≥ 2, if 0 < DX ≤ 4

DZ ≥ 1, if DX > 4

Figure 6.2: Hamming weight of differential characteristics for ⊕, ∧, and g.

In what follows, we analyze how the input/output differences for individual
operations within a step can be joined together to form a differential character-
istics for the step with non-zero probability. We pay special attention to how
the Hamming weight of the differences propagate from input to output.
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First, we decompose the step function into two sub-steps:

X = Ai−t0 ⊕Ai−t5 ⊕ (Ai−t1 ∧Ai−t2)⊕ (Ai−t3 ∧Ai−t4),
Ai = g(X).

Using the inequalities in Figure (6.2), we can derive upper and lower bounds
on DX = |∆X|, in terms of the Hamming weight of the six input differences in
step i. We obtain the following two inequalities.

DX ≤ UBX =
5∑
k=0

Di−tk , (6.6)

DX ≥ LBX = max(Di−t0 , Di−t5)−min(Di−t0 , Di−t5)−
4∑
k=1

Di−tk .(6.7)

The above two inequalities together define a range for DX . Given DX , the
Hamming weight of the output differences Di = |∆Ai| follows the constraints
given in Figure (6.2).

We remark that by focusing on the Hamming weight rather the actual value
of the differences, we avoid the potential complication of analyzing how individ-
ual bit differences can line up properly from one operation to another. We lose
some accuracy in the analysis since we can only obtain a range of possible values
for the Hamming weight. Nevertheless, we will see that the approach not only
simplies the analysis but also greatly reduces the complexity of searching for
valid differential path weight patterns, thereby making a computer-aided search
possible.

6.9.3 Lower bound proof

6.9.3.1 Goal and approach

The goal of our analysis is to prove a lower bound on the workload of any collision
search attack that utilizes standard differential techniques. More concretely, we
aim to prove that the probability associated with any valid collision differential
path of the MD6 compression function is at most 2−d/2, where d is the length
of the hash output in bits. This would imply that the workload of a differential
attack is at least 2d/2, which is the theoretical bound from the birthday paradox.

Before we present all the technical details of our lower bound proof, we
provide an outline on how we tackle the above problem by reducing it to rela-
tively easier problems that can be solved by a combination of theoretical and
computer-aided analysis.

First, based on the discussion in Section 6.9.2.2, we know that each active
AND gate in a differential path contributes a probability of 1/2. Hence, if we
could show that the total number of active AND gates in any valid differential
path of MD6 is at least d/2, then it would imply that the probability associated
with the path is at most 2−d/2.
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Second, we analyze the relationship between the number of active AND
gates and differential path weight patterns. This reduces the problem of count-
ing active AND gates to the problem of finding valid differential path weight
patterns.

Lastly, we use computer-aided method to search for valid differential path
weight patterns up to s rounds (for small s) and then extend the results to the
full r rounds of MD6. Putting in concrete terms, if we use AAGs to denote
the minimum number of active AND gates in s consecutive rounds in any valid
differential path weight pattern of MD6, then we have

AAGr ≥ AAGs × br/sc. (6.8)

For example, for output size d = 512, the total number of rounds r = 168.
If we could show that AAG10 ≥ 16, then we would be able to prove that
AAG168 ≥ 16× b168/10c = 256.

The rest of the section is devoted to the lower bound proof that we just
outlined. We will also discuss some potential routes to improve the analysis and
compare the analysis with that of the AES.

6.9.3.2 Counting the number of active AND gates

Suppose we are given a differential path weight pattern for up to s rounds.
In this section we show how to count the number of active AND gates in the
pattern. We say that a bit difference ∆Au,j (bit j of ∆Au) activates an AND
gate in step i if Au is one of the four inputs of the two AND operations in step
i. It is not difficult to see that i − u must be equal to t1, t2, t3 or t4. Hence, a
bit difference can activate up to four AND gates in four distinct steps.

In most cases, a bit difference can indeed activate four AND gates. However,
we need to be careful with the following special cases when counting the total
number of active AND gates within an s-round segment.

Case 1: Two bit differences activate the same AND gate.
If two bit differences ∆Au,j and ∆Av,j are exactly 3 steps apart (u−v = 3),

then the AND gate A[u] ∧ A[v] in step u + t1 can only be activate once, not
twice. Similar situation also happens if the two differences are 36 steps apart.

Case 2: Two AND gates get activated in the same step.
Let α, β be the jth output bit of the first and second AND operation, re-

spectively. Once the input and output differences of step i are fixed, there is
only one possible value for

T = ∆α⊕∆β,

since both the XOR operation and the g operator are linear. However, if both
AND gates are active at bit j, there will be two possible values for (∆α,∆β),
namely (0, T ) and (1, T ⊕ 1), and each holds with probability 1/4. Hence, the
two active AND gates together contribute a probability of 1/2, as opposed to
1/4. Effectively, they should be counted as a single active AND gate in our
differential analysis.
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Case 3: an AND gate goes across the round boundary.
To avoid potential over counting, we only count active AND gates which

have both of its inputs in the boundary of the s-round segment in which the
search is carried out.

6.9.3.3 Searching for differential path weight patterns

In this section, we describe how to search for valid differential path weight
patterns of MD6 up to s rounds. Since each Di can potentially take any value
from 0 to w, exhaustive search is infeasible even for very small s. Instead, we
proceed with a more intelligent search by eliminating as many invalid patterns
as possible.

Let D0, D1, ...Di−1 be a differential path weight pattern up to i − 1 steps.
Let us focus on step i and consider the last operation Z = g(X). We know
that DX lies in the range [LBX , UBX ]. For each possible Di = DZ ∈ [0, w], we
can eliminate many impossible values by checking against several conditions on
Di, UBX , and LBX . In particular, the following values of Di are invalid:

1. Di = 0 and LBX > 0.
(Output difference can’t be zero if input difference to g is non-zero.)

2. Di > 0 and Di > 4UBX .
(See Inequality (6.4).)

3. Di = 1 and UBX < 5.
(See Inequality (6.5).)

We next outline an algorithmic procedure to search for valid differential
path weight patterns and count the number of active AND gates for a segment
of s rounds of the MD6 computation. The procedure, called SearchDiff(), is
described in Figure (6.3).

At a high level, the search is carried out in a depth-first manner with nodes
at level i of the search tree representing possible values of Di. For each node, the
total number of AND gates up to this point is computed. If the number is larger
than the preset threshold, all search branches below the node are terminated.

We remark that it is possible that a small number of invalid Di may pass
through during the search, but it will not affect our lower bound analysis in the
sense that we might prove a lower bound that is smaller than the actual value
for AAGs.

6.9.3.4 Deriving lower bounds through computer-aided search

We implemented the algorithmic procedure given in Figure (6.3). The search
program runs for increasing number of rounds s. For each s, the threshold on
the maximum number of active AND gates in the segment, maxAAG, is incre-
mented until a valid differential weight pattern is found, and the stopping value
for maxAAG then yields on lower bound on AAGs. The complete experimental
results are given in Figure (6.4).



CHAPTER 6. COMPRESSION FUNCTION SECURITY 109

SearchDiff(i, s,maxAAG)

1. Check whether the search reaches the end of the s-round segment. If
not, proceed to the next step. Otherwise, output the differential path
weight pattern and the number of active AND gates. Stop.

2. Compute upper bound UBX and lower bound LBX for DX in step i.

3. For Di = 0, 1, ...w − 1

(a) Check whether Di is an invalid value given (LBX , UBX). If so,
proceed to the next Di.

(b) Compute the number of new active AND gates given Di.

(c) Compute sumAAG, the total number of active AND gates up
to step i. If sumAAG > maxAAG, proceed to the next Di.

(d) SearchDiff(i+ 1, s,maxAAG).

Figure 6.3: Algorithmic procedure to search for valid linear paths.

s ≤ 5 6 7 8 9 10 11 12 13 14 15
LB on AAGs 0 3 4 4 4 4 7 13 19 20 26

Figure 6.4: Lower bounds on the number of active AND gates in a differential
path up to s rounds. The results were obtained through computer search.

Here we elaborate a little on the output result from our search program.
Let i.d denote that Di = d. For s = 15, our program produces the following
differential path weight pattern:

54.1 71.2 143.2 232.2 .

The total Hamming weight of the pattern is 1 + 2 + 2 + 2 = 7, and the total
number of active AND gates is 7 × 4 − 2 = 26. Note that the “−2” in the
calculation is due to the fact that i = 232 is less than t4 − t3 = 36 steps from
the right boundary 240, which is one of the special cases (Case 3) for counting
the number of active AND gates.

Finally, we are ready to derive a lower bound on the workload of any
differential-style collision search attack on MD6. As we discussed early, the
workload is at least 2AAGr , where AAGr is the minimum number of active
AND gates in any r-round differential path of MD6.

It is tempting to immediately combine Inequality (6.8) with our experimental
results in Figure (6.4). However, we still need to consider the important issue of
security margins3. It is possible for an attacker to penetrate a few rounds at the

3 Roughly, a security margin is the number of rounds that can be removed from the
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beginning of the hash computation by manipulating the inputs and influencing
the behavior of the differential path. To be conservative, we eliminate 15 rounds
from the specified total number of rounds r when calculating the lower bounds
on the number of AND gates.

Using Inequality (6.8), we have

AAGr−15 ≥ AAG15 × b
r − 15

15
c. (6.9)

Figure (6.5) gives the lower bounds (LB = 2AAGr−15) on the workload of
any differential style collision attack for various output sizes d. The comparison
with the birthday bound (BB = 2d/2) is also given.

d r r − 15 b r−15
15 c AAGr−15 ≥ LB ≥ BB

40 50 35 2 52 252 220

80 60 45 3 78 278 240

128 72 57 3 78 278 264

160 80 65 4 104 2104 280

224 96 81 5 130 2130 2112

256 104 89 5 150 2150 2128

384 136 121 8 208 2208 2192

512 168 153 10 260 2260 2256

Figure 6.5: Lower bounds on the workload of differential collision attacks. The
result for d = 256 was computed as AAG89 ≥ AAG15× 5 +AAG14 = 26× 15 +
20 = 150. All other results were obtained using Inequality (6.9). We see that
differential attacks are less efficient than a simple birthday attack.

We have thus obtained the desired result:
The workload for a standard differential attack against MD6 is provably

larger than the workload for a simple “birthday attack,” for all NIST specified
output sizes.

In fact, we have a stronger result—the workload for a standard differential
attack against MD6 is provably larger than the workload for a simple “birthday
attack,” for all output sizes 1 ≤ d ≤ 512.

A standard differential attack will not be effective against MD6—there are
no differential paths with sufficiently high probability to make such an attack
more efficient than a simple birthday bound attack looking for collisions.

We consider this a very significant result, since in large part it has been
the success of differential attacks against hash functions that motivated NIST
to organize the SHA-3 hash function competition. The fact that MD6 is not
vulnerable to standard differential attacks is very appealing.

cipher or hash function without compromising the desired security level. Security margins are
commonly studied in block cipher design and analysis. For example, all AES candidates have
clearly stated security margins.
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Of course, there may be nonstandard differential attacks (e.g. that used
various forms of generalized differentials, as in [25]) that fall outside the scope
of our proof. Further research is needed to explore and exclude such possibilities;
our proof is merely a first step in such analysis.

On the other hand, there is probably a significant amount of “slack” in our
result, and thus the bound could be made tighter and/or extended to more
general attacks. It is quite possible that the actual lower bound on the number
of active AND gates can be much larger. Here we list some of the reasons:

• Some of the differential path weight patterns may not correspond to any
valid differential path of MD6.

• The s-round differential path weight pattern that our program found is
not iterative, and so it cannot be concatenated to yield a pattern for r
rounds.

• We did not count the AND gates across the boundary of two consecutive
rounds.

If we can address some of the above problems, then we can further improve
our lower bound analysis. It would also be interesting to explore how these
bounds might be affected by other choices for the tap positions.

6.9.3.5 Related work

The use of computer-aided search in our lower bound proof was motivated by
the work of Julta and Patthak. In [48], they showed how to derive lower bounds
on collision probabilities of SHA-1 using computer-aided proof.

Here we briefly describe the key idea in their proof. In SHA-1, the input
message, represented by a 16-by-32 0-1 matrix, is expanded to an 80-by-32
matrix W . Based on earlier differential cryptanalysis of SHA (e.g. [27]), each set
bit in W contributes a probability q (q averaging 2−2.5) to the overall probability
of the differential collision path. Hence, a lower bound on the number of 1’s in W
will yield an upper bound on the collision probability. The proof in [48] proceeds
by first identifying possible configurations of W and then using computer-aided
search to find lower bounds on the number of 1’s for some of the configurations.

The high-level reasoning in our lower bound proof is in a way similar to that
of the AES [33]. Roughly, the proof arguments for AES being secure against
standard differential attacks are as follows:

• Each active S-box in AES has a differential probability of at most 2−5.

• In four consecutive rounds of AES, there are at least 25 active S-boxes if
the plaintext difference is non-zero4.

• So the probability of any four-round differential path is at most 2−150.
4This is due to the following differential property of the MDS matrix: the sum of the

number of non-zero input bytes and non-zero output bytes is at least 5.
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As we noted earlier, active AND gates in MD6 correspond to active S-boxes
in AES. In addition, the effect of the g operator in MD6 is similar to that of
the MDS matrix in AES. Therefore it is not a coincidence that the proofs of
security bear some similarities.

6.9.4 Preliminary results related to upper bounds

Our research on finding a lower bound on the complexity of standard differential
attacks worked by exploring the various possibilities an adversary might try to
actually find a standard differential attack. However, it organized this explo-
ration by looking at differential path weight patterns rather than differential
paths, and derived a lower bound by looking at 15-round segments rather than
a complete MD6 computation.

An interesting question is whether we can derive any differential attack with
a complexity that is anywhere near our lower bound. So far we have been
unsuccessful.

To begin with, one would need to find a differential weight pattern that
spanned an entire MD6 computation. Following common approaches in differ-
ential cryptanalysis of block ciphers, we try to find iterative differential path
weight patterns for MD6, since an iterative pattern allows one to construct a
differential path weight pattern for as many rounds as possible.

By modifying our search program for the lower bound proof, we are able to
find some interesting iterative differential path weight patterns for MD6. One
of the iterative differential path weight pattern for 5 rotation is described below.

0.2 89.2 106.2 123.2 140.2
156.2 157.2 178.2 212.2 229.2
267.2 284.2 301.2 356.2 373.2
445.2 534.2 551.2 ...

In the above iterative differential weight pattern, the pattern starts to repeat
at step 445, since 534 − 445 = 89 − 2 = 89. The total number of differences
is 30 in the segment of 445 steps, and the number of active AND gates is
30× 4− 2 = 118.

It is worth comparing this upper bound result with our lower bound re-
sult in terms of avgAAG, the average number of active AND gates per round.
First, since 118/(445/16) ≈ 4.24, the iterative pattern for 445 steps implies that
avgAAG ≤ 4.24. Next, our earlier lower bound on AAG15 (see Figure (6.4))
implies that avgAAG ≥ 26/15 ≈ 1.73. So there is a gap between the upper and
lower bound. The gap, although small per round, is actually quite significantly
when it is amplified to the full rounds of MD6.

Can we build a differential path from the differential path weight pattern?
To do so, we would need to analyze how to set the bit positions of a difference
(given the Hamming weight of the difference) so that they can line up correctly
within a given step and from one step to another. For now, actually constructing
an effective differential path for more than a few rounds is more than we know
how to do.
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6.10 Linear cryptanalysis

Linear cryptanalysis, pioneered by Matsui [58], is a type of attack on block
ciphers that in many ways resembles differential cryptanalysis. Indeed, the
duality between the two has facilitated simultaneous security analysis of a block
cipher against differential and linear cryptanalysis. One excellent example is
the analysis of Rijndael by its designers [33, Section 6.3].

In this section, we analyze the strength of keyed MD6 against linear crypt-
analysis. Although the structure of MD6 does not allows straightforward paral-
lel analysis with respect to the two types of attacks, the general approach and
methodology is very similar. Our main result is a lower bound proof showing
that any standard linear cryptanalytical attacks on keyed MD6 requires at least
2210 hash input/output pairs associated with the unknown key. Hence, a key-
usage policy that requires the key change after every 2210 messages would defeat
such attacks.

The rest of the section is organized as follows. In Section 6.10.1, we consider
some significant differences between keyed and keyless hash functions in terms
of security requirements for their applications. In Section 6.10.2, we review
basic definitions and analysis tools in linear cryptanalysis. In Section 6.10.3
we study linear properties of the MD6 step function by analyzing individual
operations. In Section 6.10.4, we prove a lower bound on the data requirement
of any standard linear attacks on the keyed MD6 compression function.

6.10.1 Keyed vs. keyless hash functions

Before presenting the technical details of our work on linear cryptanalysis of
MD6, we feel that it is necessary to elaborate on the differences between a keyed
and a keyless hash function in terms of security parameters and requirements
for their applications in practice.

In ordinary usage, a hash function is keyless, and the relevant parameters
controlling its security are its output digest length and perhaps also its inter-
nal number of rounds. It is significant to observe that in the application of
a unkeyed hash function, an adversary’s attack can be “off-line”, requiring no
cooperation of the hash function user. For example, a differential attack can be
mounted against an unkeyed hash function without any such cooperation of the
hash function user; the adversary can simply generate any desired number of
input/output pairs by himself. Indeed, this was the case for all collision attacks
on existing hash functions in the literature.

The situation is significantly different for a keyed cryptographic hash func-
tion, since the adversary can no longer obtain input/output pairs for the keyed
function without the cooperation (willing, or perhaps unwilling somehow) of the
hash function user who possesses the key. The adversary does not have the key,
and so must rely on input/output pairs generated by the user. This introduces
an additional security parameter, or control, over the ability of the adversary
to mount his attack: this is the number λ of input/output pairs that the user
is willing to let the adversary obtain for a particular key.
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In most practical applications of keyed hash functions, the goal of the ad-
versary is typically to either recover the key or forge valid input/output pairs
without knowing the key given the available number of input/output pairs. This
is because once the user has hashed λ messages using a particular key K, that
key may be retired, and replaced in usage by a new key K ′.

A key-usage policy controlled by such a parameter λ represents a meaningful,
and significant security control available for keyed hash functions. There is an
implicit key-usage control of 2128 for AES, since the number of distinct inputs
is at most 2128, even though the number of keys can be significantly larger (up
to 2256). More explicitly, NIST gives recommendations [71, Section 5.3.6.3(b),
see also Table 1] for cryptoperiods for a MAC key or other symmetric keys (in
terms of creating MAC’ed input/output pairs) of two years.

Presumably it is administratively easier to administer a key usage policy
in terms of time periods rather than in terms of number of messages MAC’ed
or encrypted. However, one trillion computers each producing a MAC’ed in-
put/output pair every femtosecond for two years would produce “only” 2115.6

input/output pairs. We see that MD6 is well within the security guidelines
recommended by NIST.

In sum, while we are interested in any form of attacks from a theoretical
viewpoint, it is reasonable to judge attacks on keyed hash functions based on
their ability to utilize (or not) a given number λ of hash function input/output
pairs, for a given digest size d and number of rounds r. We will elaborate on how
this security parameter is treated in our analysis of the keyed MD6 compression
function in the rest of the section.

6.10.2 Basic definitions and analysis tools

In linear cryptanalysis of a block cipher, we aim to find effective linear expres-
sions connecting some bits of the plaintext, the ciphertext, and the key. By
taking sufficiently many plaintext/ciphertext pairs, the correct value of certain
key bits can be recovered based on the derived linear expressions. In the context
of a keyed hash function, we would be interested in linear expressions involving
certain bits of the message input, the key input, and the hash output.

The linear expression is often called a linear approximation, which can be
conveniently represented by the dot product of two vectors. Let X,K,Z denote
the message input, key input, and hash output, and let ΓX ,ΓK ,ΓZ denote
binary vectors of the same length as X,K,Z, respectively. Then

(ΓX ·X)⊕ (ΓZ · Z) = ΓK ⊕K (6.10)

represents a linear approximation connecting the inputs and the putput of the
hash function. The vector Γ is referred to as a selection vector. For exam-
ple, if all three section vectors are 1, then the linear approximation becomes
X[0]⊕Z[0] = K[0]. Let p be the probability that a linear approximation holds,
where the probability is taken over all possible inputs. The bias5 ε of a linear
approximation is defined to be ε = p− 1/2 or ε = |p− 1/2|.

5We will adopt the definition with absolute value in this report, since the sign of bias is
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Typically, linear approximations of the full hash function as given by Equa-
tion (6.10) is constructed by joining linear approximations of individual steps.
For MD6 compression, a linear approximation of the step function is of the form

LAi : Γi ·Ai = ⊕5
k=0 (Γi−tk ·Ai−tk). (6.11)

For ease of reference, we will refer to Equation (6.11) as a local linear approx-
imation and Equation (6.10) as a global linear approximation. A linear path6

of MD6 is defined to be a sequence of local linear approximations

{LAi, i = i1, i2, ...}

that can be joined together to yield a global linear approximation.
To compute the bias of a joined approximations LA = LA1⊕LA2, we can use

Matsui’s piling-up lemma. which states that the effective bias of approximation
LA is ε1 × ε2 × 2. Now suppose that the bias ε for the linear approximation of
the full hash function has been computed. Then the number of input/output
pairs required to exploit this bias is proportional to ε−2. Therefore, the smaller
the bias ε is, the larger the data requirement is.

We remark that the randomness and independence assumption about the
MD6 step function (see Section 6.9.1) is also needed in our linear cryptanalysis.
In particular, when computing the bias of a local linear approximation for step
i, we assume that the input to step i appears random. In addition, to apply
Matsui’s piling-up lemma, we assume that computations for different steps are
independent of each other.

6.10.3 Analyzing the step function

In this section, we analyze linear properties of individual operations in the MD6
step function and show how to construct linear approximations for each step.
We also introduce the notion of active AND gates and threads, which will be
used in the lower bound proof.

For each operation to be studied, we use uppercase letters X,Y, Z to denote
the w-bit inputs and output. We use ΓX ,ΓY ,ΓZ to denote the selection vectors
of a linear approximation, and LX , LY , LZ to denote the Hamming weight of
these selection vectors. We use lowercase letters x, y, z to denote a single bit in
the w-bit words.

6.10.3.1 XOR gate

The XOR operation Z = X⊕Y is a linear operation. Any linear approximation
of the form ΓZ = ΓX⊕ΓY holds with probability either one or 1/2. In order for
the approximation to hold with probabily one (bias 1/2), the selection vectors
must satisfy the following equality:

not crucial for our analysis.
6Although the term “differential path” is commonly used in the literature, the term “linear

path” is not. We use it here for ease of discussion and also to draw analogy with our work on
differential cryptanalysis.
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ΓZ = ΓX = ΓY .

So the Hamming weights of the selection vectors are the same. That is,
LZ = LX = LY .

6.10.3.2 AND gate

As in our differential cryptanalysis, we decompose the AND operation Z = X∧Y
as an array of w independent AND gate: z = x ∧ y. There are four possible
linear approximations for the AND gate7:

z = x⊕ y, z = x, z = y, and z = 0.

Assuming that the two input bits x and y are chosen at random, we can
show (with straightforward probability calculation) that all four linear approx-
imations hold with exactly the same bias, which is 1/4.

We next introduce the notion of active AND gate with respect to a given
linear path of MD6. If we were to follow the same approach as in our differential
cryptanalysis, then we would define an active AND gate as an AND gate for
which Γx = 1 or Γy = 1. That is, at least one of the two input bits is selected
in the linear approximation of the AND gate. However, the situation is more
complex due to the way how the AND operation is combined with the XOR
operation in MD6. Let

u = v ⊕ (x ∧ y). (6.12)

Consider the linear approximation {LA : u = v} for Equation (6.12). That
is, the AND gate z = (x∧ y) is approximated by constant z = 1, and so neither
input bit of the AND gate is selected. We observe that the approximation LA
holds with bias 1/4, since the AND gate still contributes a bias of 1/4 even
though neither input bit is involved in the linear approximation LA.

So this suggests that a different definition for active AND gates is needed to
better capture the above situation in linear cryptanalysis. Now suppose a linear
path of MD6 is given. Let LA be the linear approximation for Equation (6.12)
in step i of the linear path. We say that z = (x ∧ y) is an active AND gate in
step i of the linear path if Γv = 1 (the selection vector for v, not x, y) in the
linear approximation LA. The intuition behind the definition is that an AND
gate is considered “active” if it effectively contributes a “noise” (bias 1/4) for a
bit that we are trying to approximate with some local linear approximation.

Just like differential cryptanalysis of MD6, the notion of active AND gate
plays an important role in the our lower bound proof for linear cryptanalysis. In
particular, each active AND gate always contributes 1/4 to the overall bias of the
global linear approximation, no matter which of the four linear approximation
is selected for the AND gate. Since the AND operation is the only non-linear
operation, the total number of active AND gates in the linear path is closely
related to the total bias of the linear path.

7We ignore the constant term here. For example, z = x and z = x ⊕ 1 are considered as
the same linear approximation.
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6.10.3.3 g operator

The g operator Z = g(X) is a linear operation, since its three components (⊕, <
<,>>) are all linear. Any linear approximation for g of the form ΓZ ·Z = ΓX ·X
holds with probability either one or 1/2.

In order for the approximation to hold with probabily one (bias 1/2), the
two selection vectors must satisfy a certain relation. The specific form of the
relation8 is not directly relevant to our analysis, except that ΓZ is uniquely
determined by ΓX . Instead, we are more interested in the lower bound on the
Hamming weight of LZ in terms of LX .

Recall that the shift amounts in g was carefully chosen in the design stage
with differential cryptanalysis in mind. In particular, each pair of shift amounts
possess the property that “if the Hamming weight of the input difference DX ≤
4, then the Hamming weight of the output difference DZ ≥ 2” (See Inequal-
ity (6.5)). This property helps to prevent differential paths in which all differ-
ences ∆Ai have Hamming weight at most one.

A similar property also holds for the shift amounts in g with respect to linear
cryptanalysis, although not as strong as the one stated above. In terms of how
Hamming weights of selection vectors propagate through the g function, we can
show that for the 16 pairs of shift amounts defined in MD6,

LX = 1 would imply LZ ≥ 2. (6.13)

For LX ≥ 2, we do not have any non-trivial lower bounds on LZ other than it
has to be positive (since non-zero ΓX would imply non-zero ΓZ). So we have

LX ≥ 2 would imply LZ ≥ 1. (6.14)

6.10.3.4 Combining individual operations

We have analyzed linear properties of the three operations in the MD6 step
function and the results are summarized in Figure (6.6) and Figure (6.7).

operation linear approximation bias
Z = X ⊕ Y ΓZ = ΓX = ΓY 1/2
z = x ∧ y four possible approximations 1/4
Z = g(X) ΓX = grevr,` (ΓZ) 1/2

Figure 6.6: Linear approximations for ⊕, ∧, and g. Note that for ∧, the result
is for an AND gate at the bit level.

8For Z = gr,`(X), we can define its “reverse operation” (not inverse) X = grev
r,` (Z) as

follows: temp = Z ⊕ (Z >> `), X = temp ⊕ (temp << r). We can show that if the linear
approximation ΓZ · Z = ΓX · X for gr,` holds with probability one, then the two selection
vectors must satisfy the relation ΓX = grev

r,` (ΓZ).
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operation upper bound lower bound
Z = X ⊕ Y LZ = LX = LY same as upper bound
Z = X ∧ Y LZ ≤ LX + LY LZ ≥ 0
Z = g(X) LZ ≤ 4LX If LX = 1 then LZ ≥ 2

If LX ≥ 2 then LZ ≥ 1

Figure 6.7: Hamming weight of linear approximation for ⊕, ∧, and g.

We are now ready to construct linear approximations for the step function by
combining linear approximations of individaul operations. First, we decompose
the step function into two sub-steps:

X = Ai−t0 ⊕Ai−t5 ⊕ (Ai−t1 ∧Ai−t2)⊕ (Ai−t3 ∧Ai−t4),
Ai = g(X).

The linear approximation LAi for the step (given by Equation (6.11)) can be
naturally decomposed into the following two approximations:

ΓX ·X = ⊕5
k=0 (Γi−tk ·Ai−tk) (6.15)

ΓAi
·Ai = ΓX ·X (6.16)

In order for LAi to hold with a non-zero bias, the approximation defined by
Equation (6.15) must hold with a non-zero bias. Given the linear property of
XOR, the following conditions on the selection vectors must hold:

• ΓX = Γi−t0 = Γi−t5
def= γ.

(Selection vectors for output and the two XOR inputs must equal.)

• For t = t1, t2, t3, t4, the set of non-zero bits in selection vector Γi−t must
be a subset of the non-zero bits in γ.

Based on our earlier discussion on AND gates (in Section 6.10.3.2), each
non-zero bit in γ activates exactly two AND gates in the linear approximation.
Here, we introduce a new notion called thread—we say that each non-zero bit of
γ defines a thread in step i. That is, a thread corresponds to the computation at
a particular bit position before applying the g function. The number of threads
in step i is equal to the Hamming weight of γ, which fully determines the bias
of linear approximation LAi.

We remark that the number of active AND gates is always equal to twice
the number of threads in the linear path. As we will see, the notion of thread
and its relation to the number of active AND gates will be crucial in our lower
bound proof.
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6.10.4 Lower bound proof

6.10.4.1 Goal and approach

The goal of our analysis is to prove a lower bound on the data requirement of
any standard linear attack on the keyed MD6 compression function. In light
of earlier discussion on keyed hash functions Section 6.10.1, we will take into
account the effect of the security parameter λ, the number of input/output pairs
that are available to the attacker.

Similar to our approach in the differential case, the lower bound proof in the
linear case is achieved through several steps of problem reductions and facilitated
by computer-aided search.

First, deriving lower bounds on data requirement is reduced to deriving
upper bounds on the total bias of a valid linear path. Then, deriving upper
bounds on the total bias is reduced to deriving lower bounds on the total number
of active AND gates in the path, which is in turn reduced to deriving lower
bounds on the total number of threads (defined in Section 6.10.3.4) in the path.

In order to count the number of threads in a valid linear path, we analyze
how local linear approximations—linear approximations for a single step—can
be joined to form a valid linear path. This yields a set of necessary conditions on
the local approximations. Based on these conditions, we carry out a computer-
aided search for small number of rounds. The lower bounds for small number
of rounds are then extended to produce expected lower bounds for the full r
rounds of MD6 for various output sizes d.

6.10.4.2 Searching for linear path and counting threads

Recall that a linear path of MD6 is represented by a sequence of local linear
approximations for individual steps

{LAi, i = i1, i2, ...},

where each LAi is of the general form

LAi : Γi ·Ai = ⊕5
k=0 (Γi−tk ·Ai−tk).

At a first glance, there seem to be many possible choices for each local ap-
proximation, and so enumerating all possible linear paths is certainly infeasible
even for very small s. Therefore, we need to eliminate as many invalid paths as
possible in the search.

A key observation is that for a linear path to be useful in launching a linear
attack, the sequence of local linear approximations must “collectively” be equiv-
alent to the global linear approximation of MD6 given by Equation (6.10). That
is, all non-zero selection vectors for intermediate variables must be canceled out
with each other.

Here we elaborate on the reasoning behind this important observation for
our linear cryptanalysis. Suppose that after the cancelation of intermediate
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selection vectors, one of the internal bits, Aj [t], remains uncanceled. Then the
resulting global linear aproximation would be of the form

(ΓX ·X)⊕ (ΓZ · Z)⊕Aj [t] = ΓK ⊕K,
where X is the input message, K is the input secret key, and Z is the hash
ouput of MD6. Since the bit Aj [t] is hidden from the attacker, it would appear
to be just a random bit from the attacker’s viewpoint. (Here we again use the
randomness assumption about the MD6 step function.) Hence, the above global
approximation would hold with probability 1/2 (bias zero), which would not be
useful for launching a linear attack.

The above requirement regarding cancelation helps to quickly filter out a
significant portion of the search branches in the early stage before they end up
producing an invalid linear path.

To capture the above requirement in a more analytical way and facilitate
discussion, below we introduce a few terms that distinguish different types of
selection vectors in a local linear approximation.

Consider an intermediate variable Aj . Since the step function consists of six
inputs and one output, Aj appears in the following seven steps:

step i = j, j + t0, j + t1, j + t2, j + t3, j + t4, j + t5.

If the selection vector corresponding to Aj is non-zero in the local linear ap-
proximation LAi, we say that Aj gets hit in step i. Depending on the role of
Aj in the step, we further categorize the hits on Aj into three different types:

• If Aj an XOR input, we say that Aj gets a hard hit.
(In this case, j = i− t0 or i− t5.)

• If Aj is an AND input, we say that Aj gets a soft hit.
(In this case, j = i− t1, i− t2, i− t3 or i− t4.)

• If Aj is the output of step i, we say that Aj gets a direct hit.
(In this case, j = i.)

The main reason for distinguishing different types of hits is that these hits
follow different rules of cancelation when two or more local approximations
involving Aj are combined. In particular, a direct hit or a hard hit must be
canceled by another hit, while a soft hit can either be canceled by another hit
or be “set to zero”. That is, when Aj gets a soft hit in step i, we may choose
to set the corresponding selection vector Γj = 0 if the soft hit is not needed
to cancel other direct or hard hits. This would not affect the bias of the local
approximation, since all four possible approximations of AND hold with the
same bias (see discussions in Section 6.10.3.2).

Returning to our first goal of searching for valid linear paths, with the newly
introduced terms, we can now restate the earlier requirement that “all selection
vectors for intermediate variables must be canceled out with each other” as “all
three types of hits on an intermediate variable Aj must be canceled out with
each other within the seven steps in which Aj is involved.”
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Returning to our second goal of counting the number of threads during the
search process, we analyze the relationship between the number of threads and
the number of hits within each step. Let dn, hn, sn denote9 the number of direct
hits, hard hits, and soft hits on Aj in step i, respectively, and let Ti denote the
number of threads in step i. For each type of hit, the relation between the
number of hits and number of threads Tj is given in Figure (6.8).

Aj j = hit type relation to Ti
XOR input i− tk, k = 0, 5 hard hit hn = Ti
AND input i− tk, k = 1, 2, 3, 4 soft hit sn = Ti

output i direct hit (1) if Ti = 1 then dn ≥ 2
(2) if Ti ≥ 2 then dn ≥ 1

Figure 6.8: Relations between number of threads Ti and number of hard, soft,
and direct hits in step i. Note that dn and Ti follow the constraints that we
have derived for the input and output of the g function.

We are now ready to outline an algorithmic procedure to search for valid
linear paths and count the number of threads for a segment of s rounds of
the MD6 computation. The procedure, called SearchLinear(), is described in
Figure (6.9). Roughly speaking, the search is conducted in a depth-first manner
with nodes at level i of the search tree representing all possible values of Ti.
The number of hits is then set given their relations with Ti. As soon as failure
of cancelation for hits on Aj is detected, all search branches below node j + n
are terminated10.

The most complex step of the search is Step 3 in which the set of hits on Aj
is checked to see whether they can get canceled with each other. To accomplish
the check, we exam each possible combination of direct, hard, and soft hits
and associate each case with a “yes” or ”no” label. In the search program, we
simplify the analysis by assigning a “yes” label to all cases for which the sum
of the number of hits is larger than three and unifying some of the remaining
cases. Further details of our search algorithm are given in the C code.

6.10.4.3 Deriving lower bounds through computer-aided search

In this section, we first present the experimental results from our computer-
aided search of linear paths for small number of rounds. We then extend the
experimental results to derive lower bounds on the data requirement of any
standard linear attack against the full r-round MD6 for different output sizes d.

Our method for extending the experimental results depends on the relation
between the data requirement of a linear attack and the number of active AND

9To simply notation, we do not include subscripts here, although the numbers are specific
to intermediate variable Aj in step i.

10This is because any hits beyond step j + 89 is more than 89 steps away from j and can
no longer be used to cancel the hits on Aj .
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SearchLinear(i, s,maxAAG)

1. Check whether the search reaches the end of the s-round segment.
If not, proceed to the next step. Otherwise, output the linear path
found and the number of active AND gates. Stop.

2. Check whether certain boundary conditions are met. If so, proceed
to the next step. Otherwise, stop the current branch of search.

3. Let j = i − n − 1. Check whether all hits on Aj can be canceled. If
so, proceed to the next step. Otherwise, stop the current branch of
search.

4. For Ti = 0, 1, 2, 3
(Here “3” represents all possible values of Ti ≥ 3.)

(a) Set dn as the minimum number of direct hits consistent with Ti.
(So possible values for dn are 0, 1, 2.)

(b) Compute the sum of Ti up to step i.

(c) Compute sumAAG,the sum of active AND gates to up step i.
(This is always twice the number of threads.) If sumAAG >
maxAAG, proceed to the next Ti.

(d) SearchLinear(i+ 1, s,maxAAG).

Figure 6.9: Algorithmic procedure to search for valid linear paths.

gates in the underlying linear path (of the attack), as already derived in earlier
analysis. To recap, the data requirement is computed as ε−2, where ε is the
total bias of the linear path. The total bias ε is computed as

ε = (1/4)AAG × 2AAG−1 = 2−AAG−1,

where AAG is the number of active AND gates in the path.
Let AAGLs be the minimum number of active AND gates in s consecutive

rounds of a valid linear path of MD6. Then we can lower bound AAGLr using
AAGLs as follows.

AAGLr ≥ AAGLs × br/sc+AAGLs′ , (6.17)

where s′ is r modulo s.
Our computer-aided search program implements the algorithmic procedure

given in Figure (6.9). The program runs for increasing number of rounds s,
starting at s = 6 (so the search segment is at least one-rotation long). Besides
checking the condition on “hit cancelation” in Step 3, the program also checks
the following boundary condition in Step 2:
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• The linear path must involve some bits in the first rotation and some bits
in the last rotation of the s-round segment.

Note that this boundary condition is necessary in order for two s-round linear
paths to join together to form a valid 2s-round linear path.

At the time of writing, we have completed the search for up to s = 34
rounds. Experimental results for AAGLs are given in Figure (6.10). Plugging
these results into Inequality (6.17), we can easily derive lower bounds on the
number of active AND gates for larger number of rounds. Adopting the same
security margin as that in differential cryptanalysis, we eliminate 15 rounds from
the total number of rounds r when computing the lower bounds. For example,
since 168− 15 = 153 = 30× 5 + 3, we have

AAGL168 ≥ AAGL153 ≥ AAGL30 × 5 +AAGL3 ≥ 40× 5 + 0 = 200.

Lower bounds on AAGLr corresponding to different output sizes d are summa-
rized in Figure (6.11).

s 11 12 13 14 15 16 17 18 19 20 21 22
AAGLs ≥ 8 10 10 10 14 14 18 18 18 22 24 24

s 23 24 25 26 27 28 29 30 31 32 33 34
AAGLs ≥ 26 30 32 32 34 34 38 40 40 40 44 44

Figure 6.10: Lower bounds on the number of active AND gates in a linear path
up to s rounds. These results were obtained by computer search.

d r r − 15 AAGLr−15 ≥ LB ≥
160 80 65 = 30× 2 + 5 40× 2 + 0 = 80 2162

224 96 81 = 30× 2 + 21 40× 2 + 24 = 104 2210

256 104 65 = 30× 2 + 29 40× 2 + 38 = 118 2238

384 136 65 = 30× 4 + 1 40× 4 + 0 = 160 2322

512 168 65 = 30× 5 + 3 40× 5 + 0 = 200 2402

Figure 6.11: Lower bounds on the data requirement of standard linear attacks on
r-round MD6. Lower bounds on AAGLr−15 are obtained using Inequality (6.17).
Lower bounds on LB are computed as 22AAGL

r−15+2.

Figure (6.11) shows that the data requirement and workload of a standard
linear attack against MD6 is at least 2210 for output size d ≥ 224. We can now
conclude with a strong result with respect to linear cryptanalysis:

A key-usage policy that requires the key change after λ = 2210 messages
would defeat standard linear cryptanalytical attacks on keyed MD6 for all NIST
specified hash sizes.

Our work to improve these linear cryptanalytic results is ongoing. While we
believe that our lower bounds on the data requirement can in fact be significantly
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improved, we note that it does not actually need to be so improved in order to
provide security against massive linear cryptanalysis attacks, as long as a key-
usage policy such as the above is enforced.

(We note that if someone wishes to use keyed MD6 for d-bit MAC com-
putations where d ≤ 160, we recommend that they keep r = 80, rather than
allowing r to decrease to 40 as d approaches 1 as is done for unkeyed usage of
MD6. That is, in such cases the output length may not be a good determinant
of the desired security level, since we are now worried about key protection
rather than collision-resistance. Requiring r ≥ 80 appears to provide adequate
protection against linear cryptanalysis attacks, for example, even for very short
output lengths. Further analysis might show that fewer rounds are also safe, but
for now a recommended minimum of 80 rounds seems a conservative approach.
The default number of rounds for MD6 follows this approach.)

In sum, decoupling the key-usage parameter λ from the other security pa-
rameters d and r is, we feel, a significant and useful way to proceed. Hence,
even with the preliminary results given in this report, we have demonstrated
that in this expanded analysis framework, MD6 offers strong security against
linear cryptanalysis attacks.

6.10.4.4 Related work

Our lower bound proof with respective to linear cryptanalysis is also similar
to that of the AES [33]. The proof that AES is secure against standard linear
attacks goes as follows:

• Each active S-box in AES has a maximum input/output correlation of at
most 2−3.

• In four consecutive rounds of AES, there are at least 25 active S-boxes.

• So the input/output correlation of any four-round linear path is at most
2−75, implying a data requirement of at least 2150 to launch a standard
linear attack.

Finally, we remark that active AND gates in MD6 play the same role to
active S-boxes in AES with respect to linear cryptanalysis. The g operator in
MD6 also has some limited effect in terms of enforcing a small number of active
AND gates across two consecutive steps, although it does not directly compare
to the strong diffusion property of the MDS matrix.

6.11 Algebraic attacks

There are a number of algebraic attacks one might consider trying against the
MD6 compression function.
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6.11.1 Degree Estimates

Many algebraic attacks, such as Shamir’s “cube” attack, require that the al-
gebraic normal form describing the output bits have relatively small degree in
terms of the input bits being considered. There are 89 · 64 = 5696 input vari-
ables, one for each of the 64 bits in each of the 89 input words to the compression
function f . A particular algebraic attack may consider only a subset of these,
and leave the others fixed.

Each bit of each word A[i] is a function of the nw = 5696 input variables,
that can be described in a unique way by a polynomial in algebraic normal
form (ANF). A particular MD6 output bit can be represented in a unique way
as an ANF polynomial with input variables x1, x2, . . . , xnw and coefficients and
outputs in GF (2), e.g.

a0 ⊕ a1x1 ⊕ . . . ⊕ anwxnw ⊕ anw+1x1x2 ⊕ . . . ⊕ a2nw−1x1x2 · · ·xnw . (6.18)

There are 2nw terms in this sum, one for each subset of the variables. The
coefficient for a term determines whether that term is “present” (coefficient =
1) or “absent” (coefficient = 0).

6.11.1.1 Maximum degree estimates

We can estimate the degree of the polynomial for such bit in A[i] as follows. We
estimate a common degree of the polynomials for each of the 64 bits occuring
word A[i]. Let δi to denote the estimated common degree for bits in A[i]:

δi = 1 for i = 0, 1, . . . , n− 1 (6.19)

and

δi = min(δi−t5 , δi−t0 , χ(δi−t1 , δi−t2), χ(δi−t3 , δi−t4)) for i > 88 ,

where
χ(d1, d2) = d1 + d2 − d1d2/nw .

(The term d1d2/nw accounts for the fact that random terms of degree d1 and d2

should have about d1d2/nw variables in common, so the degree of their product
will be smaller by this amount than the sum d1 + d2 of their degrees.) We
obtain the following estimate for the minimum degree of any bit computed in
each round.

According to these estimates (see Table 6.4), after 12 rounds the minimum
degree should easily exceed 512, and after 20 rounds the minimum degree should
almost certainly equal the maximum possible degree nw = 5696.

Similar computations can be performed when one cares about only some of
the input variables (i.e., when some of the variables are fixed, and we only care
about the degree in terms of the remaining variables).
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rounds minimum degree
1 2
2 2
3 4
4 8
5 16
6 24
7 42
8 66
9 128
10 252
11 443
12 665
13 1164
14 1819
15 2910
16 4268
17 5156
18 5565
19 5692
20 5696
21 5696
22 5696
23 5696
24 5696

Table 6.4: Table of estimated degrees of polynomials after a given number of
rounds. MD6 is estimated to have polynomials of maximum possible degree
after 20 rounds.
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6.11.1.2 Density estimates

An algebraic attack may depend not only on the degree of the polynomials, but
also on how dense they are. For example, if a polynomial is not dense, then
fixing some of the variables may dramatically reduce the degree in the remaining
variables. This section provides some crude estimates of the density of the MD6
polynomials.

We give an informal definition. We say that a polynomial in nw variables
has “dense degree d1” if the number of terms of any degree d2 ≤ d1 is near its
expected value (1/2)

(
nw
d2

)
. This definition is informal because we don’t carefully

define what we mean by “near”.
We base our estimates on the following informal proposition.

Proposition 1 The product of two ANF polynomials P1 and P2 of dense de-
grees d1 and d2 respectively is a ANF polynomial P3 of dense degree d3, where

d3 = min(nw, d1 + d2) .

(Here P1 and P2 are defined in terms of the same set of nw variables.)

The “proof” of this proposition notes that any given possible term t of degree
d3 can be formed in many possible ways as the product of a term t1 of degree d1

from P1 and a term t2 of degree t2 from P2. If we view P1 and P2 as randomly
chosen polynomials of dense degress d1 and d2 respectively, then the various
such products t1t2 will be present or absent independently, so that t will be
present with probability 1/2. Thus, P3 is dense with degree d3.

Of course, in an actual computation the relevant polynomials P1 and P2 may
not be “chosen randomly”, and may not be independent of each other, so this
proposition is not rigorous. Nonetheless, it forms the basis for an interesting
heuristic estimation of the density of the MD6 polynomials.

In this estimation, we let δi be our degree estimate such that we estimate
that for each bit of A[i], the corresponding ANF polynomial has dense degree δi.

We let δi = 0 for all i < n+ 11c, and set δi = 1 for all i such that n+ 11c ≤
i < n+ 12c. That is, we assume that the polynomials are not of dense degree 1
until the 12-th round. This corresponds to the output seen in our program
shiftopt.c, which optimized the shift amounts for MD6 by considering the
density of the linear portions of the polynomials.

Table 6.5 then lists lower bounds on estimated dense degrees for words in
each round 12, . . . , 31, based on the above proposition and the structure of
MD6. We see that after 28 rounds we estimate that the MD6 ANF are of full
dense degree (i.e., of dense degree 5696).

6.11.2 Monomial Tests

Jean-Philippe Aumasson has kindly allowed us to report on some of his initial
experiments using a test related to those in [36, 39, 73].

The test attemps to determine whether reduced-round versions of the MD6
compression function have a low degree over GF(2), with respect to some small
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rounds dense degree
1..11 0
12 1
13 1
14 2
15 4
16 8
17 12
18 21
19 33
20 64
21 127
22 227
23 349
24 642
25 1079
26 2004
27 3877
28 5696
29 5696
30 5696
31 5696

Table 6.5: Table of estimated dense degrees of polynomials after a given number
of rounds. MD6 is estimated to have polynomials of dense degree 5696 after 28
rounds.
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subset of input variables. The experiments run consider families of functions
parametrized by bits of A[54], and considering the other bits of A[54] as input
variables.

The test was able to detect nonrandomness in the MD6 compression function
after for 18 rounds in about 217 computations of the function.

Extensions of these studies are still underway.

6.11.3 The Dinur/Shamir “Cube” Attack

At his CRYPTO 2008 keynote talk, Adi Shamir presented an interesting al-
gebraic attack on keyed cryptosystems that is capable of key recovery, if the
cryptosystem has a sufficiently simple algebraic representation. (This attack is
joint work with Itai Dinur.) The cube attack is related to, but more sophisti-
cated than, the Englund et al. maximum degree monomial test. It searches for
sums over subcubes of the full Boolean input that give values for linear equa-
tions over the unknown key bits. With enough such values, the equations can
be solved to yield the key.

We have begun some initial collaborations with Itai Dinur (and Adi Shamir)
to evaluate the effectiveness of the “cube attack” on MD6.

Our initial results are very preliminary and tentative. It appears that the
cube attack can distinguish key MD6 from a random function up to 15 rounds,
and extensions of the cube attack will probably be able to extract the MD6 key
in the same number of rounds. It is plausible that these results can be improved
by a few rounds; experiments are ongoing.

6.12 SAT solver attacks

This section discusses the applicability of SAT solver attacks to MD6, and gives
experimental evidence that they are ineffective beyond about a dozen rounds of
the MD6 compression function.

SAT solver attacks are a fairly new technique, in which a cryptanalytic
problem is represented as a SAT instance: a Conjunctive Normal Form (CNF)
formula is written down, such that any assignment satisfying this formula corre-
sponds to a a solution to the cryptanalytic problem. The CNF formula is then
fed into a generic SAT solver program, which will hopefully find an assignment
— from which the solution can be decoded. Unlike most cryptanalytic tech-
niques, this technique exploits the circuit representation of the cryptographic
primitive in a non-blackbox manner, rendering it very effective for some prob-
lems. SAT solver have been applied to block ciphers (e.g., [57]), digital signa-
tures (e.g., [38]) and hash functions (e.g., [47][67]). However, since the general
case of solving SAT instances is NP-complete, the use of this technique for typi-
cal cryptanalytic problems is heuristic and its complexity is poorly understood.

The natural way to use SAT solvers to find (partial) preimages of the MD6
compression function f is to convert its circuit representation into a CNF for-
mula φf (N,C) relating the bits of the input N , the bits of the output C, and
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some ancillary bits for the intermediate state of the compression function. One
then extend φf (N,C) with further clauses restricting C to a desired value and
expressing any desired constraints on N , and solves this instance to obtain the
full input N . Similarly, to find an arbitrary pair of colliding inputs N,N ′, one
can use the formula φf (N,C) ∧ φf (N ′, C) ∧ (Ni ∨ N ′i) ∧ (Ni ∨ N ′i), where i is
the index of some bit forced to differ between N and N ′.

Following this approach, we used a Python script to create a variety of
CNF instances representing generic attacks on the MD6 compression function.
In particular, we explored the following variants (the notation is used in the
subsequent figures):

1. Task: finding a preimage of the all-zero output (invert) or finding an
arbitrary collision of two inputs differing in a specific bit (collide).

2. Digest length: d=128, d=160, d=224, d=256, d=384 or d=512.

3. Constraints on the sought compression function input: only Q fixed to its
prescribed

√
6 value (fix=Q), only Q fixed to 0 (fix=Q0), or all of Q, K,

U and V fixed to values corresponding to the first block in a long message
(fix=QKUV).

To solve these SAT instances, we used Minisat2 beta 070721 (including its
simplification preprocessing), which is one of the best general-purpose SAT
solvers available and is popular in cryptanalytic context. We have also evaluated
HaifaSat, march, picosat-632, rsat and SATzilla; these consistently performed
worse than Minisat2 on our problem instances (for non-trivial problem sizes).
In both figures, the lower cluster corresponds to the invert instances, whereas
the upper cluster corresponds to the collide instances.11

Figures 6.12 and 6.13 summarize the running time and memory consump-
tion of Minisat on all of the above instances. For ease of visualization, failed
executions are always listed as running for 1000 seconds and consuming 1GB
(no trial succeeded after using more than either of these).

These experiments were run on a Dual-Core AMD Opteron 221 (2.4GHz)
with 2GB of DRAM running Linux under Xen. Available memory was initially
constrainted to 1GB. When Minisat2 failed to solve a given instance within
the allotted 1GB of memory, we increased the memory limit to about 1.5GB
and also patched Minisat2 to reduce its memory use in exchange for a longer
running time (by setting the internal variables learntsize factor=0.2 and
learntsize inc=1.02). In all of the above cases, the modified Minisat was still
unable to solve these instances within the allotted memory.

As can be seen, our method of using SAT solvers to attack Minisat succeeded
for no more than r = 10 rounds at the standard SHA-3 digest sizes (d ≥ 224),
and at most r = 11 rounds even for reduced digest sizes (d = 128 and d = 160).
Moreover, after 6-7 rounds, both running time and memory usage appear to
grow superexponentially in the number of rounds. While varying the CNF

11One would expect finding collisions to be easier than inversion, but apparently the SAT
solver is bogged down by the larger number of variables.
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Figure 6.12: Minisat running time. A running time of 10000 seconds designates
a trial that ran out of memory (no trial succeeded after a longer time).
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Figure 6.13: Minisat memory consumption. A memory consumption of 1024MB
designates a trial that ran out of memory (no trial succeeded after using more
than 1024MB).
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circuit representation and the choice of SAT solver program may somewhat
alter these numbers, it typically does not have a dramatic effect. We thus
conclude that at the current state of the art in SAT solvers, this form of SAT
solver attack is ineffective against the full MD6 compression function.

6.13 Number of rounds

Given the studies and tests of the preceding sections, it is appropriate to revisit
the question of the number of rounds that is appropriate for MD6.

None of our tests are able to distinguish MD6 with 11 or more rounds from
a random function. Jean-Philippe Aumasson’s test of Section 6.11.2 can distin-
guish MD6 from a random function up to 18 rounds, but not more (at least at
present).

Our choice of r = 40 + (d/4) rounds as the default thus seems quite conser-
vative.

Perhaps after further study, the default number of rounds for MD6 could be
justifiably and significantly reduced.

6.14 Summary

The compression function of MD6 appears to have all of the desired proper-
ties: preimage-resistance, second-preimage resistance, collision-resistance, pseu-
dorandomness, resistance to linear and differential attacks, resistance to SAT-
solver attacks, and indifferentiability from a random oracle. It provides an
excellent foundation on which to build the complete MD6 hash function using
the MD6 mode of operation.



Chapter 7

Mode of Operation Security

A mode of operation M is an algorithm that, given a fixed-length com-
pression function or block cipher fQ, describes how to apply fQ repeatedly on
fixed-length chunks of the arbitrarily-sized input in order to produce a fixed-
length output for the whole. In this way, one can construct Variable Input
Length (VIL) cryptographic primitives from Fixed Input Length (FIL) cryp-
tographic primitives, which is a functionality commonly referred to as domain
extension [35].

In this chapter we address the cryptographic properties of collision resis-
tance, first-preimage resistance, second-preimage resistance, psuedorandomness,
unpredictability, and indifferentiability from random oracles, as pertains partic-
ularly to the MD6 mode of operation itself1. That is, in this chapter we take an
agnostic approach to the compression function used and consider it as only a
black-box function fQ with some desirable property P (e.g. collision resistance,
pseudorandomness, etc.). Our goal is then to show that the MD6 mode of op-
eration acts as a domain extender for fQ that preserves the property P . The
question we attempt to answer is, does the MD6 mode of operation dilute the se-
curity of the black-box function with respect to P , and if so, by how much? For
collision resistance, first-preimage resistance, pseudorandomness, and indiffer-
entiability we give concrete security bounds for the property preservation. For
the MAC functionality (unpredictability), we do the same, although we must
introduce an additional nontrivial assumption on the compression function. For
the property of second-preimage resistance, we are unable to demonstrate prov-
ably that it preserves this property (although we reduce to a weaker property
instead).

The organization of this chapter is as follows. After some preliminary re-
marks in Section 7.1, Sections 7.2, 7.3, 7.4 respectively show how the MD6 mode
of operation is a domain extender for collision-resistance, preimage-resistance
(inversion resistance), and second-preimage resistance. Then Section 7.5 uses

1Many of the results presented here were derived by Christopher Crutchfield in his MIT
EECS Master’s thesis [32]; we summarize those results here but refer the reader to the thesis
for the full exposition and derivation.

134
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Mauer’s Random Systems Framework to show that the MD6 mode of operation
is a domain extender for pseudo-random functions. The more delicate issue
of showing that the MD6 mode of operation is a domain extender for unpre-
dictability is handled in Section 7.6. Section 7.7 shows that the MD6 mode of
operation provides indifferentiability of MD6 from a random oracle assuming
that the compression function is a random oracle (and that the adversary has
access to the compression function). Sections 7.8 and 7.9 discuss, in response
to NIST requirements, the issues of multi-collision attacks and length-extension
attacks. Section 7.10 then summarizes the results of this chapter.

7.1 Preliminaries

In this section we prove certain results about the collision and preimage resis-
tance of the MD6 hash function mode of operation. In particular, we show that
the MD6 mode of operation acts as a domain extender for various properties
of the fixed input length compression function used. Our goal is to show that
if we assume that the compression function is collision resistant (respectively,
preimage resistant), then the entire hash function will be collision resistant (re-
spectively, preimage resistant) as well.

One important caveat is that the notions of collision resistance and preim-
age resistance are only defined for keyed hash functions. As observed by Ro-
gaway [86], an unkeyed hash function H : {0, 1}∗ → {0, 1}d is trivially non-
collision resistant: the existence of an efficient algorithm that can find distinct
strings M and M ′ such that H(M) = H(M ′) is guaranteed, simply by virtue of
the existence of such collisions (as Rogaway says, the algorithm has the collision
“hardwired in”). Therefore for an unkeyed hash function H, what is meant
by saying that H is collision resistant is not that an efficient collision-finding
algorithm does not exist, but rather that no efficient collision-finding algorithm
exists that is known to man (the emphasis is Rogaway’s). Similar concerns
can also be expressed for the preimage resistance of unkeyed hash functions.
Although MD6 can behave as a keyed hash function, certain applications call
for the use of the unkeyed variant (where the key field is simply set to λ, the
empty string), such as any application that uses a public hash function. Thus
we would like to argue, with some amount of rigor, that its unkeyed variant is
collision or preimage resistant as well.

Fortunately, we can perform reductions for finding collisions and preimages.
Specifically, we will show that if one has a collision or preimage for the entire
hash, then one can construct a collision or preimage for the underlying compres-
sion function. Therefore if one assumes that there is no known algorithm for
finding collisions or preimages in the compression function, then there should
be no known algorithm for finding collisions or preimages in the overall hash
function. While this is not a completely rigorous notion of security (as it relies
on the extent of human knowledge for finding collisions, which is impossible to
formalize), it is the best we can do in these circumstances.

After proving reductions for these properties, we show that they apply to
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the keyed hash function variant of MD6 as well (for certain — now rigorous
— definitions of collision resistance and preimage resistance). That is, we will
demonstrate that if an algorithm exists that can break the property of collision
resistance or preimage resistance for keyed MD6, then we can use this algorithm
as a black box for breaking the collision resistance or preimage resistance of
the underlying compression function. We may then conclude that breaking
either property is at least as difficult as breaking the respective property for the
compression function.

Some of the proofs in this section are similar to those of Sarkar and Schel-
lenberg [88], owing to the fact that their mode of operation is also based on
a tree-like construction. However, the differences between the MD6 mode of
operation and that of Sarkar and Schellenberg are significant enough to warrant
entirely new proofs of security.

7.1.1 Definitions

We will often use the following notational conventions when precisely defining
the advantage of an adversary for attacking some cryptographic property of the
compression function or hash function.

AdvPA = Pr

 Random values are chosen;
A is given these values as input;

A produces some output
: A’s output violates P


For example, one definition of the advantage of A for breaking the collision

resistance of fQ is due to Rogaway and Shrimpton [87].

Advfil-cr
A = Pr

[
K

$← {0, 1}k;
(m,m′)← A(K)

:
m 6= m′,

fQ(K,m) = fQ(K,m′)

]

Here the probability is taken over the uniform random choice of key value
K from the keyspace {0, 1}k (where this random choice is denoted by $). To be
more precise, we should also take into account the internal randomness of the
algorithm A, which in general is not a deterministic algorithm. We could denote
this similarly as (m,m′) $← A(K), but throughout this paper we will often take
this as a given and omit the $.

Definition 3 (Fixed Input Length) A function fQ mapping domain D to R
is a fixed input length (FIL) function if D = {0, 1}i for some positive integer i.
That is, its inputs consist only of bit strings of some fixed length.

Definition 4 (Variable Input Length) A function H mapping domain D to
R is a variable input length (VIL) function if D = {0, 1}∗. That is, its inputs
are bit strings of variable length.
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Definition 5 (Domain Extender) We say some algorithm A is a domain
extender for property P if, given a fixed input length function fQ that is FIL-P
(that is, has the property of P for fixed input length), then Af (A when given
oracle access to fQ) is a variable input length function that has the property of
VIL-P (that is, it has the property of P for variable input length).

Note that traditionally a domain extender only extends the domain of the
function and provides no guarantees that the new function satisfies any proper-
ties. However, in our context we will mean that A is a domain extender and a
property P preserver.

Definition 6 (Running Time) Oftentimes we will say that an algorithm A
has “running time” t. By this we mean that t includes both the amount of time
taken by an invocation of A as well as the size of the code implementing A,
measured in some fixed RAM model of computation (as in [3]).

Definition 7 (Mode of Operation) Throughout this chapter we will use M
to denote MD6’s mode of operation. This is defined irrespective of the compres-
sion function used, although we will often use MfQ : Wk × {0, 1}∗ → {0, 1}d
to denote the MD6 mode of operation applied to the compression function fQ
(i.e. MfQ(M) is the MD6 hash of a message M), the superscript denoting that
the mode of operation only makes black-box use of fQ. When needed, we will
parameterize MfQ by L, denoting this as MfQ

L .
On occasion we will consider the output of MfQ without the final compres-

sion function application. Recall that the final compression function has the
z bit set to 1, and then its output is chopped from c words down to d bits.
Therefore we write the mode of operation without the final compression function
application as HfQ : Wk × {0, 1}∗ →Wn−q−k, where

MfQ = χd ◦ f ◦ HfQ .

Recall that the chop function χd : {0, 1}∗ → {0, 1}d operates simply by returning
the last d-bits of its input. We can abbreviate the action of the final compression
function and the chop by defining g = (χd ◦ fQ) : Wk ×Wn−q−k → {0, 1}d.

Definition 8 (Height) For a given maximum level parameter L, let the height
of the MD6 hash tree parameterized by L on a message M of length µ = |M | be
given as heightL(µ). Recall that the height of a tree is given by the distance of
the root node from the farthest leaf node. For example, the tree in Figure 2.1
has height 3, the tree in Figure 2.3 has height 6, and the tree in Figure 2.2 has
height 18.

Oftentimes we will have some adversary A that we grant q queriesM1, . . . ,Mq

to the MD6 hash algorithmMfQ , where we bound the total length of the queries,∑
i |Mi| ≤ µ. One question we might ask is, in the course of execution ofMfQ ,

how many queries to fQ will need to be made, given the above resource con-
straints?
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Lemma 2 Assume we are given oracle access to fQ(K, ·) for some K. Then if
we have q messages M1,M2, . . . ,Mq such that

q∑
i=1

|Mi| ≤ µ,

then in order to compute Di =MfQ(K,·)
L (Mi) for all i we require at most δ(q, µ)

queries to the oracle fQ(K, ·), where

δ(q, µ) =
1
3
·
⌈µ
c

⌉
+ q log4

(
1
q
·
⌈µ
c

⌉)
+
q

3
.

Proof: The proof of this lemma is fairly straightforward, so we refer the
interested reader to Lemma 2.1 of [32]

7.2 Collision-Resistance

To begin, we first define what it means for a keyed fixed input length (FIL)
compression function fQ to be collision resistant, and what it means for a keyed
variable input length (VIL) hash function H to be collision resistant.

Definition 9 (FIL-Collision Resistance) For a keyed FIL function fQ map-
ping Wk ×Wn−q−k →Wc, define the advantage of an adversary A for finding
a collision as

Advfil-cr
A = Pr

[
K

$←Wk;
(m,m′)← A(K)

:
m 6= m′,

fQ(K,m) = fQ(K,m′)

]

We define the insecurity of fQ with respect to FIL-collision resistance (FIL-CR)
as

InSecfil-cr
fQ

(t) = max
A

{
Advfil-cr

A

}
,

where the maximum is taken over all adversaries A with total running time t.

Definition 10 (VIL-Collision Resistance) For a keyed VIL function H map-
ping Wk×{0, 1}∗ → {0, 1}d, define the advantage of an adversary A for finding
a collision as

Advvil-cr
A = Pr

[
K

$←Wk;
(M,M ′)← A(K)

:
M 6= M ′,

H(K,M) = H(K,M ′)

]

We define the insecurity of fQ with respect to VIL-collision resistance (VIL-CR)
as

InSecvil-cr
H (t) = max

A

{
Advvil-cr

A

}
,

where the maximum is taken over all adversaries A with total running time t.
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Here we add the additional assumption that A must have computed the
hashes of these messages H(K,M) and H(K,M ′) at some point (for the mes-
sage pair (M,M ′) that it returned), and so the total time allotment t in-
cludes the cost of computing these hashes. This is a reasonable assumption
— not without precedent [3, Section 4.1] — as A should at least verify that
H(K,M) = H(K,M ′).

We now give a series of lemmas that culminate in demonstrating how one can
use a collision in MD6 to construct a collision in the underlying compression
function. These lemmas rely heavily on the detailed description of the MD6
mode of operation given in Section 2.4. We give a sketch of our approach as
follows. The MD6 mode of operation makes use of two operations, PAR and
SEQ. The global parameter L determines the maximum number of times that
the operation PAR is invoked (recursively) on the input message. If the length
of the input is long enough that after (up to) L iterations of PAR the resulting
output is still larger than d bits, the SEQ operation is performed to bring the
final digest to d bits. Therefore our lemmas will be of the following form: if
we have two messages that form a collision in PAR or SEQ, we can examine
the intermediary values produced in the computation of PAR or SEQ to find
a collision either in the compression function fQ or in the final compression
function g = χd ◦ fQ. We will conclude by noticing that if there is a collision
in the overall MD6 hash, then there must be a collision in one of the PAR or
SEQ operations.

Lemma 3 Suppose M,M ′ ∈ {0, 1}∗ are distinct and further,

SEQ(M,d,K,L, r) = SEQ(M ′, d,K,L, r).

Then we can construct m,m′ ∈ Wn−q−k with m 6= m′ such that fQ(K,m) =
fQ(K,m′) or g(K,m) = g(K,m′).

Proof: Recall from Section 2.4 that the MD6 SEQ operation performs anal-
ogously to the Merkle-Damg̊ard construction, and therefore this proof will pro-
ceed similarly to the well-established collision resistance proofs of security [34].
As shown in Figure 2.6, we begin by padding out M and M ′ with zeroes to be
a positive integral multiple of (b − c) = 48 words, and subdivide each message
into sequences M = B0‖B1‖ · · · ‖Bj−1 and M ′ = B′0‖B′1‖ · · · ‖B′j′−1 of j and j′

(respectively) (b− c)-word blocks. Before we can proceed, we must first define
some intermediary values that we use throughout our proof. Let

mi = Ui‖Vi‖Ci−1‖Bi,
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where we define the auxiliary fields,

Ui = L · 256 + i

Vi = r‖L‖zi‖pi‖keylen‖d

zi =
{

1, if i = j − 1
0, otherwise

pi =
{

# of padding bits in Bj−1, if i = j − 1
0, if i < j − 1

and the chaining variables,

C−1 = 064w

Ci = fQ(K,mi), for 0 ≤ i < j − 1
Cj−1 = g(K,mj−1) = χd(fQ(K,mj−1)).

We also define m′i similarly for the B′i values.

Now first suppose that j 6= j′; that is, the number of blocks in the input
messages differ. Then we are easily able to construct a collision between the
inputs to the final compression function in SEQ. Since j 6= j′ we have Uj−1 6=
U ′j′−1, as the binary representation of j − 1 and j′ − 1 are encoded into these
values. This clearly implies thatmj−1 6= m′j′−1. Moreover, we have our collision,
since

g(K,mj−1) = Cj−1 = SEQ(M,d,K,L, r)
= SEQ(M ′, d,K,L, r) = C ′j′−1 = g(K,m′j′−1).

On the other hand, suppose that j = j′ and the number of blocks in the
input messages are the same. We show that at some point along the chain
of computations, a collision occurs. That is, the event Ci = C ′i implies that
either there is a collision at block i, or the previous chaining variables are equal,
Ci−1 = C ′i−1. Thus starting from the assumption that Cj−1 = C ′j−1 (i.e. that
the outputs of SEQ are equal), we can work our way backwards through the
chain to find a collision.

First, suppose that mj−1 6= m′j−1. Since g(K,mj−1) = Cj−1 = C ′j−1 =
g(K,m′j−1), we have a collision. Now, on the contrary, suppose that mj−1 =
m′j−1. Then this implies that Cj−2 = C ′j−2.

Now, fix some i such that 0 ≤ i < j − 1 and suppose that Ci = C ′i. Then
either mi 6= m′i and we have a collision fQ(K,mi) = Ci = C ′i = fQ(K,m′i), or
mi = m′i and therefore Ci−1 = C ′i−1. Thus by starting from Cj−1 = C ′j−1 and
walking backwards along the chain of computations, we either find a collision
or, for each i, mi = m′i. In particular, if mi = m′i for all i, then this implies that
Bi = B′i for all i as well. Furthermore, this implies that the number of padding



CHAPTER 7. MODE OF OPERATION SECURITY 141

bits are equal, pj−1 = p′j−1. However, if this is the case then it must be that
M = M ′, which is a contradiction. Therefore a collision in fQ or g must occur
at some point along the chain.

Lemma 4 Suppose M,M ′ ∈ {0, 1}∗ are distinct and further,

PAR(M,d,K,L, r, `) = PAR(M ′, d,K,L, r, `).

Then we can construct m,m′ ∈ Wn−q−k with m 6= m′ such that fQ(K,m) =
fQ(K,m′).

Proof: We proceed much in the same fashion as Lemma 3, but this proof is
simpler because of the parallel nature of PAR. Following the definition of PAR
shown in Figure 2.5, we pad out M and M ′ with zeroes until their lengths are
multiples of b = 64 words, and subdivide each message into sequences M =
B0‖B1‖ · · · ‖Bj−1 and M ′ = B′0‖B′1‖ · · · ‖B′j′−1 of j and j′ (respectively) b-word
blocks. As before, we define the intermediary variables we will use in this proof.
Let

mi = Ui‖Vi‖Bi,

where we define the auxiliary fields,

Ui = ` · 256 + i

Vi = r‖L‖z‖pi‖keylen‖d

z =
{

1, if j = 1
0, otherwise

pi =
{

# of padding bits in Bj−1, if i = j − 1
0, if i < j − 1

and the output variables,

Ci = fQ(K,mi)

We also define m′i similarly for the B′i values.

From our definitions,

C0‖C1‖ · · · ‖Cj−1 = PAR(M,d,K,L, r, `)
= PAR(M ′, d,K,L, r, `) = C ′0‖C ′1‖ · · · ‖C ′j′−1,

and therefore j = j′.
Moreover, if there exists an i such that mi 6= m′i, then we have a collision,

as fQ(K,mi) = Ci = C ′i = fQ(K,m′i). Now suppose that for all i, mi = m′i.
This implies that for all i, the input messages Bi = B′i and the number of
padding bits pi = p′i. Therefore it must be the case that M = M ′, which is a
contradiction.
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Theorem 2 Suppose M,M ′ ∈ {0, 1}∗ and L,L′,K,K ′ provide a collision in
the hash function MfQ ; that is, MfQ

L (K,M) = MfQ

L′ (K
′,M ′). Then we can

construct m,m′ ∈ Wn−q−k with m 6= m′ such that fQ(K,m) = fQ(K ′,m′) or
g(K,m) = g(K ′,m′).

Proof: Let ` and `′ be the “layered height” of each hash tree. That is, in
the computation of MD6, ` and `′ are the number of total applications of PAR
and SEQ on m and m′, respectively. Note this is not the height of the hash
tree, since the root node of the graph in Figure 2.3 has height 6. Rather, it is
the “level” of the root node in the computation — plus one, if SEQ has been
applied. Thus the layered height of the hash tree in Figure 2.3 is 3, as is the
layered height of the hash tree in Figure 2.1. From this point, we assume that
L = L′, K = K ′, and ` = `′, since these parameters (L,K, `) are included as
part of the input to the final compression function g. If this is not the case,
then there is a collision in g and we are done. Thus we drop the prime ′ in the
variable names and consider only L, K, and `.

The rest of the proof will follow substantially from Lemmas 3 and 4. As
in the definition of MD6 (see Figure 2.4), we use the following intermediary
variables,

M0 = M

Mi = PAR(Mi−1, d,K,L, r, i), for 1 ≤ i < `

D = M` =
{

SEQ(M`−1, d,K,L, r), if ` = L+ 1
χd(PAR(M`−1, d,K,L, r, i)), otherwise

with D′ and M ′i defined similarly for M ′.

By Lemma 4, Mi 6= M ′i implies that either Mi+1 6= M ′i+1 or we can find
a collision in one of the compression functions fQ used at level i. Therefore,
moving from the bottom of the hash tree up (starting from the condition M0 6=
M ′0) we either find a collision in fQ or reach level `− 1 with M`−1 6= M ′`−1. If
PAR is the last function executed (i.e. ` < L + 1), then by Lemma 4 we have
found a collision in g, since D = D′. If SEQ is the last function executed (i.e.
` = L + 1), then by Lemma 3 we have also found a collision in either fQ or g,
again because D = D′.

Theorem 3 Let fQ : Wk×Wn−q−k →Wc be a FIL-CR function, and suppose
that g = (χd ◦ fQ) : Wk ×Wn−q−k → {0, 1}d is also FIL-CR. Then MfQ :
Wk × {0, 1}∗ → {0, 1}d is a VIL-CR function with

InSecvil-cr
MfQ (t) ≤ InSecfil-cr

fQ
(2t) + InSecfil-cr

g (2t).
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Proof: Suppose A is an algorithm with the best possible chance of success for
breaking the VIL-collision resistance of MfQ among all algorithms running in
time t, so that the probability of success of A is InSecvil-cr

MfQ (t). We construct an
algorithm C that uses A as a subroutine to attack the FIL-collision resistance
of either fQ or g.

To begin, C receives as input the hash function key K; in order to suc-
ceed, it must produce messages m 6= m′ such that fQ(K,m) = fQ(K,m′) or
g(K,m) = g(K,m′), and run in time no greater than 2t. C then invokes A on the
key K, which ultimately returns messages M 6= M ′ such that MfQ(K,M) =
MfQ(K,M ′).

Algorithm C
Input: K, the compression function key; A, the collision-finding algorithm
Output: m 6= m′, such that fQ(K,m) = fQ(K,m′) or g(K,m) = g(K,m′)
1. (M,M ′)← A(K)
2. D ←MfQ(K,M) and store each input to fQ(K, ·)
3. D′ ←MfQ(K,M ′) and store each input to fQ(K, ·)
4. if M 6= M ′ and D = D′

5. then Use Theorem 2 to find m 6= m′ that collide in fQ(K, ·) or g(K, ·)
6. return (m,m′)
7. else return (0n, 0n)

By Theorem 2, from a collision in MfQ(K, ·) we can recover a collision in
fQ(K, ·) or g(K, ·). This recovery process takes time at most t, since it only
requires computing the hashes MfQ(K,M) and MfQ(K,M ′) and considering
the intermediate values queried to fQ(K, ·) in each computation. In addition,
the running time of the algorithm A is at most t. Thus with probability of
success at least InSecvil-cr

MfQ (t), we are able to find a collision in either fQ or g in
time 2t.

7.3 Preimage (Inversion)

Recall that the property of first-preimage resistance is an important one in
many cryptographic applications. For example, most computer systems store
the hashes of user passwords; the inability of any adversary to invert these
hashes is imperative to preserve the security of the system2.

Since we aim to show that the MD6 mode of operation extends the prop-
erty of first-preimage resistance from the compression function to the overall
hash function, we precisely define what it means for both the FIL compression
function and the VIL hash function to be first-preimage resistant.

Definition 11 (FIL-Preimage Resistance) For a keyed FIL function fQ :
Wk ×Wn−q−k → Wc, define the advantage of an adversary A for finding a

2Although in practice, many systems use a salted hash for their password file to make
dictionary-based inversion attacks much more difficult.
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preimage as

Advfil-pr
A (D) = Pr

[
K

$←Wk;m← A(K,D) : fQ(K,m) = D
]
,

Advfil-pr
A = max

D∈{0,1}d

{
Advfil-pr

A (D)
}
.

We define the insecurity of fQ with respect to FIL-preimage resistance (FIL-PR)
as

InSecfil-pr
f (t) = max

A

{
Advfil-pr

A

}
,

where the maximum is taken over all adversaries A with total running time t.

Definition 12 (VIL-Preimage Resistance) For a keyed VIL function H :
Wk × {0, 1}∗ → {0, 1}d, define the advantage of an adversary A for finding a
preimage as

Advvil-pr
A (D) = Pr

[
K

$←Wk;M ← A(K,D) : H(K,M) = D
]
,

Advvil-pr
A = max

D∈{0,1}d

{
Advvil-pr

A (D)
}
.

We define the insecurity of H with respect to VIL-preimage resistance (VIL-PR)
as

InSecvil-pr
H (t) = max

A

{
Advvil-pr

A

}
,

where the maximum is taken over all adversaries A with total running time t.
As before, we make the reasonable assumption that computing H(K,M) counts
towards the total time allotment of t, since we assume any preimage-finding
algorithm must at least verify that M is a valid preimage of D.

Note that these definitions differ from the commonly regarded notion of
preimage resistance (Pre) as defined by Rogaway and Shrimpton [87]:

AdvPre
A = Pr

[
K

$←Wk;M $←Wn−q−k;
D ← fQ(K,M);M ′ ← A(K,D)

: fQ(K,M ′) = D

]

In particular, our definitions given above are a stricter notion of preimage re-
sistance that Rogaway and Shrimpton term “everywhere preimage-resistance”
(ePre); this definition attempts to capture the infeasibility of finding a preim-
age for a given D, over all choices of D. We adopt this definition because it
simplifies our analysis. Since everywhere preimage-resistance implies preimage
resistance [87], we do not lose any security by doing so.

We begin by demonstrating, via reduction, that the MD6 hash function is
VIL-preimage resistant so long as its underlying compression function is FIL-
preimage resistant.
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Theorem 4 Let fQ : Wk×Wn−q−k →Wc be a FIL-PR function, and suppose
that g = (χd ◦ f) : Wk ×Wn−q−k → {0, 1}d is also FIL-PR. Then MfQ :
Wk × {0, 1}∗ → {0, 1}d is a VIL-PR function with

InSecvil-pr

MfQ
(t) ≤ InSecfil-pr

g (2t).

Proof: Suppose that A is an algorithm with the best possible chance of success
for breaking the VIL-preimage resistance ofMfQ among all algorithms running
in time t, so that the probability of success of A is InSecvil-cr

MfQ (t). We construct
a new algorithm P, running in time at most 2t, that uses A as a subroutine to
attack the FIL-preimage resistance of g.

The behavior of P is straightforward: if A manages to find a valid preimage,
then P can simply compute the hash and return the input to the final compres-
sion function g. However, some care must be taken in the analysis because, as
mentioned in the definition of preimage resistance, the choice of target digest D
that maximizes the advantage can depend on the algorithm P used.

Algorithm P
Input: K, the compression function key; A, the preimage-finding algorithm; D,

the target digest
Output: m, such that g(K,m) = D
1. M ← A(K,D)
2. D′ ←MfQ(K,M)
3. m ← the input to the final compression g(K, ·) in the computation of D′

4. if D = D′

5. then return m
6. else return 0n

To begin with, P receives as input a digest D ∈ {0, 1}d, the key K, and
the MfQ preimage-finding algorithm A, and its goal is to produce a preimage
m ∈Wn−q−k such that g(K,m) = D. Next, P invokes A on the target digest D
and key K to receive a message M ∈ {0, 1}∗ such that, with some probability,
MfQ(K,M) = D. If M is indeed a preimage of D, then letting m ∈Wn−q−k

be the input given to the final compression function g(K, ·) in the computation
of MfQ(K,M) will indeed give a preimage of D.

Now we wish to show that the advantage of P is at least the advantage of A.
Let D̂ be the value of the target digest D that maximizes the advantage of A:

D̂ = arg max
D∈{0,1}d

{
Pr
[
K

$←Wk;M ← A(K,D) : MfQ(K,M) = D
]}

.

Then the advantage of P when given target digest D̂ is at most its advantage
over the best possible D, so that

InSecvil-pr

MfQ
(t) ≤ Advvil-pr

A = Advvil-pr
A (D̂)

≤ Advfil-pr
P (D̂) ≤ Advfil-pr

P ≤ InSecfil-pr
g (2t).
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In order to prove the bound for running time, notice that it takes time at
most t to run A(K,D), and by our earlier assumption it takes time at most t to
compute MfQ(K,M). Therefore the total time is at most 2t.

7.4 Second Pre-image

Second-preimage resistance is defined as the computational infeasibility of any
adversary, given a target message m, to produce a different message m′ such
that these two messages hash to the same value. Clearly, second-preimage
resistance is a potentially stronger assumption than collision resistance, since
producing second preimages also yields hash function collisions. Therefore, as
in other treatments of this problem [88], it suffices in general to prove collision
resistance, which we demonstrated earlier in Section 7.2.

Unfortunately, trying to prove a reduction of the FIL-second-preimage resis-
tance of the compression function to the VIL-second-preimage resistance of the
overall hash function fails to work naturally. The problem with the reduction
is that we have some algorithm A that can break the second-preimage resis-
tance of MfQ and we want to construct an algorithm S that uses A to break
the second-preimage resistance of fQ. So S receives a message m ∈ Wn−q−k

and a key K ∈ Wk and must find m′ ∈ Wn−q−k such that m 6= m′ and
fQ(K,m) = fQ(K,m′). However, attempting to invoke A on m directly will not
succeed. In particular, A is only guaranteed to succeed with some probability
over the choice of K and M ∈ {0, 1}∗. In particular, A could be excellent at
finding second-preimages when given a target M such that |M | > n − q − k,
but absolutely miserable when |M | = n − q − k. Therefore we are unable to
translate the success of A into the success of S and the reduction fails.

Although it seems like it should be possible to perform such a reduction, we
know of no approach for reducing the property successfully. In addition, we do
not know of any similar attempts in the literature to prove domain extension
for second-preimage resistance. Therefore we will simply say that the collision
resistance of MD6 is secure with d/2 bits of security, therefore it follows that the
second-preimage resistance of MD6 is secure with at least d/2 bits of security
and hope that suffices.

However, we would like to specifically address the security requirements
in the NIST SHA-3 hash function specifications [70], with respect to second-
preimage resistance. According to those specifications, for a hash function with
a d bit message digest and a target preimage of 2k bits, the hash function should
have second-preimage security of approximately d− k bits.

The rationale for this condition is the following. In a hash function with
an iterative mode of operation (such as the plain Merkle-Damg̊ard construc-
tion), a target preimage m consisting of 2k message blocks forms a chain of 2k

invocations of the compression function. Therefore an adversary wishing to per-
form a second preimage attack on m can simply pick a random r and compute
fQ(IV, r) = y. It can then check whether y matches any of the 2k compression
function outputs yi. If so, it outputs the message m′ = r‖mi+1‖ · · · ‖m2k , which
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is a valid collision with m.
This attack works only because the length of the message m is not encoded

in the hash, so an attacker is able to substitute the prefix r anywhere into the
message chain. One simple method to foil this attack is to append the length of
the message to the end of the message, which prevents an attacker from being
able to substitute a truncated message that collides with m. However, even
this approach succumbs to similar cryptographic attacks, as demonstrated by
Kelsey and Schneier [50].

MD6 behaves differently from these approaches. Each compression function
used is given control words U and V in the input that label each compression
function with its position in the hash tree. Therefore the above attacks against
Merkle-Damg̊ard and strengthened Merkle-Damg̊ard are foiled since the adver-
sary is no longer given the 2k-for-1 advantage that it enjoyed for the Merkle-
Damg̊ard mode of operation (effectively, it is not able to query a substructure
of the hash function).

7.5 Pseudo-Random Function

Pseudorandomness is a useful property for a hash function to have. For one,
pseudorandomness implies unpredictability, meaning a pseudorandom hash func-
tion can perform as a message authentication code (MAC) [42, 41]. In addition,
many cryptographic protocols are proved to be secure in the so-called “ran-
dom oracle model” [37, 11], which assumes the existence of an oracle that maps
{0, 1}∗ into some fixed output domain D. The oracle is a black box that re-
sponds to queries in {0, 1}∗ with a uniformly random response chosen from D
(except for inputs that have been queried previously, whereupon it is consis-
tent). In practice, protocols that assume the existence of a random oracle use
a cryptographic hash function instead, in which case we desire that the hash
function family be pseudorandom or in some sense indistinguishable from a
random oracle. Unfortunately, random oracles do not actually exist in real life,
and therefore proofs in the random oracle model only provide a heuristic for
security [24]. Nevertheless, it is still desirable to be able to show that a cryp-
tographic hash function family is pseudorandom, under certain assumptions on
the compression function used.

Previous works have shown that the Cipher Block Chaining mode of opera-
tion is a domain extender for the property of pseudorandomness [8, 9, 60]. In
this chapter we will demonstrate that the MD6 mode of operation also acts as
a domain extender for fixed-length pseudorandom functions.

7.5.1 Maurer’s Random System Framework

Throughout much of this section we use key concepts from the Random Systems
framework developed by Ueli Maurer [60]. Many of these definitions and lemmas
and much of the terminology are composites of several related papers [60, 77, 61]
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7.5.1.1 Notation

We generally adhere to the notation used in previous work. Characters in a
calligraphic font (such as X or Y) denote sets, and their corresponding italicized
roman characters X and Y denote random variables that take values in X and Y
(with some distribution). Superscripts for sets and random variables generally
denote a tuple, so X i = X × · · · × X︸ ︷︷ ︸

i

andXi = (X1, . . . , Xi) is a random variable

over X i. We reserve bold-face characters for random systems, which are defined
below.

7.5.1.2 Definitions

In order to reason about the complicated interactions of certain cryptographic
systems, it is helpful to use the Random Systems framework of Maurer [60]. In
particular, for some cryptographic system S and for each i, S takes in an input
Xi and produces (probabilistically) a corresponding output Yi (in sequence, so
next it takes input Xi+1 and produces Yi+1). If S is stateless, then Yi depends
only on Xi; however, we can also consider S as possibly stateful, and so Yi de-
pends on the totality of the previous values X1, X2, . . . , Xi and Y1, Y2, . . . , Yi−1

(which are referred to as Xi and Y i−1 for convenience).
Thus the behavior of the random system S can be defined as a sequence of

conditional probability distributions, as follows.

Definition 13 (Random System) A (X ,Y)-random system F is an infinite
sequence of conditional probability distributions

F =
{
PrYi|XiY i−1

}∞
i=1

.

Collectively, we denote this sequence as PrFYi|XiY i−1 , the superscript denoting
which random system this distribution corresponds to.

Definition 14 (Equivalence of Random Systems) Two random systems F
and G are said to be equivalent, written F ≡ G, if

for all i ≥ 1, PrFYi|XiY i−1 ≡ PrGYi|XiY i−1 ,

or equivalently, for all i ≥ 1, (y1, . . . , yi) ∈ Yi, (x1, . . . , xi) ∈ X i,

PrFYi|XiY i−1(x1, . . . , xi, y1, . . . , yi) = PrGYi|XiY i−1(x1, . . . , xi, y1, . . . , yi).

Definition 15 (Random Function) A random function F : X → Y is a
random variable that takes as values functions on X → Y (with some given
distribution). Therefore F is also a (stateless) random system, where

PrFYi|XiY i−1 = PrFYi|Xi

and this distribution is determined by the distribution of F on X → Y.



CHAPTER 7. MODE OF OPERATION SECURITY 149

Example 1 Consider the following random functions R and P.

Uniform Random Function Let R : X → Y denote the random function
with a uniform distribution over the space of all functions mapping X →
Y.

Uniform Random Permutation Let P : X → X denote the random func-
tion with a uniform distribution over the space of all permutations mapping
X → X .

It is a well-known fact that if we are only given o
(√
|X |
)

queries, it is difficult
to distinguish between a uniform random function R : X → X and a uniform
random permutation P : X → X . For illustrative purposes, we will prove this
fact via the random system framework in Example 2.

We now attempt to develop the formal notion of monotone conditions for
random systems. Intuitively, we are trying to capture some series of events that
occur on the choices of inputs and outputs of the random system. For example,
suppose we are trying to distinguish between R and P given q queries, as above.
If we condition on the event that we have not observed any collisions in the
output of R, then the distribution on the outputs of each random function are
identical (and therefore we have no hope of being able to distinguish them).
Thus in this example we might say that the monotone condition is “the event
that we have not observed a collision in the output of R up to query i”. We
can formalize this intuitive notion as follows.

Definition 16 (Monotone Conditions) A monotone condition A for a ran-
dom system F is an infinite sequence (A1, A2, . . . ) of events with an additional
monotonicity condition. We define Ai to be the event that the specified condi-
tion is satisfied after query i, and Ai is the negation of this event (the specified
condition is not satisfied after query i). The monotonicity of the condition A
means that once the event is not satisfied for a given query i, it will not be
satisfied after further queries (so, Ai =⇒ Ai+1).

We can additionally define the random system F conditioned on A, F | A,
to be the sequence of conditional probability distributions

PrFYi|XiY i−1Ai
, for all i ≥ 1

which are simply the distribution on the output Yi conditioned on the previous
state Xi−1Y i−1, the current query Xi, and the monotone condition Ai. Note
that we do not need to condition on the event A1∧· · ·∧Ai, since Ai =⇒ Ai−1.
For a more formal definition, see [60, 61].

To go back to our earlier example, it is clear that the no-collisions condition
is monotone, because observing a collision after query i implies that a collision
has been observed after any further queries. As we will show in Example 2,
when we condition R on this no-collision monotone condition A, the resulting
distribution R | A is equivalent to the uniform random permutation P.
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Definition 17 (Distinguisher) An adaptive distinguisher for (X ,Y)-random
systems is defined as a (Y,X )-random system D that interactively and adap-
tively queries (X ,Y)-random systems and ultimately outputs a bit Dq after some
number of queries q. If D is a non-adaptive distinguisher, it must first fix its
queries X1, . . . , Xq in advance before receiving the outputs Y1, . . . , Yq and out-
putting its decision bit Dq.

The random experiment when we pair the distinguisher D with an (X ,Y)-
random system F (where D submits a query to F, F responds to D, D submits
another query, and so forth) is denoted by D � F.

Definition 18 (Advantage) We denote the advantage of a distinguisher D
given q queries for distinguishing two (X ,Y)-random systems F and G as
∆D
q (F,G). There are several equivalent formal definitions. We can say that

∆D
q (F,G) =

∣∣∣PrD�F[Dq = 1]− PrD�G[Dq = 1]
∣∣∣ ,

which requires that the decision bit Dq was computed optimally for this definition
to be precise, or we can also say that the advantage is the statistical difference
between the distributions D � F and D � G (which are distributions over the
space X q × Yq)

∆D
q (F,G) =

1
2

∑
X q×Yq

∣∣∣PrD�FXqY q − PrD�GXqY q

∣∣∣ .
The advantage of the best distinguisher on random systems F and G can be
defined as

∆q(F,G) = max
D

∆D
q (F,G) .

On occasion we may want to restrict ourselves to only distinguishers D given
certain resource constraints. Thus by ∆q,µ(F,G) we mean the maximum ad-
vantage over all adversaries given q queries of total bit-length µ. If we wish to
furthermore constrain their running time by t, we specify this as ∆t,q,µ(F,G).

Going back to our earlier no-collision example, we have a random function
R and the no-collision monotone condition A on R. Recall that if D succeeds
in causing Aq to be false, then it will successfully distinguish R from P (because
P does not have collisions). If this occurs, we say that D has provoked Aq.

Definition 19 (Provoking Failure in a Monotone Condition) Let F be a
random system and let A be some monotone condition on F. Denote the prob-
ability that D provokes the condition A to fail after q queries (that is, provokes
Aq) as

νD
q

(
D, Ak

)
= PrD�F

Aq
= 1− PrD�FAq

.

Denote the probability for the best such D to be

νq
(
F, Ak

)
= max

D
νD
q

(
D, Ak

)
.
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When we restrict ourselves to considering only non-adaptive distinguishers
D, we use the notation

µq
(
F, Ak

)
= max

non-adaptive D
νD
q

(
D, Ak

)
.

In the prior no-collision example, if D is some algorithm for finding a collision
in the random function R, then clearly its success probability is bounded from
above by νq

(
F, Ak

)
.

7.5.1.3 Bounding Distinguishability

Throughout this chapter we will make use of some important lemmas due to
Maurer [60], the proofs of which we will omit for the sake of brevity, as we focus
on our original results. However, we will give proof sketches of Maurer’s lemmas
when it is helpful to do so. For a much more rigorous treatment of the theory
of random systems, we refer the reader to Maurer and Pietrzak [60, 77].

Lemma 5 (Lemma 5(i) [60]) For random systems, F, G, H,

∆q(F,H) ≤ ∆q(F,G) + ∆q(G,H) .

Proof: This follows directly by the triangle inequality.
In the following lemma we show an upper bound on the advantage of a

distinguisher D for random systems F and G based on the ability of D to
provoke the failure of a monotone condition on F.

Lemma 6 (Theorem 1(i) [60]) For random systems F and G, if A is some
monotone condition such that F | A ≡ G, then the advantage of the best distin-
guisher for F and G is bounded by the probability of provoking A given the best
adaptive strategy.

∆q(F,G) ≤ νq
(
F, Ak

)
Proof Sketch 1

∆q(F,G) ≤ νq
(
F, Ak

)
·∆q

(
F | A,G

)
+ (1− νq

(
F, Ak

)
) ·∆q(F | A,G)

≤ νq
(
F, Ak

)
· 1 + (1− νq

(
F, Ak

)
) · 0

= νq
(
F, Ak

)
The first inequality holds by the law of total probability. The second is due to
the fact that F | A ≡ G, hence ∆q(F | A,G) = 0.

In certain situations, adaptivity does not increase a distinguisher’s advantage
with respect to provoking the failure of some monotone condition. The following
lemma provides a sufficient condition for this to be true.
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Lemma 7 (Theorem 2 [60]) For a random system F with a monotone con-
dition A, if there exists a random system G such that F | A ≡ G, i.e.

for all i ≥ 1,PrFY i|XiAi
≡ PrGY i|Xi

then adaptivity does not help in provoking Aq:

νq
(
F, Ak

)
= µq

(
F, Ak

)
.

Proof: See [77, Lemma 6].
To illustrate the usefulness of this framework, we return to our demonstration

of the indistinguishability of a random function R : {0, 1}n → {0, 1}n from a
random permutation P : {0, 1}n → {0, 1}n by any distinguisher D asking o

(
2

n
2
)

queries (adapted from [77, Examples 1–3]).

Example 2 We first begin by defining the monotone condition A = {Ai}, where
Ai is the event that after the ith query all distinct inputs have produced distinct
outputs. It is fairly straightforward to demonstrate that R | A ≡ P: unless one
has observed a collision, a random function has output distribution identical to
a random permutation.

Therefore by Lemma 6, ∆q(R,P) ≤ νq
(
R, Ak

)
. By definition, νq

(
R, Ak

)
is

the probability of success of the best distinguisher to provoke a collision (using
distinct inputs) on a uniformly random function R, which is clearly bounded by
the Birthday Paradox (see [32, Appendix A]).

∆q(R,P) ≤ νq
(
R, Ak

)
≤ q(q − 1)

2n+1

For q = o
(
2

n
2
)
, this is a negligible probability of success.

7.5.2 MD6 as a Domain Extender for FIL-PRFs

With the random system framework and the above lemmas, we can now prove
that MD6 behaves as a domain extender on FIL-PRFs that preserves pseudo-
randomness.

7.5.2.1 Preliminaries

Here we define some random systems used throughout this section.

• Let R denote the random function with uniform distribution over func-
tions mapping Wn−q−k →Wc

• Let fQ : Wk ×Wn−q−k →Wc be the compression function used. Then
let F : Wn−q−k → Wc denote the random function with a uniform dis-
tribution over the set {

fQ(K, ·) | K ∈Wk
}
.
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• Let O denote a random function with output space Y = {0, 1}d and input
space X = {0, 1}∗ such that for all i ≥ 1, x ∈ {0, 1}∗, y ∈ {0, 1}d,

PrOYi|Xi
(y, x) =

1
2d
.

O is usually referred to as a random oracle.

• For a random function G : Wn−q−k → Wc, let HG denote the random
function mapping {0, 1}∗ → {0, 1}n by applying the MD6 mode of oper-
ation (without the final compression function and chop) with G as the
compression function.

• For a random function G : Wn−q−k → Wc, let MG denote the ran-
dom function mapping {0, 1}∗ → {0, 1}d by applying the MD6 mode of
operation with G as the compression function. Thus

MG = χd ◦G ◦ HG.

Our goal in this section will be to demonstrate that if F is a FIL-PRF
(indistinguishable from R), then MF will be a VIL-PRF (indistinguishable
from O).

Definition 20 (FIL-Pseudorandom Function) A random function G map-
ping Wn−q−k → Wc is a (t, q, ε)-secure FIL-pseudorandom function (FIL-
PRF) if it is (t, q, ε)-indistinguishable from the uniform random function on
the same domain and range,

∆t,q(G,R) ≤ ε.

We say that G is a (q, ε)-secure FIL-quasirandom function (FIL-QRF) if
it is a (∞, q, ε)-secure FIL-PRF. That is, we do not restrict the computational
abilities of the distinguisher D but we restrict the number of queries that it can
make. As we are considering distinguishers unconstrained by time, we omit this
variable from the subscript, and write

∆q(G,R) ≤ ε.

Therefore if G is a (q, ε)-secure FIL-QRF, then it is a (t, q, ε)-secure FIL-
PRF for any choice of t.

Definition 21 (VIL-Pseudorandom Function) A random function G map-
ping {0, 1}∗ → {0, 1}d is a (t, q, µ, ε)-secure VIL-pseudorandom function (VIL-
PRF) if it is (t, q, µ, ε)-indistinguishable from a random oracle O,

∆t,q,µ(G,O) ≤ ε.

As above, we say that G is a (q, µ, ε)-secure VIL-quasirandom function (VIL-
QRF) if

∆q,µ(G,O) ≤ ε.
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7.5.2.2 Indistinguishability

Our proof that MF is indistinguishable from O proceeds as follows. First we
notice by the triangle inequality (Lemma 5) that

∆q,µ

(
MF,O

)
≤∆q,µ

(
MF,MR

)
+ ∆q,µ

(
MR,O

)
. (7.1)

Then it only remains to bound the quantities on the right-hand side. In Lemma 8,
we show how to bound the first term by the advantage for distinguishing between
F and R (which by assumption is small).

Lemma 8 (Adapted from Lemma 5(ii) [60]) For random systems G and
H that map Wn−q−k →Wc,

∆t′,q,µ

(
MG,MH

)
≤ ∆t,δ(q,µ)(G,H) ,

where t′ = t−O(δ(q, µ)).

Proof: Given a distinguisher D forMG andMH with resource constraints t′,
q, and µ, we can construct an algorithm for distinguishing G and H that uses
D as a subroutine. This algorithm responds to the queries of D by simulating
the MD6 mode of operationM on G or H. By Lemma 2, this requires at most
δ(q, µ) queries. Since the only work to be done is in simulating M, this takes
total time t′ +O(δ(q, µ)).

For the second term of Equation (7.1), we proceed in a manner that is
similar to the proof that a random function is indistinguishable from a random
permutation (Example 2). That is, we will construct a monotone condition
A such that MR

∣∣A ≡ O, and we then bound the probability of provoking
A. However, unlike a random permutation, a random oracle O naturally has
collisions, so our previous no-collision monotone condition is not applicable.
Thus we design a new monotone condition, one that involves so-called bad
collisions. A bad collision inMR is one that occurs prior to the final compression
function in the MD6 mode of operation. As we will show in Lemma 9, if we
condition on the absence of bad collisions in MR, then the distribution of its
outputs are identical to that of O.

Definition 22 (Bad Collision) For a random function G : Wn−q−k → Wc

and messages M,M ′ ∈ {0, 1}∗, let BCMG
L

(M,M ′) denote the event that

M 6= M ′, and HG
L (M) = HG

L (M ′).

Note that a bad collision necessarily implies a collision in MF.

A bad collision on M and M ′ means that not only does HG
L (M) = HG

L (M ′),
but heightL(|M |) = heightL(|M ′|) as well. This is because one word of the
input to each compression function is devoted to U , the representation of the
level ` and index i of the compression function in the hash tree. In particular,
for the final compression function, the height of the hash tree is encoded into U ,
since `+i−2 is the height of the tree. Therefore if heightL(|M |) 6= heightL(|M ′|)
then it is impossible for HG

L (M) = HG
L (M ′), because this height information is

encoded into the output of HG
L .



CHAPTER 7. MODE OF OPERATION SECURITY 155

Lemma 9 Let A = {Ai} be the monotone condition on MR
L such that Ai is

the event that there are no bad collisions in the first i queries (M1,M2, . . . ,Mi):

Ai =
∧

1≤j≤j′≤i

BCMR
L

(Mj ,Mj′).

Then MR
L

∣∣A ≡ O.

Proof: Recall thatMR
L = χd ◦R◦HR

L , and further, the event BCMR
L

(M,M ′)
implies that HR

L (M) 6= HR
L (M ′). So, effectively, we are asking about the output

distribution of (χd ◦ R) : Wn−q−k → {0, 1}d, conditioned on having distinct
inputs, as compared to the output distribution of O : {0, 1}∗ → {0, 1}d, also
conditioned on having distinct inputs. Since χd ◦R is just the random function
with uniform distribution over all functions mapping Wn−q−k → {0, 1}d, these
distributions are identical (namely, the uniform distribution over {0, 1}d).

We can now apply the above lemma to bound the probability of distinguish-
ing between MR

L and O.

Lemma 10 If MR
L

∣∣A ≡ O, then

∆q

(
MR

L ,O
)
≤ q(q − 1)

2
·
heightL

(
µ
q

)
2cw

.

Proof: By Lemma 6, since MR
∣∣A ≡ O, any adversary’s advantage for

distinguishing betweenMR and O with q queries is bounded by the probability
of success by the best adaptive algorithm at provoking Aq (that is, finding a
bad collision).

∆q

(
MR,O

)
≤ νq

(
MR, Ak

)
.

In addition, by Lemma 7, the probability of success for the best adaptive strat-
egy is no better than that for the best non-adaptive strategy (and in fact, they
are equal). Therefore,

νq
(
MR, Ak

)
= µq

(
MR, Ak

)
.

Thus, we may simply consider the probability of provoking a bad collision
non-adaptively, which is the great benefit of using Maurer’s framework. To do
this, we will first compute the probability that two arbitrary distinct messages
M and M ′ will have a bad collision, and then apply the birthday bound.

Recall that a bad collision occurs when we have two messages M 6= M ′

where heightL(M) = heightL(M ′) and HR(M) = HR(M ′). Therefore we can
first restrict ourselves to considering only messages M,M ′ which have equal
height h.

Now, with this assumption, we wish to upper bound Pr[BCMR(M,M ′)].
Our goal will be to prove by induction on the height h that

Pr[BCMR(M,M ′)] ≤ h

2cw
.
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The base case here is straightforward. It is impossible for two trees of height 1
to have a bad collision. This is because height 1 trees have only one compression
function, namely the final one. By definition, a bad collision is a collision that
occurs before the final compression function, which simultaneously requires that
M 6= M ′ and M = M ′. Thus we have a contradiction.

For the inductive step, note that the output of HR(M) can be described as
follows. First, there exists a partition of M into M1‖M2‖M3‖M4 of four (some
possibly empty) bit strings such that

HR(M) = U‖V ‖HR
1 (M1)‖HR

2 (M2)‖HR
3 (M3)‖HR

4 (M4).

Here the HR
i are random functions mapping {0, 1}∗ → Wc and U and V

are the auxiliary control information inserted by the MD6 mode of operation.
In particular, when viewed as a hash tree, the height of each HR

i (Mi) is at most
h− 1. In addition, if we also partition M ′ in this fashion, we notice that since
M 6= M ′ there exists a j such that Mj 6= M ′j . Therefore

Pr[BCMR(M,M ′)] = Pr
[
HR(M) = HR(M ′)

]
≤ Pr

[
4∧
i=1

(
HR
i (Mi) = HR

i (M ′i)
)]

=
4∏
i=1

Pr
[
HR
i (Mi) = HR

i (M ′i)
]

≤ Pr
[
HR
j (Mj) = HR

j (M ′j)
]
.

Thus, we’ve upper bounded the probability of a bad collision occurring by
the probability of there being a collision for one of the HR

i . Let E denote the
event that this collision, HR

j (Mj) = HR
j (M ′j), occurs. Then

Pr[E] = Pr
[
E
∣∣∣BCHR

j
(Mj ,M

′
j)
]
· Pr
[
BCHR

j
(Mj ,M

′
j)
]

+ Pr
[
E
∣∣∣BCHR

j
(Mj ,M ′j)

]
· Pr
[
BCHR

j
(Mj ,M ′j)

]
(7.2)

≤ 1 · Pr
[
BCHR

j
(Mj ,M

′
j)
]

+
1

2c·w
· Pr
[
BCHR

j
(Mj ,M ′j)

]
(7.3)

≤ Pr
[
BCHR

j
(Mj ,M

′
j)
]

+
1

2cw

≤ h− 1
2cw

+
1

2cw
(7.4)

=
h

2cw
(7.5)

Equation (7.2) follows by the law of total probability. In the derivation of In-
equality (7.3), we observe that the conditional probability Pr

[
E
∣∣∣BCHR

j
(Mj ,M ′j)

]
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is just the probability of collision for the random function R on distinct inputs,
which is equivalent to 1

2cw . In addition, Pr
[
E
∣∣∣BCHR

j
(Mj ,M

′
j)
]

is the proba-
bility of collision for the random function R on identical inputs, which is 1. For
Inequality (7.4), we can use our inductive hypothesis, since as we noted earlier
HR
j (Mj) has height at most h− 1, thereby arriving at Inequality (7.5).

Since we’ve shown that for any two messages M and M ′ the probability of
a bad collision is bounded by h

2cw , it remains to bound the total probability of
causing a bad collision given q non-adaptive queries of total length at most µ.
Since an adversary cannot cause a bad collision by querying two messages with
different heights, the best strategy for the adversary is to produce q queries of
all equal height heightL

(
µ
q

)
, and by the birthday bound

∆q

(
MR,O

)
≤ q(q − 1)

2
·
heightL

(
µ
q

)
2cw

.

Now that we have bounded the probability of success for any distinguisher
given resources q and µ, we show that MD6 acts as a domain extender for
FIL-QRFs, and later we will show that it does the same for FIL-PRFs.

Theorem 5 Fix the resource constraints q, and µ. If F is a (δ(q, µ), ε)-secure
FIL-QRF, then MF

L is a (q, µ, ε+ β(q, µ))-secure VIL-QRF, where

β(q, µ) =
q(q − 1)

2
·
heightL

(
µ
q

)
2cw

.

Proof: By Lemma 5 (the triangle inequality), the advantage of any adversary
given q queries and total message bit-length µ in distinguishing MF from O is

∆q,µ

(
MF

L,O
)
≤ ∆q,µ

(
MF

L,MR
L

)
+ ∆q,µ

(
MR

L ,O
)
.

By Lemma 8, the advantage of any adversary given q queries and µ bits in
distinguishing MF

L and MR
L is

∆q,µ

(
MF

L,MR
L

)
≤ ∆δ(q,µ)(F,R) ≤ ε.

Therefore it remains only to bound ∆q

(
MR,O

)
. By applying Lemmas 9 and 10,

we can bound this by

∆q,µ

(
MR

L ,O
)
≤ q(q − 1)

2
·
heightL

(
µ
q

)
2cw

.

Finally, combining this with our previous results yields

∆q,µ

(
MF

L,O
)
≤ ε+

q(q − 1)
2

·
heightL

(
µ
q

)
2cw

.
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Corollary 3 If F is a (t, δ(q, µ), ε)-secure FIL-PRF, then MF
L is a (t′, q, µ, ε+

β(q, µ))-secure VIL-PRF, where t′ = t−O(δ(q, µ)).

Proof: The proof proceeds almost identically to Theorem 5.

∆t′,q,µ

(
MF

L,O
)
≤∆t′,q,µ

(
MF

L,MR
L

)
+ ∆t′,q,µ

(
MR

L ,O
)

≤∆t′,q,µ

(
MF

L,MR
L

)
+ β(q, µ)

≤∆t,δ(q,µ)(F,R) + β(q, µ) (7.6)
≤ ε+ β(q, µ)

Inequality (7.6) follows as a corollary to Lemma 8, since simulating the query
responses to the adversary takes time O(δ(q, µ)).

One important note is that for large values of L, heightL(x) grows loga-
rithmically in x. However, for the iterative mode of operation with L = 0,
heightL(x) grows linearly in x. Holding q fixed, this is asymptotically the same
as the bound shown by Bellare et al. for the Cipher Block Chaining mode of
operation [9], which was approximately O

(
`q2

2cw

)
, where ` is the block length of

the longest query. Therefore the MD6 mode of operation for large L represents
an asymptotic improvement (logarithmic in heightL(µ/q) as opposed to linear)
over the Cipher Block Chaining mode of operation.

7.6 Unpredictability

That a family of functions has the property of pseudorandomness is a very strong
assumption to make. A weaker assumption is that the family of functions is
merely unpredictable, which allows it to function as a MAC (recall that pseu-
dorandomness implies unpredictability, and thus PRFs are also MACs [42, 41].)
However, if one simply wants to prove that some hash function HfQ is a secure
MAC, it seems unnecessary to derive this property by assuming that the under-
lying compression fQ is pseudorandom. One might wonder whether it is instead
possible to prove that HfQ is a MAC if fQ is a MAC, analogously to the proof
in Section 7.5.2. If so, it might alleviate some concerns about the use of a hash
function HfQ as a MAC, since a successful pseudorandomness distinguisher for
fQ would not necessarily invalidate the MAC capabilities of HfQ (unless fQ is
also shown to be predictable as well).

The above relation does not necesserily hold when H is the Cipher Block
Chaining (CBC) mode of operation, HCBC. Whereas one can prove concretely
that CBC-MAC is pseudorandom if its underlying block cipher is pseudoran-
dom [8, 9], An and Bellare constructed a simple FIL-MAC f such that Hf

CBC

does not share the property of unpredictability [3]. However, they also demon-
strated that a two-keyed variant of the Merkle-Damg̊ard construction is a VIL-
MAC if its compression function is a FIL-MAC. Thus it is interesting for us
to consider if MD6 also is a domain extender that preserves the property of
unpredictability.
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7.6.1 Preliminaries

We begin with some definitions that will be essential to our later proofs.

Definition 23 (FIL-MAC) For a keyed FIL function fQ : Wk ×Wn−q−k →
Wc, define the advantage of an adversary A for forging a MAC as

Advfil-mac
A = Pr

[
K

$←Wk;
(m,D)← AfQ(K,·) :

fQ(K,m) = D,
m was not a query to fQ(K, ·)

]
We define the insecurity of the FIL-MAC fQ to be

InSecfil-mac
f (t, q) = max

A

{
Advfil-mac

A

}
,

where the maximum is taken over all adversaries A with running time t and
number of fQ(K, ·) oracle queries q.

Definition 24 (VIL-MAC) For a keyed VIL function H : Wk × {0, 1}∗ →
{0, 1}d, define the advantage of an adversary A for forging a MAC as

Advvil-mac
A = Pr

[
K

$←Wk;
(M,D)← AH(K,·) :

H(K,M) = D,
M was not a query to H(K, ·)

]
We define the insecurity of the VIL-MAC H to be

InSecvil-mac
H (t, q, µ) = max

A

{
Advvil-mac

A

}
,

where the maximum is taken over all adversaries A with running time t and
number of H(K, ·) oracle queries q and total query bit-length µ.

To proceed, we must define the notion of weak collision resistance. As the
name implies, this is a weaker notion of the collision resistance defined in Sec-
tion 7.2; rather than giving the collision-finding algorithm the key K, we instead
give it only oracle access to the keyed function.

Definition 25 (FIL-WCR) For a keyed FIL function fQ : Wk×Wn−q−k →
Wc, define the advantage of an adversary A for FIL-weak collision resistance
as

Advfil-wcr
A = Pr

[
K

$←Wk;
(m,m′)← AfQ(K,·) :

m 6= m′

fQ(K,m) = fQ(K,m′),

]
We define the insecurity of the FIL-WCR fQ to be

InSecfil-wcr
f (t, q) = max

A

{
Advfil-wcr

A

}
,

where the maximum is taken over all adversaries A with running time t and
number of fQ(K, ·) oracle queries q.
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Definition 26 (VIL-WCR) For a keyed VIL function H : Wk × {0, 1}∗ →
Wc, define the advantage of an adversary A for VIL-weak collision resistance
as

Advvil-wcr
A = Pr

[
K

$←Wk;
(M,M ′)← AH(K,·) :

M 6= M ′,
H(K,M) = H(K,M ′)

]

We define the insecurity of the VIL-WCR H to be

InSecvil-wcr
H (t, q, µ) = max

A

{
Advvil-wcr

A

}
,

where the maximum is taken over all adversaries A with running time t and
number of H(K, ·) oracle queries q and total query bit-length µ.

We also make use of some lemmas from An and Bellare. We restate them
here, without rigorous proofs, which can be found in [3].

7.6.1.1 Important Lemmas

The two-keyed variant of Merkle-Damg̊ard shown in An and Bellare is defined
as follows. Given a keyed compression function g : {0, 1}k × {0, 1}`+b → {0, 1}`
and two keys K1 and K2, use the strengthened Merkle-Damg̊ard construction
where all compression functions except for the final one use key K1. The final
compression function then uses K2. In their proof that this is a domain extender
for FIL-MACs, An and Bellare used several steps.

1. Show that a FIL-MAC g is also FIL-weak collision resistant.

2. Prove that the Merkle-Damg̊ard construction (without the last compres-
sion function) is a domain extender for FIL-weak collision resistance. That
is, if the compression function g used is FIL-WCR, then the overall hash
function h (without the last compression function) is VIL-WCR.

3. Demonstrate that composing a FIL-MAC g with a VIL-WCR function h
(with independent keys) is a VIL-MAC. Therefore by points 1 and 2, we
have a VIL-MAC from a FIL-MAC.

We begin with a formal statement of the last point.

Lemma 11 (Lemma 4.2 [3]) Let g : Wk ×Wn−q−k → {0, 1}d be a FIL-
MAC and let h : Wk × {0, 1}∗ → Wn−q−k be a VIL-WCR function. Define
H : W2k × {0, 1}∗ → {0, 1}d as

H(K1,K2,M) = fQ(K2, h(K1,M))

for keys K1,K2 ∈Wk and M ∈ {0, 1}∗. Then H is a VIL-MAC with

InSecvil-mac
H (t, q, µ) ≤ InSecfil-mac

g (t, q) + InSecvil-wcr
h (t, q, µ).
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Proof: See [3, Appendix A.1].
In addition, we will also make use of the following lemma, which states

formally point 1 from above.

Lemma 12 (Lemma 4.4 [3]) Let fQ : Wk ×Wn−q−k →Wc be a FIL-MAC
family of functions. Then it is also a FIL-WCR family with

InSecfil-wcr
f (t, q) ≤ q(q − 1)

2
· InSecfil-mac

f (t+O(q), q).

Proof: See [3, Appendix A.3].
Since the MD6 mode of operation is different from the two-keyed Merkle-

Damg̊ard construction of An and Bellare, we omit the formal statement for
point 2. Instead, we will prove our own version in Lemma 13 for the MD6 mode
of operation.

7.6.1.2 A Two-Keyed Variant of MD6

Note that in Lemma 11 the hash function H has a keyspace with twice as many
bits as the underlying functions g and h. Therefore, a straight adaptation of
the techniques of An and Bellare [3] for MD6 does not immediately follow, as
MD6 has only a single key. Thus, we demonstrate here that a two-keyed variant
of MD6, which we will refer to as M〈2〉,is a domain extender for FIL-MACs,
in much the same fashion as An and Bellare’s approach. That is, we show that
the function

M〈2〉fQ(K1,K2,M) = χd(fQ(K2,HfQ(K1,M)))

where M〈2〉fQ : W2k × {0, 1}∗ → {0, 1}d is a VIL-MAC if fQ and χd ◦ fQ are
FIL-MACs.

We begin by proving that if the compression function fQ is a FIL-WCR, then
HfQ is a VIL-WCR function. This is analogous to [3, Lemma 4.3], where An
and Bellare prove that the Merkle-Damg̊ard construction also acts as a domain
extender for FIL-WCRs. The proof of this lemma is very similar to the proof
of Theorem 3, as weak collision resistance is a weaker notion of the standard
collision resistance. However, due to the additional query resource constraints
in the weak collision resistance definition, we must be precise in our adaptation.

Lemma 13 Let fQ : Wk×Wn−q−k →Wc be a FIL-WCR family of functions.
Then HfQ : Wk × {0, 1}∗ →Wn−q−k is a VIL-WCR family of functions with

InSecvil-wcr
HfQ (t, q, µ) ≤ InSecfil-wcr

f (2t, δ(q, µ)).

Proof: We proceed in a manner that is very similar to the proof for Theorem 3.
Let A be an algorithm with the best possible success for breaking the VIL-weak
collision resistance of HfQ , given resources t, q and µ. As before, we construct
an algorithm C that uses A as a subroutine to attack the FIL-weak collision
resistance of fQ.
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Recall that in the weak collision resistance setting, instead of being given the
key K as input, we are instead only given oracle access to the function keyed
by K. Therefore CfQ(K,·) is given time 2t, q queries, and µ total bits queried,
and must produce messages m 6= m′ such that fQ(K,m) = fQ(K,m′).

Algorithm CfQ(K,·)

Input: A, the HfQ collision-finding algorithm
Output: m 6= m′, such that fQ(K,m) = fQ(K,m′)
1. for i ≤ 1 to q
2. do A→Mi,
3. A← HfQ(K,·)(Mi)
4. A→ (M,M ′)
5. P ← HfQ(K,·)(M) and store each input to fQ(K, ·)
6. P ′ ← HfQ(K,·)(M ′) and store each input to fQ(K, ·)
7. if M 6= M ′ and P = P ′

8. then Use Theorem 2 to find two messages m 6= m′ s.t. fQ(K,m) =
fQ(K,m′)

9. return (m,m′)
10. else return (0n, 0n)

Note that although we are using HfQ instead of MfQ , Theorem 2 still ap-
plies. This is because M 6= M ′ and MfQ(K,M) = MfQ(K,M ′), and thus a
collision in fQ exists. However, it does not occur during the last compression
function fQ, since P = P ′. Therefore it must be “contained in” HfQ .

The advantage for C for breaking the weak collision resistance of fQ is at least
the advantage of A for breaking the weak collision resistance of HfQ , because C
succeeds precisely when A succeeds. As in Theorem 3, the amount of required
is at most 2t (the time it takes to run A plus the time it takes to perform the
hashes). In addition, by Lemma 2, the total number of oracle queries to fQ(K, ·)
that we need to make is bounded by δ(q, µ).

We can now prove that the two-keyed variant of MD6 M〈2〉fQ is a VIL-
MAC, assuming that fQ is a FIL-MAC and also that g = χd ◦ f is a FIL-MAC.
Note that the fact that g is a FIL-MAC does not follow automatically from the
fact that fQ is a FIL-MAC, so we will treat them as functions with separate
levels of security.

Theorem 6 Let fQ : Wk ×Wn−q−k → Wc be a FIL-MAC. Define the final
compression function g = (χd ◦ f) : Wk ×Wn−q−k → {0, 1}d and suppose that
it is also a FIL-MAC. Then the two-keyed variant of MD6 M〈2〉fQ : W2k ×
{0, 1}∗ → {0, 1}d is a VIL-MAC with

InSecvil-mac
M〈2〉fQ (t, q, µ) ≤ InSecfil-mac

g (t, q)+
δ(q, µ)2

2
·InSecfil-mac

f (2t+O(δ(q, µ)), δ(q, µ)) .

Proof: As in [3, Theorem 4.1], the proof of this theorem follows from Lemmas
11, 12 and 13.
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InSecvil-mac
M〈2〉fQ (t, q, µ) ≤ InSecfil-mac

g (t, q) + InSecvil-wcr
HfQ (t, q, µ)

≤ InSecfil-mac
g (t, q) + InSecfil-wcr

f (2t, δ(q, µ))

≤ InSecfil-mac
g (t, q) +

δ(q, µ)2

2
· InSecfil-mac

f (2t+O(δ(q, µ)), δ(q, µ))

7.6.2 MD6 as a Domain Extender for FIL-MACs

It seems somewhat artificial to double the number of bits in the keyspace of
MD6 simply to prove that it acts as a domain extender for FIL-MACs. Ideally,
we would like to prove that it has this property as is, while still only making
the assumption that the underlying compression functions fQ and g are FIL-
MACs. Unfortunately, at the moment we do not know how to prove this directly
(although we have no counterexample for this property). Thus, in order to prove
this statement for the standard version of MD6, we will make use of they key-
blinding assumption defined in Section 6.8.

Recall that the key-blinding assumption states that the flag bit z effectively
“blinds” the key values. That is, given oracle access to two functions:

f0
Q(·) = fQ(z = 0,K = κ0, ·)
f1
Q(·) = fQ(z = 1,K = κ1, ·)

then we should not be able to guess whether κ0 = κ1 or not with any significant
advantage. Recalling Definition 2:

Definition 27 (Key-Blinding Assumption) Let D be a distinguisher given
oracle access to two functions f0

Q and f1
Q that map Wk ×Wn−q−k−1 → Wc.

We define its advantage as follows.

Advblind
D,fQ

(t, q) =

∣∣∣∣∣ Pr

[
κ0

$←Wk;κ1
$←Wk; b $← {0, 1};

a← DfQ(z=0,κ0,·),fQ(z=1,κb,·)
: a = b

]
− 1

2

∣∣∣∣∣
The goal of D is to try to determine the value of b, i.e. whether f0

Q and f1
Q use

the same key or not. We can define the overall insecurity of the key-blinding
property of fQ to be

InSecblind
fQ

(t, q) = max
D

{
Advblind

D,fQ
(t, q)

}
,

where D is given resource constraints of (t, q).

With this assumption, we now prove that the single-keyed version of MD6
acts as a domain extender for FIL-MACs (with the key-blinding assumption).
The essential concept here is that by the key-blinding property of fQ, MfQ

behaves almost exactly like M〈2〉fQ to any algorithm given only oracle access
to MfQ .
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Lemma 14 Let fQ : Wk ×Wn−q−k →Wc. Then

InSecvil-mac
MfQ (t, q, µ) ≤ InSecvil-mac

M〈2〉fQ (t, q, µ) + 2 · InSecblind
f (t, δ(q, µ)) .

Proof: Let A be a forger with the best possible success for attacking the
single-keyed version of MD6, MfQ . Therefore, given resources t, q, and µ, the
probability of A succeeding is InSecvil-mac

MfQ (t, q, µ). We use A to construct a
distinguisher D that attacks the key-blinding property of fQ.

Recall that the distinguisher D is given oracle access to two functions f0
Q(·) =

fQ(z = 0,K = κ0, ·) and f1
Q(·) = fQ(z = 1,K = κ1, ·), which map Wk ×

Wn−q−k−1 →Wc, and must determine whether κ0 = κ1.

Algorithm Df
0
Q, f

1
Q

Output: 1 if κ0 6= κ1, 0 otherwise
1. for i = 1 to q
2. do A→Mi

3. A← χd(f1
Q(Hf

0
Q(Mi)))

4. A→ (M,D)
5. if χd(f1

Q(Hf
0
Q(M))) = D and for all i, M 6= Mi

6. then return 0
7. else return 1

The distinguisher uses A in the following manner: it constructs the function
χd ◦ f1

Q ◦Hf
0
Q using its two oracles and responds to hash queries by A with this

function. There are two cases:

1. If b = 1, then κ0 6= κ1. Therefore the hash function that A is querying is

χd ◦ f1
Q ◦ Hf

0
Q =M〈2〉fQ .

2. If b = 0, then κ0 = κ1. Therefore the hash function that A is querying is

χd ◦ f1
Q ◦ Hf

0
Q =MfQ .

Recall that A is an optimal forger forMfQ (although it may also be a forger for
M〈2〉fQ as well), and outputs a forgery (M,D). D outputs 0 if this is a valid
forgery (i.e. if A succeeds, then we suspect that κ0 = κ1). If the pair is not a
valid forgery, we output 1, as we believe that the reason for this failure is that
κ0 6= κ1. We can analyze the success probability of D as follows.
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Pr[D succeeds] = Pr[b = 1] · Pr
[
DfQ(z=0,K=κ0,·), fQ(z=1,K=κb,·) → 1 | b = 1

]
+ Pr[b = 0] · Pr

[
DfQ(z=0,K=κ0,·), fQ(z=1,K=κb,·) → 0 | b = 0

]
=

1
2
· Pr
[
A fails to forge M〈2〉fQ

]
+

1
2
· Pr
[
A successfully forges MfQ

]
≥ 1

2
·
(

1− InSecvil-mac
M〈2〉fQ (t, q, µ)

)
+

1
2
· InSecvil-mac

MfQ (t, q, µ)

(7.7)

=
1
2

+
InSecvil-mac

MfQ (t, q, µ)− InSecvil-mac
M〈2〉fQ (t, q, µ)

2

For Inequality (7.7), note that A could potentially succeed as a forger for
M〈2〉fQ . However, its advantage is bounded, as Advvil-mac

A,M〈2〉fQ (t, q, µ) ≤ InSecvil-mac
M〈2〉fQ (t, q, µ),

whereby we derive the inequality. Therefore,

Advblind
D,fQ

(t, δ(q, µ)) =
∣∣∣∣Pr[D succeeds]− 1

2

∣∣∣∣
≥

∣∣∣InSecvil-mac
MfQ (t, q, µ)− InSecvil-mac

M〈2〉fQ (t, q, µ)
∣∣∣

2

InSecblind
fQ

(t, δ(q, µ)) ≥

∣∣∣InSecvil-mac
MfQ (t, q, µ)− InSecvil-mac

M〈2〉fQ (t, q, µ)
∣∣∣

2

In particular, this implies

InSecvil-mac
MfQ (t, q, µ) ≤ InSecvil-mac

M〈2〉fQ (t, q, µ) + 2 · InSecblind
fQ

(t, δ(q, µ))

We now conclude by applying the above lemma to derive a bound on the
insecurity of MfQ .

Theorem 7 Let fQ : Wk ×Wn−q−k →Wc be a FIL-MAC and suppose that
it has the key-blinding property. Define g = (χd ◦ f) : Wk ×Wn−q−k → {0, 1}d
and suppose that it is also a FIL-MAC. Then MfQ : Wk × {0, 1}∗ → {0, 1}d is
a VIL-MAC with

InSecvil-mac
MfQ (t, q, µ) ≤ δ(q, µ)2

2
· InSecfil-mac

fQ
(2t+O(δ(q, µ)), δ(q, µ)) +

InSecfil-mac
g (t, q) + 2 · InSecblind

fQ
(t, δ(q, µ)) .

Proof: This follows directly by the application of Theorem 6 and Lemma 14.
Therefore we have shown that the MD6 mode of operation MfQ acts as a

domain extender for FIL-MACs, assuming that both fQ and g are FIL-MACs
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and that fQ has the key-blinding property. Unfortunately we needed to make
an additional assumption about the compression function fQ, and as such this
is not a true “domain extension” result. However, at the moment we know of
no other way to prove that MD6 has this property, without making additional
assumptions.

7.7 Indifferentiability from Random Oracle

In this section, we present a proof that the MD6 mode of operation is indiffer-
entiable from a random oracle assuming that the MD6 compression function is
a random oracle. Let fQ : Wn−q → Wc be the reduced compression function
defined in Section 2.4, and let MfQ be the MD6 mode of operation applied to
fQ. Section 6.1.2 presents a proof that the reduced MD6 compression function
fQ is indifferentiable from a random oracle under the assumption that fQ is
based on a random permutation. Thus, in this section, we will assume that fQ
is a random oracle.

We use Definition 1 from Section 6.1.2 for the notion of indifferentiability,
again relying on the framework of Maurer et al. [59] and the approach of Coron
et al. [31], but this time to analyze the MD6 mode of operation rather than the
MD6 compression function.

Theorem 8 If fQ : Wn−q →Wc is a random oracle, thenMfQ is (t, qF , qS , ε)-
indifferentiable from a random oracle F : {0, 1}∗ → {0, 1}d, with ε = 2q2

t /2
cw

and t = O(q2
S), for any qF and qS such that the total number of compression

function calls from the mode of operation queries and the compression function
queries of the distinguisher is at most qt.

Proof: Fix a distinguisher D that makes exactly qS compression function
queries and generates exactly qt compression function calls from its mode of
operation queries and its compression function queries. We will assume that all
of D’s compression function queries are of length (n− q) words.

Let γa(X) denote a function that truncates its input X by dropping its last
a bits.

We will define a simulator S with access to a random oracle F : {0, 1}∗ →
{0, 1}d as follows.

Upon receiving a compression function query x∗, S will use the algorithm
described below to decide to either answer with its own fresh random string or
consult F and return an answer based on the answer of F . (However, no matter
what, S will repeat the same answer if the query x∗ has been seen before.) This
decision is made as follows: S consults F on those queries x∗ that correspond
to the final compression function call in an MD6 computation for which all
intermediate compression function calls have already been queried to S. We
will call such compression function queries “final”. For all other queries x∗, S
answers with its own fresh random string.

More formally, S maintains a table T , initially empty, containing the pairs
(x,C) ∈Wn−q×Wc such that S has answered C in response to a query x. For
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each pair (x,C), S also maintains the most recent time τ that it answered C in
response to the query x. For simplicity, in the description of S we will omit the
recording of these times.

Upon receiving a compression function query x∗, S executes the following
algorithm.

1. Search T for a pair (x∗, C∗). If such a pair is found, return C∗ as the
answer to the query.

2. Parse x∗ into K∗, `∗, i∗, r∗, L∗, z∗, p∗, keylen∗, d∗, B∗.

3. If any of the following conditions is true, choose a fresh random string
C∗ ∈Wc and return C∗ as the answer to the query:

(a) z∗ 6= 1

(b) `∗ > L∗ + 1

(c) The last p∗ bits of B∗ are not all 0.

(d) 0 ≤ `∗ ≤ L and i∗ 6= 0

(e) d∗ 6= d

4. The simulator now decides whether x∗ is a final query by searching for
a legitimate way to build a complete MD6 computation from previous
compression function queries to S, with x∗ as the input to the final com-
pression function call.

If 0 ≤ `∗ ≤ L (only the PAR operation is used), let B`∗,0 = B∗, j`∗ = 0,
and p`∗,0 = p∗. Search T for a sequence of pairs (x`,i, C`,i) satisfying the
following condition:

(a) For ` = 1, 2, . . . , `∗ − 1,
B`+1,0||B`+1,1|| . . . ||B`+1,j`+1 = C`,0||C`,1|| . . . ||C`,j` ||0

p`+1,j`+1 and

• For i = 0, 1, . . . , j`,
x`,i = K∗||U`,i||r∗||L∗||0||p`,i||keylen∗||d∗||B`,i, where U`,i = ` ·
256 + i, p`,i = 0 for i = 0, 1, . . . , j` − 1, and the last p`,j` bits of
B`,i are 0.

If no satisfying sequence is found, choose a fresh random string C∗ ∈Wc.
Insert (x∗, C∗) into T and return C∗ as the answer to the query.

If a satisfying sequence is found, let M∗ = B1,0||B1,1|| . . . ||γp1,j1(B1,j1).
(Recall that γa(X) denotes a function that truncates its input X by drop-
ping its last a bits.)

If multiple satisfying sequences are found, yielding different values of M∗,
choose the one which comes last chronologically, in the following sense. For
each satisfying sequence, sort the compression function queries by node
identifier U . Choose the sequence with the most recent time τ recorded for
the first compression function query (` = 1, i = 0). If there are multiple
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such sequences, choose the sequence with the most recent time τ for the
next compression function query (` = 1, i = 1), and so on, until a unique
M∗ is obtained.

Query M∗ to F , and let F (M∗) ∈ {0, 1}d denote F ’s answer. Pad F (M∗)
to the full length of the compression function output by choosing a random
string C ′ ∈ {0, 1}cw−d and letting C∗ = C ′||F (M∗). Insert (x∗, C∗) into
T and return C∗ as the answer to the query.

5. If `∗ = L∗ + 1 (the SEQ operation is used), write B∗ as C`∗,i∗−1||B`∗,i∗
where C`∗,i∗−1 ∈Wc and B`∗,i∗ ∈Wb−c. Search T for a sequence of pairs
(x`∗,i, C`∗,i) such that:

(a) For i = 0, 1, . . . , i∗,
x`∗,i = K∗||U`∗,i||r∗||L∗||0||0||keylen∗||d∗||C`∗,i−1||B`∗,i, where U`∗,i =
`∗ · 256 + i and C`∗,−1 is the c-word zero vector.

If no satisfying sequence is found, choose a fresh random string C∗ ∈Wc.
Insert (x∗, C∗) into T and return C∗ as the answer to the query.

Otherwise, for each satisfying sequence, let j`∗ = i∗ and p`∗,i∗ = p∗, and
search T for a sequence of pairs (x`,i, C`,i) satisfying the condition given
above, for the PAR operation, in item 4a.

If no satisfying sequence is found, choose a fresh random string C∗ ∈Wc.
Insert (x∗, C∗) into T and return C∗ as the answer to the query.

If a satisfying sequence is found, let M∗ = B1,0||B1,1|| . . . ||γp1,j1(B1,j1).
If multiple satisfying sequences are found, yielding different values of M∗,
choose the one which comes last chronologically (as described previously).
Query M∗ to F , and let F (M∗) ∈ {0, 1}d denote F ’s answer. Pad F (M∗)
to the full length of the compression function output by choosing a random
string C ′ ∈ {0, 1}cw−d and letting C∗ = C ′||F (M∗). Insert (x∗, C∗) into
T and return C∗ as the answer to the query.

This completes the description of the simulator S. Notice that if the simu-
lator is queried on the final compression function call in the computation of the
MD6 hash of a message after all intermediate compression function calls have
already been queried to it, the simulator will find an M∗ and determine the
query to be a final query.

Using a data structure such as a linked list to maintain T in sorted order,
S takes time at most O(qS) to respond to each of the qS compression function
queries. Therefore, the running time of the simulator is O(q2

S).
To prove the indifferentiability of the MD6 mode of operation, we consider

any distinguisher D making exactly qS compression function queries and gen-
erating exactly qt compression function calls from its MD6 queries and its com-
pression function queries. We consider a sequence of games, G0 through G4. For
each game Gi, let pi denote the probability that D outputs 1 in Gi. We start
with the “ideal” game and end with the “real” game. We show that between
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consecutive games, the view of the distinguisher cannot differ with more than
negligible probability.

Game G0. This is the interaction of D with the random oracle F and the
polynomial time simulator S defined above.

Game G1. In game G1, D interacts with F and a modified simulator S′.
At the start of the game, S′ uses its random coins to specify a random oracle
OS : Wn−q →Wc. The behavior of the new simulator S′ is identical to that of
S, except that wherever S uses a fresh random string C∗ ∈Wc to answer a query
x∗, S′ uses OS(x∗). Wherever S uses a fresh random string C ′ ∈ {0, 1}cw−d in
constructing the answer to a query x∗, S′ uses the first cw − d bits of OS(x∗).
In other words, in G1, S generates its random bits in a lazy manner, whereas
in G2, S′ generates its random bits by calling a random oracle OS (specified by
the random coins of S′). In both games, the simulator produces a fresh random
string in exactly the same cases. Clearly, the view of the distinguisher is the
same in G1 and in G0, so p1 = p0.

Game G2. In G2, D interacts with a dummy relay algorithm R0, instead
of with F . The relay algorithm R0 has oracle access to F , and upon receiving
a hash function query, it forwards the query to F and forwards F ’s response to
D. Clearly, the view of D is unchanged from G0, so p2 = p1.

Game G3. In G3, we modify the relay algorithm. The new relay algorithm
R1 does not query F . Instead, R1 computes the MD6 mode of operation on its
input, querying the simulator S′ for each call to the compression function fQ.

In order to argue that the view of D differs between G2 and G3 with only
negligible probability, we first define some “bad” events. We then argue that,
as long as no bad events occur, the view of D is identical in games G2 and G3.

For a compression function query xj , suppose xj parses into Kj , `j , ij , rj ,
Lj , zj , pj , keylenj , dj , Bj . We define three types of bad events that can occur in
either game.

Type 1 A Type 1 event occurs when the outputs of S′ on two different inputs
are equal. Specifically, a Type 1 event occurs when S′ inserts a pair (x2, C)
into T when there is already a pair (x1, C) in T such that x1 6= x2.

Type 2 A Type 2 event occurs when the output of S′ on a query x2 is such
that a previous query x1 “depends” on the answer to x2. Specifically, a
Type 2 event occurs when S′ inserts a pair (x2, C2) into T when there is
already a pair (x1, C1) in T such that L1 = L2 and one of the following
two conditions is true:

• 0 ≤ `1 ≤ L1, `1 = `2 + 1, i1 = bi2 · c/bc, and C2 is the kth c-word
chunk of B1, where k = i2 mod b/c.

• `1 = `2 = L1 + 1, i1 = i2 + 1, and C2 is the first chunk of B1.

Type 3 A Type 3 event occurs when S′ receives a query x2 from D that “de-
pends” on an answer which was given by S′ only to the relay algorithm,
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never to D. Specifically, a Type 3 event occurs when S′ receives a query
x2 from D when there is already a pair (x1, C1) in T such that L1 = L2

and one of the following two conditions is true:

• 0 ≤ `2 ≤ L1, `2 = `1 + 1, i2 = bi1 · c/bc, and C1 is the kth chunk of
B2, where k = i1 mod b/c, and C1 has been given as the answer to
a query x1 only to R1, never to D.

• `1 = `2 = L1 + 1, i2 = i1 + 1, and C1 is the first chunk of B2, and C1

has been given as the answer to a query x1 only to R1, never to D.

We argue below that if none of these bad events occur, then the view of D
in G2 and G3 is the same.

Lemma 15 For fixed coins of F , S′, and D, if no “bad” events occur in game
G3, then the view of D is identical in games G2 and G3.

Proof: Fix the random coins of F , S′, and D. Assume no “bad” events oc-
curred. We show by induction that the observable values (the responses of
R0/R1 and S′) are identical in games G2 and G3. (As long as the observable
values are the same, D will make the same queries in both games.)

Suppose that the observable values have been the same so far. The next
query by D is either to MD6 or to the compression function.

Mode of Operation Query. Consider a query M∗ toMfQ . In game G2, R0

always returns F (M∗). In game G3, R1 returns F (M∗) as long as on R1’s final
compression function query (call this x∗) to S′, S′ queries F on M∗, or S′ has
already seen the query x∗ and queried F on M∗ the first time it was queried
on x∗. If S′ has not already seen the query x∗, S′ will return F (M∗), since in
the case that it finds multiple values of M which could have generated x∗ as its
final compression function call, S′ will choose the M for which the intermediate
compression function calls occurred the most recently. Therefore, the only way
that R1’s answer can differ from R0’s answer is if S′ has already seen the query
x∗ and did not query F on M∗ the first time it saw the query (call that time
τ).

In this case, when S′ was originally queried on x∗ at time τ , it must have
either (a) found no M or (b) found an M 6= M∗ which could have generated the
query as its final compression function call. Assume (a), i.e., S′ found no such
M . Consider R1’s most recent query to S′ before x∗. (Recall that R1 computes
the mode of operation by making the compression function queries in order.)
That query must have also been seen by S′ before time τ . Otherwise, a Type
2 event occurred in G3 because the output of that query matched a chunk of
the query at time τ . Now consider R1’s next most recent query. Again, by the
same reasoning, it was also seen before time τ . By induction, all of the queries
R1 makes to S′ on the message M∗ must have been seen before time τ , which
means that case (a) is impossible.

Now consider case (b). We have already argued that all of the queries R1

makes to S′ on the message M∗ must have been seen before time τ . Therefore,
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when S′ was originally queried on x∗ at time τ , it must have found both M∗ and
an M 6= M∗ which could have generated x∗ as its final compression function
call. Consider the b-word data input B∗ of x∗. For each of the c-word chunks
of B∗, either there was a unique pair in T at time τ with that chunk as the
response, or there were multiple such pairs. If there were multiple such pairs,
then a Type 1 event occurred. Otherwise, consider of all of the b-word data
inputs of the compression function queries made by R1 on the message M∗, at
the next lower level. By induction, a Type 1 event must have occurred at some
time; otherwise, S′ would only have found one M (equal to M∗) that could have
generated the final compression query. Therefore, case (b) is also impossible.

Thus, given that the values observable to D have been the same so far, if
the next query is to the mode of operation, the next observable value will also
be the same in games G2 and G3.

Compression Function Query. Now consider the case that the next query
by D is a compression function query x∗. In both games, the answer will be
equal to OS(x∗), unless x∗ is (or has previously been) determined to be the
final query for some message M , in which case it will be equal to C ′||F (M)
where C ′ = γd(OS(x∗)). Thus, there are three possible reasons for the answers
in the two games to be different: (a) the answer is equal to C ′||F (M) in G2 but
OS(x∗) in G3; (b) the answer is equal to C ′||F (M) in G3 but OS(x∗) in G2; or
(c) the answer is equal to C ′||F (M) in G2 but C ′||F (M ′) in G3 for M 6= M ′.

Consider case (a). In G3, S′ answers with OS(x∗) because either (a.1) S′

already answered a query on x∗ before or (a.2) S′ cannot find a sequence of
queries that leads to M for which x∗ is the final query. Case (a.1) is not possible
because for S′ to have the seen the query x∗ before in G3 but not in G2 means
that the query came from R1, and if a final query comes from R1 in G3, then
R1 has asked all of the intermediate queries, and therefore it will be answered
by C ′||F (M). Case (a.2) is not possible because the queries S′ has received in
G2 are a subset of the queries S′ has received in G3 (in G3, S′ has received all
the same queries as in G2 from D, as well as queries from R1). Therefore, if S′

finds an M in G2, it will also find some M in G3.
In case (b), S′ finds an M in G3 but not in G2. Then at least one query

in the sequence used to construct M came from R1 but not from D. But the
final query (namely, x∗) came from D. By induction, a Type 3 event must have
occurred, i.e., a chunk of one of D’s compression function queries matched a
compression function output that was answered to R1 but never seen by D.
Therefore, case (b) is impossible.

In case (c), S′ finds M in G2 and M ′ in G3. But since the queries to S′ in
G2 are a subset of the queries to S′ in G3, in G3 S

′ must find both M and M ′.
Then, again, a Type 1 event must have occurred somewhere in the computation,
making case (c) also impossible.

Thus, given that the values observable to D have been the same so far, if the
next query is to the compression function, the next observable value will also
be the same in games G2 and G3.
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Thus, conditioned on there being no occurrences of bad events in G3, the
view of D is the same in games G2 and G3. This completes the proof of
Lemma 15

We now bound the probability of bad events in G3. Let Pr[Type i] denote
the probability that a Type i event ever occurs during the run of the simulator.
Let Pr[Bad] = Pr[Type 1] + Pr[Type 2] + Pr[Type 3] denote the probability of
a bad event ever occurring.

A Type 1 event corresponds to a collision between two random c-word strings
among at most qt compression function queries. Note that even though S′

sometimes consults F for d bits of the random c-word output, these d random
bits are fresh because on different queries to S′, S′ will make different queries
to F (if it queries F at all). We can bound the probability of a Type 1 event
using the birthday bound: Pr[Type 1] ≤ q2

t /2
cw+1.

A Type 2 event corresponds to a collision between a random c-word string
and a chunk of one of the previous queries to the compression function. For
each of the qt compression function queries x, in each of the previous compres-
sion function queries, there is at most one c-word chunk with a matching node
identifier with which x could collide to cause a Type 2 event. Therefore, we can
again bound the probability using the birthday bound: Pr[Type 2] ≤ q2

t /2
cw+1.

A Type 3 event corresponds to a collision between a random c-word string
that is not seen by D and a chunk of one of D’s compression function queries.
The probability of D “guessing” one of these hidden outputs is 1/2cw. There
are at most (qt − qS) hidden outputs to guess, and D has at most qt guesses.
Therefore, Pr[Type 3] ≤ (qt(qt − qS))/2cw.

Summing together, we get Pr[Bad] ≤ (q2
t + qt(qt − qS))/2cw ≤ 2q2

t /2
cw.

Therefore, the probability ofD distinguishing between gamesG2 andG3 is at
most the probability of a bad event occurring, so |p3 − p2| ≤ Pr[Bad] ≤ 2q2

t /2
cw.

Game G4. This is the final game. In G4, the relay algorithm R1 remains
unchanged but the simulator no longer consults F . Instead, the new simulator,
S1, always responds to a new query x∗ with OS(x∗). Thus, R1 computes the
mode of operation applied to the random oracle OS(x∗).

To see that the view of the distinguisher is unchanged from G3, consider a
query x∗ (from either D or R1) to S1. If the query has been seen before, S1

repeats the answer it gave the first time it was asked the query. If it is a new
query, then in G4, S1 responds with the fresh random c-word string OS(x∗).
In G3, S′ either responded with the fresh random c-word string OS(x∗) or the
fresh random c-word string obtained by concatenating the first (cw− d) bits of
OS(x∗) with a fresh random d-bit string obtained from F . The only way that
the random d-bit string from F could not be fresh is if S′ already consulted F
on the same message before, but this would mean that the query x∗ was seen
before. Thus, the view of D is unchanged from G3 to G4, and p4 = p3.

Summing over all the games, the total advantage of D in distinguishing
between G0 and G4 is at most the claimed 2q2

t /2
cw. This completes the proof
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of Theorem 8.

7.8 Multi-Collision Attacks

In this section we again briefly discuss the class of recent “multi-collision” at-
tacks studied by Joux [46], Nandi et al. [68, 69], Hoch et al. [44], and Yu et
al. [98]. (Our previous discussion was in Section 3.8.)

These attacks leverage a compression function that is known not to be
collision-resistant to obtain collisions in hash function modes of operation that
are intended to compensate for or mitigate such weaknesses. Often, a surprising
number of such collisions can be obtained, allowing further birthday attacks to
be mounted.

MD6 adopts the “wide-pipe” strategy proposed by Lucks [54, 55]: all inter-
mediate chaining variables in MD6 are 1024 bits in length, making collisions of
the compression function extremely unlikely.

Thus, unless there is some unforeseen defect in the MD6 compression func-
tion, such “multi-collision” attacks will not be effective against MD6.

7.9 Length-Extension Attacks

In this section we review briefly the class of “length-extension” attacks.
Such attacks arise for a keyed hash function, when the (secret) key is input

only at the beginning of the computation, e.g., by using it to initialize the initial
state of a Merkle-Damg̊ard sequential hash function computation.

In those functions, the problem is that an adversary who sees only X and
HK(X) may be able to compute HK(X||Y ) for any string Y of his choice. This
happens if the output of HK is merely the current state (e.g. of the Merkle-
Damg̊ard computation), so that continuing the computation from that point on
is feasible if you know the hash function output.

MD6 defeats such attacks in many ways:

• The key K is input to every compression function operation, so that you
cannot compute any key-dependent hash output without actually knowing
the key.

• The final compression function is distinguished by having a z-bit input set
equal to one; this explicitly prevents such length-extension attacks as well,
since one hash-function computation is then never a sub-computation of
another hash-function computation.

• MD6 does not output a full internal chaining variable state, but only a
truncated version of it. (This is again an application of Lucks’ “wide-pipe”
strategy [54, 55].) Therefore, knowing the hash function output does not
reveal any complete internal chaining variable state.
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Therefore, MD6 is not vulnerable to such “length-extension” attacks.

7.10 Summary

We have shown that the MD6 mode of operation provides excellent protection
against attack, assuming that the underlying compression function satisfies cer-
tain assumptions.

In particular, we have shown that MD6 is “property-preserving” with respect
to the properties of collision-resistance and pre-image resistance, and argued
that MD6 is stronger than required by NIST SHA-3 requirements with respect
to second-preimage resistance.

We have shown, using Maurer’s Random System framework, that MD6 is a
pseudo-random function, if the MD6 compression function is pseudo-random.

We have further shown, under our “Key Blinding Assumption,” that the
MD6 mode of operation acts as a domain extender for fixed-input-length MAC’s.

We have also shown that MD6 is indifferentiable from a random oracle; this
is particularly meaningful since the framework here gives the adversary oracle
access to the underlying compression function, which reflects accurately the
real-world situation.



Chapter 8

Applications and
Compatibility

This chapter addresses NIST requirements of section 2.B.1 [70] on compatibility
with existing standards (specifically HMAC), and of section 4.A regarding cer-
tain evaluation criteria (specifically having to do with PRF’s and randomized
hashing).

It also describes and documents the md6sum utility that we provide as part
of our submission package.

8.1 HMAC

The NIST requirements [70, Section 4.A.ii] state that a candidate algorithm
must “have at least one construction to support HMAC as a PRF.” Moreover,
“when the candidate algorithm is used with HMAC as specified in the sub-
mitted package, that PRF must resist any distinguishing attack that requires
much fewer than 2n/2 queries and significantly less computation than a preimage
attack.

We believe that MD6 meets these requirements.
The HMAC standard is described in [72].
Although MD6 is tree-based (hierarchical) rather than iterative, and al-

though HMAC was designed with iterative hash functions in mind, there is no
difficulty in adapting MD6 to use within an HMAC framework. All that is really
required is that the message block length be larger than the message digest size.
Since the MD6 message block size is 512 bytes, this requirement is automatically
met.

We propose using the HMAC framework with MD6 in its default fully hier-
archical mode of operation, primarily for efficiency reasons.

One could also consider using MD6 in its sequential (L = 0) mode of opera-
tion, with a 384-byte message block length. This would be more like traditional
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HMAC constructions based on iterative hash functions. But we favor the hier-
archical mode of operation here.

Our security analyses (see Section 7.7 in particular) argue that MD6 should
be indifferentiable from a random oracle in such applications.

8.2 PRFs

NIST invites submitters to describe any alternative (other than HMAC) meth-
ods by which their candidate algorithm may be used as a PRF.

MD6 provides the PRF functionality directly: one can set the MD6 key K
to the desired value, and then apply MD6 to the input message. Our security
proofs of Chapter 7 directly address the security of this mode of operation.

8.3 Randomized Hashing

The NIST evaluation requirements state [70, Section 4.A.2]:
“If a construct is specified for the use of the candidate algorithm in an n-bit

randomized hashing scheme, the construct must, with overwhelming probability,
provide n−k bits of security against the following attack: The attacker chooses
a message, M1 of length at most 2k bits. The specified construct is then used
on M1 with a randomization value r1 that has been randomly chosen without
the attacker’s control after the attacker has supplied M1. Given r1, the attacker
then attempts to find a second message M2 and randomization value r2 that
yield the same randomized hash value. Note that in order to meet this specific
security requirement, the specified randomized hashing construct may place
restrictions on the length of the randomization value.”

Since MD6 places the randomization value in the key input K, which is
explicitly part of the compression function input, the specified attack is just a
special case of a second-preimage attack, which we’ve already discussed.

8.4 md6sum

We provide a utility program, md6sum, that is similar to the traditional md5sum
in functionality, but which is augmented for our experimental and development
purposes. This section describes its usage.

The basic command-line format for md6sum is:

md6sum [OPTIONS] file1 file2 ...

The option letters are case-sensitive and are processed in order.
With no options, the files are each hashed. For each file, a summary line is

printed giving the hash value in hex and the file name. The defaults are: digest
size d is 256 bits, mode parameter L is 64, and key is nil (zero-length key). An
initial date/time line is also printed (on a “comment line” starting with “--”).
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The “b” and “B” options provide the ability to process a standard dummy
file of a specified length. The “b” option specifies the desired length in bits,
while the “B” specifies the desired length in bytes. The dummy file is an initial
prefix of the specified length of the infinite hexadecimal sequence:

11 22 33 44 55 66 77 11 22 33 44 55 66 77 11 22 ...

The length may be given in decimal or in scientific notation. Thus the following
two commands are equivalent, and ask for the hash of a standard one-gigabyte
dummy file:

md6sum -B1000000000
md6sum -B1e9

The “b” and “B” options are useful for getting MD6 timing estimates, as they
do not involve disk I/O overhead.

The “M” option is used to specify a message directly on the command line,
as in:

md6sum -Mabc

which prints the hash of the message string “abc”. (If the message contains
blanks, the message parameter should be quoted, as in md6sum "-Ma b c" .)

If file is ‘-’, or if no files are given, standard input is used.
The “d”, “r”, “L”, and “K” options are used to set MD6 parameters to non-

default values. The defaults are a digest size of d = 256 bits, a number of rounds
r = 40 + (d/4), a mode parameters L = 64, and an empty key K = nil. For
example, the command

md6sum -d512 -Ksecret -r200 -L0 file1 file2

produces 512-bit hash values for files file1 and file2 computed using r = 200
rounds in sequential mode (L = 0) with a key K =“secret”. The “d” and “K”
options reset r to its default value for that digest size and key length, so if the
“r” option is also given, it should follow any “d” and “K” options.

There are two options for performing timing measurements on MD6: “t”
and “s”.

The “t” option turns on the printing of timing information for each file
(or dummy file) processed. The following information is printed for each file:
length of the input file, the number of compression calls made, the elapsed time
in seconds, the total number of clock ticks, the number of clock ticks per byte,
and the number of clock ticks per compression function call. For example, the
call

md6sum -t -B1e9

produces timing information for producing the MD6 hash of a standard one-
gigabyte dummy file.

The “s” operation times the MD6 setup operation. Specifically, the option
-snnn produces the time to perform nnn setup operations. For example,
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md6sum -s1000000

measures the time to do one million MD6 initializations. The time is given both
in clock ticks and in seconds.

Timing is measured in a straightforward way using the CPU’s RDTSC in-
struction; no special effort is made to account for variability in the timing that
might be caused by extraneous system effects. (Our experience suggests that
these effects are not large when MD6 is applied to a large test input generated
with the -b or -B options, on an otherwise idle machine.)

The “i” and “I” options cause intermediate values in the MD6 computation
to be printed. The “i” option causes the input and output for each compression
function call to printed in a pretty format. For example,

md6sum -i -Mabc

causes the compression function input/output to be printed for the single com-
pression function call required to hash the message “abc”. That is, the array
values A[0..n− 1] (input) and A[rc+n− c..rc+n− 1] (output) will be printed,
one word per line. The “I” option is similar, but also prints out the interme-
diate values for each MD6 compression function call. That is, the entire array
A[0..rc+ n− 1] will be printed. As an example, the call

md6sum -I -B20

will print out all intermediate values for the single compression call required to
hash the standard twenty-byte dummy file.

The md6sum program can also be used with the “c” to check to see if a hash
value for any of the given files has changed. If one saves the md6sum output, as
in:

md6sum -d512 -L0 file1 file2 file3 >filehashes

(shown here with 512-bit hash values computed in sequential L = 0 mode) then
a later call of the form:

md6sum -c filehashes

will check to see if any of the files now have hash values different than that
recorded in the file filehashes. Any file whose hash value has changed will have
its name printed out. (Comment lines in the saved file, such as the date/time
line, are ignored.)
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Variations and Flexibility

The MD6 design exhibits great flexibility. It is easy to create “variant” designs
by changing the word size, the size of a chunk, the key size, the size of Q, the
number of rounds, etc.

9.1 Naming

We extend here the simple naming scheme given in Section 2.2.7.
If the other parameters keylen, L, or r are to receive non-default values, they

can be given following the name, separated by hyphens, in the order keylen, L,
r, with each parameter name followed immediately by its value (but using k to
stand for keylen) as in the following examples:

MD6-256-L0 (sequential mode of operation)
MD6-256-r64 (64 rounds)
MD6-160-L0-r64 (sequential and 64 rounds)
MD6-384-k8-r64 (8 key bytes and 64 rounds)
MD6-512-k33-L2-r192 (33 key bytes, height bound 2, and 192 rounds)

In the last example, the key length is specified as 33 bytes; the key itself would
be provided separately. Unspecified options receive their default values. In
fully-specified notation, the standard versions of MD6 are:

MD6-224-k0-L64-r80 (224-bit digest, no key, tree-based, 80 rounds)
MD6-256-k0-L64-r104 (256-bit digest, no key, tree-based, 104 rounds)
MD6-384-k0-L64-r136 (384-bit digest, no key, tree-based, 136 rounds)
MD6-512-k0-L64-r168 (512-bit digest, no key, tree-based, 168 rounds)

But these default versions are also named MD6-224, MD6-256, MD6-384, and
MD6-512.
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9.2 Other values for compression input and out-
put sizes: n and c

One can vary the values of n and c (the sizes, in words, of the compression
function’s input and output).

If one does so, the tap positions t0, t1, ..., t5 would also need to be re-
optimized.

We have written a program, tapopt.c to do such optimization. Table 9.1
lists some results from this program for various values of n and c. This is just a
sample; it is simple to compute optimal tap positions for additional choices of
n and c.

As an example, if one wished to define a variant MD6 that was practically
identical to standard MD6, except that there was no key input (so k = 0 and
n = 81), one could use the tap positions 17, 19, 22, 23, 52, and 81 from the table
row for n = 81, c = 16.

Or, one could imagine defining a variant of MD6 that had the same data
field sizes in bits, but was defined in terms of 32-bit words. Thus one would
have w = 32, b = 128, v = u = 2, k = 16, q = 30, n = 178, c = 32. One
could use the tap positions (33, 35, 49, 53, 111, 178) from the table, and the shift
values given for 32-bit words in Table 9.3.

9.3 Other word sizes w

The word size w (in bits) could also be varied in the MD6 overall design. For
example, the standard MD6 design could be adapted for 32-bit words, 16-bit
words, or 8-bit words by setting w = 32, w = 16, or w = 8 rather than having
w = 64. The information content of each field is reduced accordingly, but the
designs produced in this way seem interesting and reasonable to consider.

Of course, changing the word size also requires changing the shift tables r()
and `(), as well as adjusting the constants used to define the recurrence for S.
In addition, one has to clearly define how the constant Q is determined.

The following subsections make specific recommendations for such variations.

9.3.1 New round constants S

For different word sizes, the constants S′0 and S∗ can be obtained by truncating
the values for w = 64 (taking just the high-order bits of each), as illustrated in
Table 9.2.

These recurrences have period 217 (for w = 8), 63457 (for w = 16), 868
(for w = 32). (The short period for w = 32 shouldn’t be a problem for our
application, since the number of rounds is well less than 868. Or, you could
change the constant S∗ slightly to 0x7311c285, and the period then jumps to
910,163,751.)



CHAPTER 9. VARIATIONS AND FLEXIBILITY 181

n c t0 t1 t2 t3 t4 t5 dep
17 8 9 10 12 14 15 17 26
19 8 10 11 13 14 17 19 29
32 16 17 21 25 29 31 32 67
35 8 9 12 13 19 34 35 40
35 16 17 18 22 24 31 35 70
37 8 9 11 14 26 36 37 39
37 16 17 19 22 30 31 37 68
38 16 17 23 29 31 35 38 79
39 16 17 19 22 28 37 39 73
40 16 17 21 27 31 29 40 81
41 8 9 10 12 13 27 41 39
41 16 17 19 20 26 34 41 73
42 16 17 19 23 31 41 42 83
44 16 17 19 23 37 43 44 81
45 8 11 13 14 17 31 45 54
45 16 17 19 23 29 37 45 74
46 16 17 19 25 31 45 46 84
48 16 17 19 25 29 47 48 79
64 16 17 19 23 37 57 64 90
64 32 33 35 43 55 61 64 170
70 16 17 19 27 47 69 70 98
70 32 33 39 51 53 61 70 190
72 16 17 19 25 29 71 72 99
72 32 35 41 49 61 71 72 198
74 16 17 21 27 45 73 74 102
74 32 33 35 49 55 73 74 184
76 16 17 21 23 43 73 76 102
76 32 33 35 47 53 75 76 185
78 16 17 19 23 43 73 78 103
78 32 35 37 49 59 77 78 202
81 8 10 11 14 37 55 81 63
81 16 17 19 22 23 52 81 99
81 32 34 35 43 49 74 81 173
82 16 17 23 25 47 75 82 106
82 32 33 37 51 57 73 82 190
83 16 17 18 20 29 62 83 98
83 32 33 34 37 47 75 83 169
84 16 17 23 25 53 83 84 110
84 32 37 41 53 71 79 84 218
89 8 9 10 12 35 63 89 61
89 16 17 18 21 31 67 89 102
89 32 33 35 38 44 81 89 175
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n c t0 t1 t2 t3 t4 t5 dep
90 16 17 19 23 43 89 90 112
90 32 37 41 43 67 83 90 222
96 16 17 19 23 43 95 96 118
96 32 35 37 47 55 89 96 209
128 16 17 19 25 45 87 128 134
128 32 33 37 39 59 127 128 224
128 64 65 73 75 109 123 128 423
140 16 17 19 27 69 109 140 141
140 32 33 39 43 67 137 140 237
140 64 67 71 79 113 127 140 450
144 16 17 19 31 73 119 144 145
144 32 35 37 49 59 139 144 253
144 64 65 67 89 121 127 144 452
148 16 17 21 27 35 95 148 143
148 32 33 35 47 51 95 148 244
148 64 65 67 85 113 119 148 452
152 16 17 21 27 35 93 152 149
152 32 33 35 45 83 139 152 248
152 64 65 67 77 93 151 152 449
162 16 17 19 25 79 125 162 151
162 32 35 37 41 61 161 162 262
162 64 65 66 77 101 155 162 460
164 16 17 19 27 77 119 164 149
164 32 33 37 43 77 159 164 253
164 64 65 71 75 101 155 164 461
178 16 17 19 27 77 127 178 153
178 32 33 35 49 53 111 178 262
178 64 65 67 73 95 163 178 466
180 16 17 19 29 71 133 180 161
180 32 37 41 47 89 149 180 302
180 64 67 71 77 89 163 180 500
192 16 17 19 25 79 133 192 165
192 32 35 37 43 89 145 192 290
192 64 65 67 71 83 155 192 484
256 16 17 19 27 77 167 256 192
256 32 33 35 45 53 137 256 314
256 64 65 67 81 87 253 256 545

Table 9.1: Optimal feedback function tap positions t0 . . . t5 for various values
of n (the length of the feedback shift register) and c (the output size and the
number of initial feedback positions excluded from being tapped). The value
“dep” has the property that if at least “dep” steps are performed then each of the
last c values computed depends on all n values in the initial register state. This
table illustrates the potential flexibility of the MD6 design. However, standard
MD6 uses the parameters from only one line of this table (shown in bold).
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w S′0 S∗

64 0x0123456789abcdef 0x7311c2812425cfa0
32 0x01234567 0x7311c281
16 0x0123 0x7311
8 0x01 0x73

Table 9.2: Here are suggested values for S′0 and S∗ for various values of w.

9.3.2 New shift amounts ri and `i

The shift amounts ri and `i will need revision if another value of w is used.
Table 9.3 gives suggested shift amounts for w = 64 (the standard shift table),

w = 32, w = 16, and w = 8. While they were optimized for c = 16 and the
standard tap positions, they should work reasonably well for c = 16 and other
tap positions.

These shift amounts were computed via the optimization program shiftopt.c;
this program is included in our submission package. It can be examined and re-
run for transparency, or to compute optimized shift tables for other parameter
settings.

Roughly speaking, the optimization program attempts to maximize the rate
at which input changes propagate through the computation.

To define MD6 for w = 1, the function g should be taken to be the identity
function.

Some experiments were also done to evaluate shift amounts when the shifts
were required to be the same for each step. These were found to be very notice-
ably worse in terms of their rate of diffusion (a crude estimate might be by as
much as 50%). But it might nonetheless be of interest to see what the optimum
shift values were, under this constraint. Table 9.4 gives these values.

9.3.3 Constant Q

If the word size w is changed, then the string of bits representing the fractional
part of

√
6 just needs to be divided up into w-bit words in the natural manner.

For example, w = 8, then Q0 = 0x73, Q1 = 0x11, etc.

9.4 Constant Q

One could change the constant Q to some value other than the fractional part
of
√

6.
For example, one might consider setting Q to zero. Our proof in Section 6.1.2

of the indifferentiability of the compression function from a random oracle de-
pends on Q being fixed, but does not require Q to have any fixed value. As far
as this proof is concerned, Q could indeed be all zeros. However, some of the



CHAPTER 9. VARIATIONS AND FLEXIBILITY 184

w = 64
i mod 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ri 10 5 13 10 11 12 2 7 14 15 7 13 11 7 6 12
`i 11 24 9 16 15 9 27 15 6 2 29 8 15 5 31 9

w = 32
i mod 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ri 5 3 6 5 4 6 7 3 5 6 5 5 4 6 7 5
`i 4 7 7 9 13 8 4 14 7 4 8 11 5 8 2 11

w = 16
i mod 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ri 5 4 3 5 7 5 5 2 4 3 4 3 4 7 7 2
`i 6 7 2 4 2 6 3 7 5 7 6 5 5 6 4 3

w = 8
i mod 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ri 3 3 3 4 3 3 3 3 2 2 3 2 2 3 2 3
`i 2 4 2 3 2 2 2 4 3 3 2 3 3 4 3 4

Table 9.3: This table gives suggested shift amounts for various potential word
sizes w = 64, 32, 16, 8. These were optimized for the standard taps, but should
probably work well for arbitrary tap positions.

w r l

64 7 6
32 4 5
16 3 4
8 2 3

Table 9.4: Optimum shift amounts when every round must have the same shift
amount.
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algebraic attacks studied in Section 6.11.2 strongly suggest that MD6 may be
stronger when Q is non-zero. Thus, setting Q = 0 is inadvisable.

However, setting Q to other “random-looking” constants should work as well
as the current choice; but it is important that Q remain a fixed constant.

9.5 Varying the number r of rounds

It is easy to vary the number r of rounds in the MD6 compression function.
Indeed, we have made r an explicit (but optional) input parameter to MD6.

One may wish to do so to study the security of reduced-round versions (as
in Chapter 6), to obtain different efficiency/security tradeoff points, or to study
the security of “crippled” versions of MD6.

Since MD6 is designed in a very conservative manner, it may happen that
over time we will gain confidence in the security of reduced-round versions of
MD6, and feel comfortable in using such reduced-round versions in practice, or
even adopting them in some standards. (At the moment, for example, we don’t
know how to break even 24-round MD6, much less 96 or 168 round versions.)
However, MD6 is still a “new design,” and prudence would dictate erring on the
side of conservatism, particularly given the history of hash function security to
date.

9.6 Summary

The MD6 framework has tremendous flexibility. It is easy to create variant
MD6 designs for study or for actual use in situations requiring non-standard
parameterization. Of course, the security of such variants should be studied
carefully before actual use.
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Conclusions

This report has presented the MD6 cryptographic hash algorithm, for consider-
ation by NIST as a SHA-3 candidate.

We have presented a detailed description of MD6, including its design ratio-
nale, and have given in some detail our preliminary findings of its security and
efficiency.

The standard MD6 design is very well-suited to take advantage of the forth-
coming flood of multicore processors. The sequential variant of MD6 fits well
on an 8-bit processor. MD6 works very well on special-purpose processors (e.g.
GPGPU’s), and is easy to implement effectively on special-purpose hardware.

From a security perspective, MD6 is very conservatively designed. While the
state of the art does not enable one to rigorously prove the security of a hash
function against all attacks (indeed, we don’t know if P = NP ), we believe that
our security analyses of MD6, although they are only preliminary, provide strong
justification for believing that MD6 easily meets the security requirements for
a SHA-3 standard.

The provable resistance of MD6 to differential and linear attacks is partic-
ular noteworthy, as are the proofs that the compression function and mode of
operation are indifferentiable from a random oracle.

We suggest that MD6 meets NIST’s stated goals of simplicity, efficiency on
a variety of platforms, security, and flexibility, and would hope that MD6 will
be very seriously considered as a SHA-3 candidate hash algorithm.
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Appendix A

Constant Vector Q

The constant vector Q consists of 15 64-bit words that represent the fractional
part of

√
6. That is, Q is a good approximation to the solution to the quadratic

equation:
(2 +Q)2 = 6 .

Here are the first 960 bits of
√

6 as a sequence of 15 64-bit words, in hexadecimal
notation.

0 0x7311c2812425cfa0
1 0x6432286434aac8e7
2 0xb60450e9ef68b7c1
3 0xe8fb23908d9f06f1
4 0xdd2e76cba691e5bf
5 0x0cd0d63b2c30bc41
6 0x1f8ccf6823058f8a
7 0x54e5ed5b88e3775d
8 0x4ad12aae0a6d6031
9 0x3e7f16bb88222e0d

10 0x8af8671d3fb50c2c
11 0x995ad1178bd25c31
12 0xc878c1dd04c4b633
13 0x3b72066c7a1552ac
14 0x0d6f3522631effcb
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Appendix B

Round Constants S

Here are the round constants S′j for 0 ≤ j ≤ 167. Of course, these values are
easy to generate iteratively using equation (2.4); they are given here only for
explicitness.

0 0x0123456789abcdef

1 0x0347cace1376567e

2 0x058e571c26c8eadc

3 0x0a1cec3869911f38

4 0x16291870f3233150

5 0x3e5330e1c66763a0

6 0x4eb7614288eb84e0

7 0xdf7f828511f68d60

8 0xedee878b23c997e1

9 0xbadd8d976792a863

10 0x47aa9bafeb25d8e7

11 0xcc55b5def66e796e

12 0xd8baeb3dc8f8bbfd

13 0xe165147a91d1fc5b

14 0xa3cb28f523a234b7

15 0x6497516b67646dcf

16 0xa93fe2d7eaec961e

17 0x736e072ef5fdaa3d

18 0x95dc0c5dcfdede5a

19 0x3aa818ba9bb972b5

20 0x475031f53753a7ca

21 0xcdb0636b4aa6c814

22 0xda7084d795695829

23 0xe6f1892e2ef3f873

24 0xaff2925c79c638c7

25 0x7cf5a6b8d388790f

26 0x89facff1a710bb1e

27 0x12e55d626a21fd3d

28 0x37cbfac4f462375a

29 0x5c963709cce469b4

198
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30 0xe93c6c129dec9ac8

31 0xb36898253ffdbf11

32 0x55d1b04b5bdef123

33 0xfab2e097b7b92366

34 0x877501ae4b5345ed

35 0x0dfb03dc96a7ce7b

36 0x1ae70539296a52d6

37 0x27cf0a7372f4e72c

38 0x6c9f16e7c5cd0978

39 0xb92f2f4e8f9f1bd0

40 0x435f5c9d1b3b3c21

41 0xc5aff9bb36577462

42 0xca5e33f748abace5

43 0xd6ac656f9176d56b

44 0xff588ade22c96ff7

45 0x8da1973c6593904f

46 0x1a42ac78ef26a09f

47 0x2685d8f1fa69c1be

48 0x6f0a7162d4f242dc

49 0xbd14a2c5adc4c738

50 0x4b39c70a7f8d4951

51 0xd5624c14db1fdba2

52 0xfbc4d829b63a7ce5

53 0x848970524854b56b

54 0x0913a0a490adeff7

55 0x1336c1c9217e104e

56 0x357d431362d8209c

57 0x5bebc427e5b041b8

58 0xe4d6484eef40c2d0

59 0xa9bcd09dfa814721

60 0x726961bad503c963

61 0x96d383f5ae065be6

62 0x3fb6856a7808fc6d

63 0x4c7d8ad4d01134fa

64 0xd8ea9729a0236d54

65 0xe1d5ac52606797a9

66 0xa2bad8a4e0eaa8f3

67 0x676571c9e1f5d947

68 0xadcba312e3ce7b8e

69 0x7a96c425e798bc9d

70 0x873d484aeb31f5ba

71 0x0d6bd095f6422ed5

72 0x1bd661aac884532a

73 0x24bc83d5910ce574

74 0x6969852a221d0fc8

75 0xb3d28a54643f1010

76 0x54b596a8ec5b2021

77 0xf97aafd1fcb74062

78 0x83e5dd22dd4bc0e5

79 0x04ca7a45be96416b
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80 0x0994b68a5928c3f6

81 0x1239ef94b271444c

82 0x36621da944c3cc98

83 0x5ec43bd38d8655b0

84 0xef8875261f08eec0

85 0xbc10aa4c3a111301

86 0x4831d69854232503

87 0xd0726fb0ac674f06

88 0xf0f49de17cebd10d

89 0x91f9bb43ddf6631b

90 0x32e2f486bfc88537

91 0x57c5298d5b918f4e

92 0xfc8b539bb722919c

93 0x8917e5b64a65a2b9

94 0x133e0bec94eec7d3

95 0x356c15592df94826

96 0x5bd82ab37fd3d86c

97 0xe4a057e7dba678f8

98 0xa940ed4eb768b951

99 0x73811a9d4af1fba3

100 0x940337bb95c23ce6

101 0x38076df62f84756d

102 0x400f9b6c7b0caffa

103 0xc01eb4d8d61dd054

104 0xc02de931a83e60a9

105 0xc05a1262705881f3

106 0xc0a426c4c0b18247

107 0xc1484f098142868f

108 0xc390dc1202858b9f

109 0xc4317824050e9cbf

110 0xc873b0480e19b5df

111 0xd0f6e0901832ee3f

112 0xf1fd01a03045125f

113 0x92eb03c0408f26bf

114 0x37d70500811b4bdf

115 0x5cbf0a010237dc3e

116 0xe96f1603044a745c

117 0xb3df2e070c94acb9

118 0x54af5e0f1d2dd5d3

119 0xf95ffe1f3e7e6e26

120 0x83ae3e3f58d8926d

121 0x045c7e7fb1b1a6fb

122 0x08a8befe4342cb56

123 0x1151ff7c86855dac

124 0x33b23cf9090ff6f8

125 0x54747973121a2b50

126 0xf8f8b2e724345da0

127 0x81e1e74f6c4cf6e1

128 0x02c20c9ffc9d2b63

129 0x078419bedd3f5de6
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130 0x0c0833fdbe5bf66c

131 0x1810657a58b62af8

132 0x20308af4b1485f50

133 0x607197694290f1a0

134 0xa0f2acd3852122e0

135 0x61f5d9260e634761

136 0xa2fa724c18e7c9e2

137 0x67e4a69831ea5a65

138 0xacc9cfb043f4feea

139 0x79925de087cd3375

140 0x8234fb410b9f65ca

141 0x06793483173b8e15

142 0x0ee369872a56922a

143 0x1fc7938f74a9a674

144 0x2c8ea59fcd72cac8

145 0x791dcbbe9ec55f10

146 0x832a55fd398ff120

147 0x0554eb7b531a2361

148 0x0bb914f7a63445e2

149 0x1463296e684cce64

150 0x38c752dcf09d52e8

151 0x418fe739c13fe770

152 0xc21e0c72825a09c0

153 0xc62c18e504b41a01

154 0xce58314b0d4c3e03

155 0xdea062971e9c7207

156 0xef4087af393ca60f

157 0xbd818ddf525dca1f

158 0x4a029b3fa4be5e3f

159 0xd605b47e6d58f25e

160 0xfe0ae8fcfeb126bd

161 0x8e151179d9434bdb

162 0x1e3b22f2b287dc37

163 0x2e674765450a744e

164 0x7ecfcccb8e14ac9c

165 0x8f9e5916182dd5b8

166 0x1c2cf22c307e6ed1

167 0x2859265840d89322



Appendix C

Sample MD6 computations

This chapter provides three sample MD6 computations to illustrate its opera-
tion. These examples are merely small illustrative examples; larger examples
responsive to the NIST requirements are provided separately.

The first example has a three-character message input “abc” and computes
a 256-bit hash, using only a single compression function call. All intermediate
variables are printed.

The second example has the 600-character message input (in hexadecimal)
“11223344556677112233...” and uses three compression function calls (two
leaves and the root). It has a key input “abcde12345”, and computes a hash
value of d = 224 bits. All intermediate variables for the three compression
function calls are printed.

In order to keep these examples from being overly long, the number of rounds
in each of these two examples is set to r = 5.

The third example illustrates the sequential (L = 0) mode of operation on
an 800-byte input file. Three compression function function calls are required.
Only the input and output for each compression function call are printed.

These examples are produced using md6sum (see Section 8.4).

C.1 First example

The first example has a three-character message input “abc” and computes a
256-bit hash, using only a single compression function call with five rounds. All
intermediate variables are printed.

> md6sum -r5 -I -Mabc
-r5
-- Mon Aug 04 18:28:03 2008
-- d = 256 (digest length in bits)
-- L = 64 (number of parallel passes)
-- r = 5 (number of rounds)
-- K = ’’ (key)

202
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-- k = 0 (key length in bytes)

MD6 compression function computation (level 1, index 0):
Input (89 words):
A[ 0] = 7311c2812425cfa0 Q[0]
A[ 1] = 6432286434aac8e7 Q[1]
A[ 2] = b60450e9ef68b7c1 Q[2]
A[ 3] = e8fb23908d9f06f1 Q[3]
A[ 4] = dd2e76cba691e5bf Q[4]
A[ 5] = 0cd0d63b2c30bc41 Q[5]
A[ 6] = 1f8ccf6823058f8a Q[6]
A[ 7] = 54e5ed5b88e3775d Q[7]
A[ 8] = 4ad12aae0a6d6031 Q[8]
A[ 9] = 3e7f16bb88222e0d Q[9]
A[ 10] = 8af8671d3fb50c2c Q[10]
A[ 11] = 995ad1178bd25c31 Q[11]
A[ 12] = c878c1dd04c4b633 Q[12]
A[ 13] = 3b72066c7a1552ac Q[13]
A[ 14] = 0d6f3522631effcb Q[14]
A[ 15] = 0000000000000000 key K[0]
A[ 16] = 0000000000000000 key K[1]
A[ 17] = 0000000000000000 key K[2]
A[ 18] = 0000000000000000 key K[3]
A[ 19] = 0000000000000000 key K[4]
A[ 20] = 0000000000000000 key K[5]
A[ 21] = 0000000000000000 key K[6]
A[ 22] = 0000000000000000 key K[7]
A[ 23] = 0100000000000000 nodeID U = (ell,i) = (1,0)
A[ 24] = 00054010fe800100 control word V = (r,L,z,p,keylen,d) = (5,64,1,4072,0,256)
A[ 25] = 6162630000000000 data B[ 0] input message word 0
A[ 26] = 0000000000000000 data B[ 1] padding
A[ 27] = 0000000000000000 data B[ 2] padding
A[ 28] = 0000000000000000 data B[ 3] padding
A[ 29] = 0000000000000000 data B[ 4] padding
A[ 30] = 0000000000000000 data B[ 5] padding
A[ 31] = 0000000000000000 data B[ 6] padding
A[ 32] = 0000000000000000 data B[ 7] padding
A[ 33] = 0000000000000000 data B[ 8] padding
A[ 34] = 0000000000000000 data B[ 9] padding
A[ 35] = 0000000000000000 data B[10] padding
A[ 36] = 0000000000000000 data B[11] padding
A[ 37] = 0000000000000000 data B[12] padding
A[ 38] = 0000000000000000 data B[13] padding
A[ 39] = 0000000000000000 data B[14] padding
A[ 40] = 0000000000000000 data B[15] padding
A[ 41] = 0000000000000000 data B[16] padding
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A[ 42] = 0000000000000000 data B[17] padding
A[ 43] = 0000000000000000 data B[18] padding
A[ 44] = 0000000000000000 data B[19] padding
A[ 45] = 0000000000000000 data B[20] padding
A[ 46] = 0000000000000000 data B[21] padding
A[ 47] = 0000000000000000 data B[22] padding
A[ 48] = 0000000000000000 data B[23] padding
A[ 49] = 0000000000000000 data B[24] padding
A[ 50] = 0000000000000000 data B[25] padding
A[ 51] = 0000000000000000 data B[26] padding
A[ 52] = 0000000000000000 data B[27] padding
A[ 53] = 0000000000000000 data B[28] padding
A[ 54] = 0000000000000000 data B[29] padding
A[ 55] = 0000000000000000 data B[30] padding
A[ 56] = 0000000000000000 data B[31] padding
A[ 57] = 0000000000000000 data B[32] padding
A[ 58] = 0000000000000000 data B[33] padding
A[ 59] = 0000000000000000 data B[34] padding
A[ 60] = 0000000000000000 data B[35] padding
A[ 61] = 0000000000000000 data B[36] padding
A[ 62] = 0000000000000000 data B[37] padding
A[ 63] = 0000000000000000 data B[38] padding
A[ 64] = 0000000000000000 data B[39] padding
A[ 65] = 0000000000000000 data B[40] padding
A[ 66] = 0000000000000000 data B[41] padding
A[ 67] = 0000000000000000 data B[42] padding
A[ 68] = 0000000000000000 data B[43] padding
A[ 69] = 0000000000000000 data B[44] padding
A[ 70] = 0000000000000000 data B[45] padding
A[ 71] = 0000000000000000 data B[46] padding
A[ 72] = 0000000000000000 data B[47] padding
A[ 73] = 0000000000000000 data B[48] padding
A[ 74] = 0000000000000000 data B[49] padding
A[ 75] = 0000000000000000 data B[50] padding
A[ 76] = 0000000000000000 data B[51] padding
A[ 77] = 0000000000000000 data B[52] padding
A[ 78] = 0000000000000000 data B[53] padding
A[ 79] = 0000000000000000 data B[54] padding
A[ 80] = 0000000000000000 data B[55] padding
A[ 81] = 0000000000000000 data B[56] padding
A[ 82] = 0000000000000000 data B[57] padding
A[ 83] = 0000000000000000 data B[58] padding
A[ 84] = 0000000000000000 data B[59] padding
A[ 85] = 0000000000000000 data B[60] padding
A[ 86] = 0000000000000000 data B[61] padding
A[ 87] = 0000000000000000 data B[62] padding



APPENDIX C. SAMPLE MD6 COMPUTATIONS 205

A[ 88] = 0000000000000000 data B[63] padding
Intermediate values:
A[ 89] = 027431e67f2b19cf
A[ 90] = 0d990f6680e90d20
A[ 91] = f27bc123aa282635
A[ 92] = f90ca91b7fd9c62c
A[ 93] = 85139f55bd354f15
A[ 94] = eb6b874532011a19
A[ 95] = 7b04461ba005d2fc
A[ 96] = c7db19c96ca9abc7
A[ 97] = b723400f04c813c4
A[ 98] = c22c98f63ef66335
A[ 99] = 42a2cbb64372fc40
A[ 100] = e52aeb1d587b9012
A[ 101] = 9ea7a2d571275633
A[ 102] = 7e99d0316f65addd
A[ 103] = 72f2b2f2fd1fe6ec
A[ 104] = 478df0ec797df153
A[ 105] = 3b9efe3b34add3eb
A[ 106] = f0155b54e33fa5cc
A[ 107] = b3b80e2309548fa4
A[ 108] = b5ef06df65e727d7
A[ 109] = ef08a1b814d205a0
A[ 110] = 367b2caf36cc81c6
A[ 111] = 343a0cf5b903d13e
A[ 112] = b4f9c1e7889e619e
A[ 113] = da463bc1b64240ad
A[ 114] = 10401204b0e3df85
A[ 115] = 4877a679f7db2705
A[ 116] = e2ff7c19283b650d
A[ 117] = 7e20b510048c8b81
A[ 118] = 2ec6248f95796fcd
A[ 119] = 0c87c7f9e1056f74
A[ 120] = 5e20250caa5b4a43
A[ 121] = 6e44865c042e3829
A[ 122] = 9529fbc6155a6a6d
A[ 123] = c44d6a63399d5e4f
A[ 124] = 04ead78d74346144
A[ 125] = 259b97c077a30362
A[ 126] = d185200a80400541
A[ 127] = b9a8bba23413f53c
A[ 128] = a439ca3d5839a512
A[ 129] = d2be51693c027782
A[ 130] = 94c0710d616da4c0
A[ 131] = 55e60934532be3b6
A[ 132] = a6e5b044f10f495d
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A[ 133] = c2a4ba0dd30863e0
A[ 134] = abfa7c9a10170f52
A[ 135] = c55ba748fdfdcaaa
A[ 136] = 9e0f8e2fbf4645e7
A[ 137] = 21b0d68b36a65ab3
A[ 138] = 24e5578b36da9478
A[ 139] = 58446db406441646
A[ 140] = 1be8e6525fc16819
A[ 141] = e84464fb02c603b9
A[ 142] = a14656016a6def39
A[ 143] = 9b2b76febbe7de1f
A[ 144] = 79eda3eb98f56b99
A[ 145] = 0d4ce347389fbe8d
A[ 146] = 0e51deba9751e9ac
A[ 147] = a09984f7d2ed4785
A[ 148] = b3d375606156d954
A[ 149] = 8f7d6fb5316a6189
A[ 150] = 1b87a1d5504f7fc3
A[ 151] = e3d53e19846c0868
A[ 152] = 9dfbc0507d476a7d
Output (16 words of chaining values):
A[ 153] = 2d1abe0601b2e6b0 output chaining value C[0]
A[ 154] = 61d59fd2b7310353 output chaining value C[1]
A[ 155] = ea7da28dec708ec7 output chaining value C[2]
A[ 156] = a63a99a574e40155 output chaining value C[3]
A[ 157] = 290b4fabe80104c4 output chaining value C[4]
A[ 158] = 8c6a3503cf881a99 output chaining value C[5]
A[ 159] = e370e23d1b700cc5 output chaining value C[6]
A[ 160] = 4492e78e3fe42f13 output chaining value C[7]
A[ 161] = df6c91b7eaf3f088 output chaining value C[8]
A[ 162] = aab3e19a8f63b80a output chaining value C[9]
A[ 163] = d987bdcbda2e934f output chaining value C[10]
A[ 164] = aeae805de12b0d24 output chaining value C[11]
A[ 165] = 8854c14dc284f840 output chaining value C[12]
A[ 166] = ed71ad7ba542855c output chaining value C[13]
A[ 167] = e189633e48c797a5 output chaining value C[14]
A[ 168] = 5121a746be48cec8 output chaining value C[15]

8854c14dc284f840ed71ad7ba542855ce189633e48c797a55121a746be48cec8 -Mabc

The final hash value is 0x8854c14d...cec8 .

C.2 Second example

The second example has the 600-character message input (in hexadecimal)
“11223344556677112233...” and uses three compression function calls (two
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leaves and the root). It has a key input “abcde12345”, and computes a hash
value of d = 224 bits using five rounds. All intermediate variables for the three
compression function calls are printed.

> md6sum -d224 -r5 -Kabcde12345 -I -B600
-d224
-r5
-Kabcde12345
-- Mon Aug 04 21:11:05 2008
-- d = 224 (digest length in bits)
-- L = 64 (number of parallel passes)
-- r = 5 (number of rounds)
-- K = ’abcde12345’ (key)
-- k = 10 (key length in bytes)

MD6 compression function computation (level 1, index 0):
Input (89 words):
A[ 0] = 7311c2812425cfa0 Q[0]
A[ 1] = 6432286434aac8e7 Q[1]
A[ 2] = b60450e9ef68b7c1 Q[2]
A[ 3] = e8fb23908d9f06f1 Q[3]
A[ 4] = dd2e76cba691e5bf Q[4]
A[ 5] = 0cd0d63b2c30bc41 Q[5]
A[ 6] = 1f8ccf6823058f8a Q[6]
A[ 7] = 54e5ed5b88e3775d Q[7]
A[ 8] = 4ad12aae0a6d6031 Q[8]
A[ 9] = 3e7f16bb88222e0d Q[9]
A[ 10] = 8af8671d3fb50c2c Q[10]
A[ 11] = 995ad1178bd25c31 Q[11]
A[ 12] = c878c1dd04c4b633 Q[12]
A[ 13] = 3b72066c7a1552ac Q[13]
A[ 14] = 0d6f3522631effcb Q[14]
A[ 15] = 6162636465313233 key K[0]
A[ 16] = 3435000000000000 key K[1]
A[ 17] = 0000000000000000 key K[2]
A[ 18] = 0000000000000000 key K[3]
A[ 19] = 0000000000000000 key K[4]
A[ 20] = 0000000000000000 key K[5]
A[ 21] = 0000000000000000 key K[6]
A[ 22] = 0000000000000000 key K[7]
A[ 23] = 0100000000000000 nodeID U = (ell,i) = (1,0)
A[ 24] = 000540000000a0e0 control word V = (r,L,z,p,keylen,d) = (5,64,0,0,10,224)
A[ 25] = 1122334455667711 data B[ 0] input message word 0
A[ 26] = 2233445566771122 data B[ 1] input message word 1
A[ 27] = 3344556677112233 data B[ 2] input message word 2
A[ 28] = 4455667711223344 data B[ 3] input message word 3



APPENDIX C. SAMPLE MD6 COMPUTATIONS 208

A[ 29] = 5566771122334455 data B[ 4] input message word 4
A[ 30] = 6677112233445566 data B[ 5] input message word 5
A[ 31] = 7711223344556677 data B[ 6] input message word 6
A[ 32] = 1122334455667711 data B[ 7] input message word 7
A[ 33] = 2233445566771122 data B[ 8] input message word 8
A[ 34] = 3344556677112233 data B[ 9] input message word 9
A[ 35] = 4455667711223344 data B[10] input message word 10
A[ 36] = 5566771122334455 data B[11] input message word 11
A[ 37] = 6677112233445566 data B[12] input message word 12
A[ 38] = 7711223344556677 data B[13] input message word 13
A[ 39] = 1122334455667711 data B[14] input message word 14
A[ 40] = 2233445566771122 data B[15] input message word 15
A[ 41] = 3344556677112233 data B[16] input message word 16
A[ 42] = 4455667711223344 data B[17] input message word 17
A[ 43] = 5566771122334455 data B[18] input message word 18
A[ 44] = 6677112233445566 data B[19] input message word 19
A[ 45] = 7711223344556677 data B[20] input message word 20
A[ 46] = 1122334455667711 data B[21] input message word 21
A[ 47] = 2233445566771122 data B[22] input message word 22
A[ 48] = 3344556677112233 data B[23] input message word 23
A[ 49] = 4455667711223344 data B[24] input message word 24
A[ 50] = 5566771122334455 data B[25] input message word 25
A[ 51] = 6677112233445566 data B[26] input message word 26
A[ 52] = 7711223344556677 data B[27] input message word 27
A[ 53] = 1122334455667711 data B[28] input message word 28
A[ 54] = 2233445566771122 data B[29] input message word 29
A[ 55] = 3344556677112233 data B[30] input message word 30
A[ 56] = 4455667711223344 data B[31] input message word 31
A[ 57] = 5566771122334455 data B[32] input message word 32
A[ 58] = 6677112233445566 data B[33] input message word 33
A[ 59] = 7711223344556677 data B[34] input message word 34
A[ 60] = 1122334455667711 data B[35] input message word 35
A[ 61] = 2233445566771122 data B[36] input message word 36
A[ 62] = 3344556677112233 data B[37] input message word 37
A[ 63] = 4455667711223344 data B[38] input message word 38
A[ 64] = 5566771122334455 data B[39] input message word 39
A[ 65] = 6677112233445566 data B[40] input message word 40
A[ 66] = 7711223344556677 data B[41] input message word 41
A[ 67] = 1122334455667711 data B[42] input message word 42
A[ 68] = 2233445566771122 data B[43] input message word 43
A[ 69] = 3344556677112233 data B[44] input message word 44
A[ 70] = 4455667711223344 data B[45] input message word 45
A[ 71] = 5566771122334455 data B[46] input message word 46
A[ 72] = 6677112233445566 data B[47] input message word 47
A[ 73] = 7711223344556677 data B[48] input message word 48
A[ 74] = 1122334455667711 data B[49] input message word 49
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A[ 75] = 2233445566771122 data B[50] input message word 50
A[ 76] = 3344556677112233 data B[51] input message word 51
A[ 77] = 4455667711223344 data B[52] input message word 52
A[ 78] = 5566771122334455 data B[53] input message word 53
A[ 79] = 6677112233445566 data B[54] input message word 54
A[ 80] = 7711223344556677 data B[55] input message word 55
A[ 81] = 1122334455667711 data B[56] input message word 56
A[ 82] = 2233445566771122 data B[57] input message word 57
A[ 83] = 3344556677112233 data B[58] input message word 58
A[ 84] = 4455667711223344 data B[59] input message word 59
A[ 85] = 5566771122334455 data B[60] input message word 60
A[ 86] = 6677112233445566 data B[61] input message word 61
A[ 87] = 7711223344556677 data B[62] input message word 62
A[ 88] = 1122334455667711 data B[63] input message word 63
Intermediate values:
A[ 89] = 023bc36dbadd897c
A[ 90] = d2927a221b06c047
A[ 91] = c43ba671cd483453
A[ 92] = 71fff4ac51400ece
A[ 93] = 0982eb1487ed94a0
A[ 94] = b0db96aa5be6e25d
A[ 95] = c79104d837fa7829
A[ 96] = 74f191fac63854c7
A[ 97] = 555836c2482b7073
A[ 98] = 96d1cfa2960a3635
A[ 99] = 91f93e1e2305defb
A[ 100] = a0d6fb3db7872b00
A[ 101] = 09b3e3efa9f46322
A[ 102] = 4f974344be9283c2
A[ 103] = af945d6202a52b8a
A[ 104] = 534ae6f0cc48c152
A[ 105] = 9a1312a7cb95e823
A[ 106] = 202d5bc69180f643
A[ 107] = 3314055f3e8bd053
A[ 108] = d5f43130bf23ceea
A[ 109] = 6626816602008668
A[ 110] = 76aeea2aca773f6e
A[ 111] = 5e85d8b579246c54
A[ 112] = 2c15d20ff9b8f8c7
A[ 113] = b63139c71d240633
A[ 114] = f34ac4fd12d5ff52
A[ 115] = e6ddcdd1c15d615e
A[ 116] = 4ff6831138609787
A[ 117] = 2d3f1ff4b46ae4d6
A[ 118] = 0db9939d0538d1e5
A[ 119] = 021d0b12738f57f8
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A[ 120] = 225b9b9043fc1478
A[ 121] = 2b44b144083caec0
A[ 122] = ec7dd9746e59215a
A[ 123] = 1b16f1dbf1ee2ca7
A[ 124] = aff86e674d80dfc2
A[ 125] = 500e4a1f3414f2e9
A[ 126] = 7526f159466c0c08
A[ 127] = 21872b0c3ff8f9e5
A[ 128] = 9926c4c3dc26a41a
A[ 129] = 1605d8571a384095
A[ 130] = 36108731ac38dbbe
A[ 131] = 855e83cd250610a9
A[ 132] = e50d76ec2ffcd792
A[ 133] = 3c25e0d2a66156b0
A[ 134] = 5c0a179096bbd764
A[ 135] = 69fbb852261cf3dd
A[ 136] = 464e53ab124324fd
A[ 137] = b82c23d382fe93b0
A[ 138] = f0b2c7468873e088
A[ 139] = 1617ffed131a1888
A[ 140] = 4c96e83298992d59
A[ 141] = 4572047f487d2c7f
A[ 142] = 8dd3884af1d1fa71
A[ 143] = 4e9c5579e3a882cf
A[ 144] = e436a7a0b969237b
A[ 145] = 4c40356771ccc066
A[ 146] = c39d8cb040a1bf0f
A[ 147] = 6d10e4a2236c9cc8
A[ 148] = aee19ed455d9c494
A[ 149] = 9beb541edf2cc926
A[ 150] = 57cef68e40f3a1fe
A[ 151] = da808363958f463d
A[ 152] = dea095fbc38c581d
Output (16 words of chaining values):
A[ 153] = e86a6f805fb810ca output chaining value C[0]
A[ 154] = 991de071299831a9 output chaining value C[1]
A[ 155] = c59517fb7f5c5e74 output chaining value C[2]
A[ 156] = 0e2b5f69481c68e6 output chaining value C[3]
A[ 157] = 8ddb33a8b069b4c2 output chaining value C[4]
A[ 158] = 558b3513a0046dbd output chaining value C[5]
A[ 159] = e1dfb6726949ab7e output chaining value C[6]
A[ 160] = f48bae515e89ee94 output chaining value C[7]
A[ 161] = d31d1f87d97da302 output chaining value C[8]
A[ 162] = 5d349e9b0d69b270 output chaining value C[9]
A[ 163] = b409d2ee2c3e5577 output chaining value C[10]
A[ 164] = 997621d403cd954e output chaining value C[11]
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A[ 165] = 7a353e0ef29490a3 output chaining value C[12]
A[ 166] = 716d1239dfff51dc output chaining value C[13]
A[ 167] = 59744be898cf7c0a output chaining value C[14]
A[ 168] = 07951a90e19da429 output chaining value C[15]

MD6 compression function computation (level 1, index 1):
Input (89 words):
A[ 0] = 7311c2812425cfa0 Q[0]
A[ 1] = 6432286434aac8e7 Q[1]
A[ 2] = b60450e9ef68b7c1 Q[2]
A[ 3] = e8fb23908d9f06f1 Q[3]
A[ 4] = dd2e76cba691e5bf Q[4]
A[ 5] = 0cd0d63b2c30bc41 Q[5]
A[ 6] = 1f8ccf6823058f8a Q[6]
A[ 7] = 54e5ed5b88e3775d Q[7]
A[ 8] = 4ad12aae0a6d6031 Q[8]
A[ 9] = 3e7f16bb88222e0d Q[9]
A[ 10] = 8af8671d3fb50c2c Q[10]
A[ 11] = 995ad1178bd25c31 Q[11]
A[ 12] = c878c1dd04c4b633 Q[12]
A[ 13] = 3b72066c7a1552ac Q[13]
A[ 14] = 0d6f3522631effcb Q[14]
A[ 15] = 6162636465313233 key K[0]
A[ 16] = 3435000000000000 key K[1]
A[ 17] = 0000000000000000 key K[2]
A[ 18] = 0000000000000000 key K[3]
A[ 19] = 0000000000000000 key K[4]
A[ 20] = 0000000000000000 key K[5]
A[ 21] = 0000000000000000 key K[6]
A[ 22] = 0000000000000000 key K[7]
A[ 23] = 0100000000000001 nodeID U = (ell,i) = (1,1)
A[ 24] = 00054000d400a0e0 control word V = (r,L,z,p,keylen,d) = (5,64,0,3392,10,224)
A[ 25] = 2233445566771122 data B[ 0] input message word 64
A[ 26] = 3344556677112233 data B[ 1] input message word 65
A[ 27] = 4455667711223344 data B[ 2] input message word 66
A[ 28] = 5566771122334455 data B[ 3] input message word 67
A[ 29] = 6677112233445566 data B[ 4] input message word 68
A[ 30] = 7711223344556677 data B[ 5] input message word 69
A[ 31] = 1122334455667711 data B[ 6] input message word 70
A[ 32] = 2233445566771122 data B[ 7] input message word 71
A[ 33] = 3344556677112233 data B[ 8] input message word 72
A[ 34] = 4455667711223344 data B[ 9] input message word 73
A[ 35] = 5566771122334455 data B[10] input message word 74
A[ 36] = 0000000000000000 data B[11] padding
A[ 37] = 0000000000000000 data B[12] padding
A[ 38] = 0000000000000000 data B[13] padding
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A[ 39] = 0000000000000000 data B[14] padding
A[ 40] = 0000000000000000 data B[15] padding
A[ 41] = 0000000000000000 data B[16] padding
A[ 42] = 0000000000000000 data B[17] padding
A[ 43] = 0000000000000000 data B[18] padding
A[ 44] = 0000000000000000 data B[19] padding
A[ 45] = 0000000000000000 data B[20] padding
A[ 46] = 0000000000000000 data B[21] padding
A[ 47] = 0000000000000000 data B[22] padding
A[ 48] = 0000000000000000 data B[23] padding
A[ 49] = 0000000000000000 data B[24] padding
A[ 50] = 0000000000000000 data B[25] padding
A[ 51] = 0000000000000000 data B[26] padding
A[ 52] = 0000000000000000 data B[27] padding
A[ 53] = 0000000000000000 data B[28] padding
A[ 54] = 0000000000000000 data B[29] padding
A[ 55] = 0000000000000000 data B[30] padding
A[ 56] = 0000000000000000 data B[31] padding
A[ 57] = 0000000000000000 data B[32] padding
A[ 58] = 0000000000000000 data B[33] padding
A[ 59] = 0000000000000000 data B[34] padding
A[ 60] = 0000000000000000 data B[35] padding
A[ 61] = 0000000000000000 data B[36] padding
A[ 62] = 0000000000000000 data B[37] padding
A[ 63] = 0000000000000000 data B[38] padding
A[ 64] = 0000000000000000 data B[39] padding
A[ 65] = 0000000000000000 data B[40] padding
A[ 66] = 0000000000000000 data B[41] padding
A[ 67] = 0000000000000000 data B[42] padding
A[ 68] = 0000000000000000 data B[43] padding
A[ 69] = 0000000000000000 data B[44] padding
A[ 70] = 0000000000000000 data B[45] padding
A[ 71] = 0000000000000000 data B[46] padding
A[ 72] = 0000000000000000 data B[47] padding
A[ 73] = 0000000000000000 data B[48] padding
A[ 74] = 0000000000000000 data B[49] padding
A[ 75] = 0000000000000000 data B[50] padding
A[ 76] = 0000000000000000 data B[51] padding
A[ 77] = 0000000000000000 data B[52] padding
A[ 78] = 0000000000000000 data B[53] padding
A[ 79] = 0000000000000000 data B[54] padding
A[ 80] = 0000000000000000 data B[55] padding
A[ 81] = 0000000000000000 data B[56] padding
A[ 82] = 0000000000000000 data B[57] padding
A[ 83] = 0000000000000000 data B[58] padding
A[ 84] = 0000000000000000 data B[59] padding



APPENDIX C. SAMPLE MD6 COMPUTATIONS 213

A[ 85] = 0000000000000000 data B[60] padding
A[ 86] = 0000000000000000 data B[61] padding
A[ 87] = 0000000000000000 data B[62] padding
A[ 88] = 0000000000000000 data B[63] padding
Intermediate values:
A[ 89] = 027431e67f2b19cf
A[ 90] = 0d990f6680e90d20
A[ 91] = f27bc123aa282635
A[ 92] = f90ca91b7fd9c62c
A[ 93] = 85139f55bd354f15
A[ 94] = eb6b874532011a19
A[ 95] = 7b04461ba005d2fc
A[ 96] = c7db19c96ca9abc7
A[ 97] = b723400f04c813c4
A[ 98] = c22c98f63ef66335
A[ 99] = 42a2cbb64372fc40
A[ 100] = e52aeb1d587b9012
A[ 101] = 9ea7a2d571275633
A[ 102] = 7e99d0316f65addd
A[ 103] = 72f2b2f2fd1fe6ec
A[ 104] = ee030108c4c8d073
A[ 105] = cfccf37b34add3eb
A[ 106] = f0155b54e33fa5cc
A[ 107] = b3b80e2309548fa4
A[ 108] = b5ef06df65e727d7
A[ 109] = ef08a1b814d205a0
A[ 110] = 367b2caf36cc81c6
A[ 111] = 343a0cf5b903d13e
A[ 112] = b4f9c1e7889ee19f
A[ 113] = da463fdb2c80b3cf
A[ 114] = 5e57342f3b497579
A[ 115] = ec2a9bbbac242772
A[ 116] = f1ece4e7901b8a58
A[ 117] = 46a38ec4458509bc
A[ 118] = 9f023b8106000b81
A[ 119] = bee8b8b568415c9a
A[ 120] = 0941caa98d3a8735
A[ 121] = 1f0d393d159e88a7
A[ 122] = fd918160425fe96e
A[ 123] = 7dc1367a2e734e1a
A[ 124] = 7f151f7a5acba9c0
A[ 125] = 9c97a06aeb6620c2
A[ 126] = f74ca0e2c4400541
A[ 127] = b9a8bba23413f53c
A[ 128] = a439ca3d5839a512
A[ 129] = d2be51693c22f741
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A[ 130] = 94c0657db84579bb
A[ 131] = a0261aaca9731c5f
A[ 132] = 4c9411c30ffbf9fa
A[ 133] = 4dcf01f6386f9b7e
A[ 134] = dbaaf2cbe4f486aa
A[ 135] = 7d5a36c9454ec7e4
A[ 136] = f8634c771236a7dd
A[ 137] = 78c3c019f44632b1
A[ 138] = 6cea1a934cc7ea1e
A[ 139] = fcaa77298206c0a0
A[ 140] = 465b12166eccf1ee
A[ 141] = c07d7163bcd05dfe
A[ 142] = 841dd2066df5d2a1
A[ 143] = db122831fc72f4b5
A[ 144] = 08f24baf1c9d6bd8
A[ 145] = 5eff0d4698d0fc06
A[ 146] = 2e7d9462fae63e2c
A[ 147] = bf86d1573e7fcb05
A[ 148] = 81b9602f09b1b144
A[ 149] = f7d0e892806029ac
A[ 150] = ee671dbe2f9e706c
A[ 151] = 03d9c6acabf402aa
A[ 152] = 2017d423651b402b
Output (16 words of chaining values):
A[ 153] = 34e06cf8e7e380b8 output chaining value C[0]
A[ 154] = f8736f4357f99cb8 output chaining value C[1]
A[ 155] = a3e1187da8fbd4e8 output chaining value C[2]
A[ 156] = 6c11da3b93aca37a output chaining value C[3]
A[ 157] = 5fdb88a98301b016 output chaining value C[4]
A[ 158] = 5d2a34ccc621594d output chaining value C[5]
A[ 159] = d10521d7588ce414 output chaining value C[6]
A[ 160] = 5040286fe773a8c0 output chaining value C[7]
A[ 161] = fe030f559c8a0f0b output chaining value C[8]
A[ 162] = ca289a3c963dd24b output chaining value C[9]
A[ 163] = acdccf24c7a70e53 output chaining value C[10]
A[ 164] = 1f451b9a0209f583 output chaining value C[11]
A[ 165] = da56f65e3205064d output chaining value C[12]
A[ 166] = a00e879eae6d8241 output chaining value C[13]
A[ 167] = 2a2a15bc29dc56a4 output chaining value C[14]
A[ 168] = 5d8e677905657f39 output chaining value C[15]

MD6 compression function computation (level 2, index 0):
Input (89 words):
A[ 0] = 7311c2812425cfa0 Q[0]
A[ 1] = 6432286434aac8e7 Q[1]
A[ 2] = b60450e9ef68b7c1 Q[2]
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A[ 3] = e8fb23908d9f06f1 Q[3]
A[ 4] = dd2e76cba691e5bf Q[4]
A[ 5] = 0cd0d63b2c30bc41 Q[5]
A[ 6] = 1f8ccf6823058f8a Q[6]
A[ 7] = 54e5ed5b88e3775d Q[7]
A[ 8] = 4ad12aae0a6d6031 Q[8]
A[ 9] = 3e7f16bb88222e0d Q[9]
A[ 10] = 8af8671d3fb50c2c Q[10]
A[ 11] = 995ad1178bd25c31 Q[11]
A[ 12] = c878c1dd04c4b633 Q[12]
A[ 13] = 3b72066c7a1552ac Q[13]
A[ 14] = 0d6f3522631effcb Q[14]
A[ 15] = 6162636465313233 key K[0]
A[ 16] = 3435000000000000 key K[1]
A[ 17] = 0000000000000000 key K[2]
A[ 18] = 0000000000000000 key K[3]
A[ 19] = 0000000000000000 key K[4]
A[ 20] = 0000000000000000 key K[5]
A[ 21] = 0000000000000000 key K[6]
A[ 22] = 0000000000000000 key K[7]
A[ 23] = 0200000000000000 nodeID U = (ell,i) = (2,0)
A[ 24] = 000540108000a0e0 control word V = (r,L,z,p,keylen,d) = (5,64,1,2048,10,224)
A[ 25] = e86a6f805fb810ca data B[ 0] chaining from (1,0)
A[ 26] = 991de071299831a9 data B[ 1] chaining from (1,0)
A[ 27] = c59517fb7f5c5e74 data B[ 2] chaining from (1,0)
A[ 28] = 0e2b5f69481c68e6 data B[ 3] chaining from (1,0)
A[ 29] = 8ddb33a8b069b4c2 data B[ 4] chaining from (1,0)
A[ 30] = 558b3513a0046dbd data B[ 5] chaining from (1,0)
A[ 31] = e1dfb6726949ab7e data B[ 6] chaining from (1,0)
A[ 32] = f48bae515e89ee94 data B[ 7] chaining from (1,0)
A[ 33] = d31d1f87d97da302 data B[ 8] chaining from (1,0)
A[ 34] = 5d349e9b0d69b270 data B[ 9] chaining from (1,0)
A[ 35] = b409d2ee2c3e5577 data B[10] chaining from (1,0)
A[ 36] = 997621d403cd954e data B[11] chaining from (1,0)
A[ 37] = 7a353e0ef29490a3 data B[12] chaining from (1,0)
A[ 38] = 716d1239dfff51dc data B[13] chaining from (1,0)
A[ 39] = 59744be898cf7c0a data B[14] chaining from (1,0)
A[ 40] = 07951a90e19da429 data B[15] chaining from (1,0)
A[ 41] = 34e06cf8e7e380b8 data B[16] chaining from (1,1)
A[ 42] = f8736f4357f99cb8 data B[17] chaining from (1,1)
A[ 43] = a3e1187da8fbd4e8 data B[18] chaining from (1,1)
A[ 44] = 6c11da3b93aca37a data B[19] chaining from (1,1)
A[ 45] = 5fdb88a98301b016 data B[20] chaining from (1,1)
A[ 46] = 5d2a34ccc621594d data B[21] chaining from (1,1)
A[ 47] = d10521d7588ce414 data B[22] chaining from (1,1)
A[ 48] = 5040286fe773a8c0 data B[23] chaining from (1,1)
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A[ 49] = fe030f559c8a0f0b data B[24] chaining from (1,1)
A[ 50] = ca289a3c963dd24b data B[25] chaining from (1,1)
A[ 51] = acdccf24c7a70e53 data B[26] chaining from (1,1)
A[ 52] = 1f451b9a0209f583 data B[27] chaining from (1,1)
A[ 53] = da56f65e3205064d data B[28] chaining from (1,1)
A[ 54] = a00e879eae6d8241 data B[29] chaining from (1,1)
A[ 55] = 2a2a15bc29dc56a4 data B[30] chaining from (1,1)
A[ 56] = 5d8e677905657f39 data B[31] chaining from (1,1)
A[ 57] = 0000000000000000 data B[32] padding
A[ 58] = 0000000000000000 data B[33] padding
A[ 59] = 0000000000000000 data B[34] padding
A[ 60] = 0000000000000000 data B[35] padding
A[ 61] = 0000000000000000 data B[36] padding
A[ 62] = 0000000000000000 data B[37] padding
A[ 63] = 0000000000000000 data B[38] padding
A[ 64] = 0000000000000000 data B[39] padding
A[ 65] = 0000000000000000 data B[40] padding
A[ 66] = 0000000000000000 data B[41] padding
A[ 67] = 0000000000000000 data B[42] padding
A[ 68] = 0000000000000000 data B[43] padding
A[ 69] = 0000000000000000 data B[44] padding
A[ 70] = 0000000000000000 data B[45] padding
A[ 71] = 0000000000000000 data B[46] padding
A[ 72] = 0000000000000000 data B[47] padding
A[ 73] = 0000000000000000 data B[48] padding
A[ 74] = 0000000000000000 data B[49] padding
A[ 75] = 0000000000000000 data B[50] padding
A[ 76] = 0000000000000000 data B[51] padding
A[ 77] = 0000000000000000 data B[52] padding
A[ 78] = 0000000000000000 data B[53] padding
A[ 79] = 0000000000000000 data B[54] padding
A[ 80] = 0000000000000000 data B[55] padding
A[ 81] = 0000000000000000 data B[56] padding
A[ 82] = 0000000000000000 data B[57] padding
A[ 83] = 0000000000000000 data B[58] padding
A[ 84] = 0000000000000000 data B[59] padding
A[ 85] = 0000000000000000 data B[60] padding
A[ 86] = 0000000000000000 data B[61] padding
A[ 87] = 0000000000000000 data B[62] padding
A[ 88] = 0000000000000000 data B[63] padding
Intermediate values:
A[ 89] = 027431e67f2b19cf
A[ 90] = 0d990f6680e90d20
A[ 91] = f27bc123aa282635
A[ 92] = f90ca91b7fd9c62c
A[ 93] = 85139f55bd354f15
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A[ 94] = eb6b874532011a19
A[ 95] = 7b04461ba005d2fc
A[ 96] = c7db19c96ca9abc7
A[ 97] = b723400f04c813c4
A[ 98] = c22c98f63ef66335
A[ 99] = 42a2cbb64372fc40
A[ 100] = e52aeb1d587b9012
A[ 101] = 9ea7a2d571275633
A[ 102] = 7e99d0316f65addd
A[ 103] = 72f2b2f2fd1fe6ec
A[ 104] = ee030108c4c8d073
A[ 105] = cfccf37b34add3eb
A[ 106] = f0155b54e33fa5cc
A[ 107] = b3b80e2309548fa4
A[ 108] = b5ef06df65e727d7
A[ 109] = ef08a1b814d205a0
A[ 110] = 367b2caf36cc81c6
A[ 111] = 343a0cf5b903d13e
A[ 112] = b7ffc1e7889e619e
A[ 113] = da463bde6895e3cf
A[ 114] = bd6d76d5ecb9ced7
A[ 115] = e9211df17c1026cf
A[ 116] = b457148a6f18579b
A[ 117] = 3d0b7d88140c60ea
A[ 118] = 3a1618bc555cfd06
A[ 119] = af18e03b8f81137f
A[ 120] = b6d883f0886927fa
A[ 121] = e381b7c523751aee
A[ 122] = a67b075ce5084a43
A[ 123] = e21bdb4cbccfd550
A[ 124] = 605490a2b9633ba6
A[ 125] = 827ab3dc2455cc3e
A[ 126] = e844879b214868ab
A[ 127] = 69dee938c4137097
A[ 128] = ac40cdbd60be47e0
A[ 129] = f2ef6e974054c21d
A[ 130] = 7ca07eb5027eb3ba
A[ 131] = 44f906e854762107
A[ 132] = 1ee8fa9fe001f2fb
A[ 133] = 7e59e884e26c7334
A[ 134] = 2826f9847abcb858
A[ 135] = df781ee5037bfa6c
A[ 136] = 7ef847fbff16a0e2
A[ 137] = 7b9385aaadc629f9
A[ 138] = a31a329af6d51b66
A[ 139] = deca0d8d359124b2
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A[ 140] = aa4dcd6abdd53809
A[ 141] = 54716fa013b20217
A[ 142] = 540769a3c74ee7e1
A[ 143] = 3db7182c921992a4
A[ 144] = 09f2a43ce7a2d5f9
A[ 145] = 7aae992259f2b683
A[ 146] = 9a7c3b013169a03e
A[ 147] = 5d3a735c1778b352
A[ 148] = 42d57de6de15e405
A[ 149] = 12f0c0a26450d81e
A[ 150] = aa66aa041120fc69
A[ 151] = 27c0ddcc71049201
A[ 152] = 4605822c05dc18b8
Output (16 words of chaining values):
A[ 153] = 51fe1122f4c17ec2 output chaining value C[0]
A[ 154] = a314cd812406314d output chaining value C[1]
A[ 155] = f7b08c0b30f095fe output chaining value C[2]
A[ 156] = 1ded1aee71933f09 output chaining value C[3]
A[ 157] = 2bb446cb238ed41f output chaining value C[4]
A[ 158] = 0f6460080325fe08 output chaining value C[5]
A[ 159] = 160e8b6947fcf632 output chaining value C[6]
A[ 160] = e283c3b4b88318cb output chaining value C[7]
A[ 161] = a00cab488aa9c072 output chaining value C[8]
A[ 162] = 9f2810c25189818d output chaining value C[9]
A[ 163] = 31f7f47f96cf8606 output chaining value C[10]
A[ 164] = 403f037430ec43f2 output chaining value C[11]
A[ 165] = edcbb8e5894cf059 output chaining value C[12]
A[ 166] = 8ad3288ed4bb5ac5 output chaining value C[13]
A[ 167] = df23eba0ac388a11 output chaining value C[14]
A[ 168] = b7ed2e3dd5ec5131 output chaining value C[15]

894cf0598ad3288ed4bb5ac5df23eba0ac388a11b7ed2e3dd5ec5131 -B600

The final hash value is 0x894cf059...5131 .

C.3 Third example

The third example illustrates the sequential (L = 0) mode of operation on
an 800-byte input file. Three compression function function calls are required.
Only the input and output for each compression function call are printed.

> md6sum -L0 -i -B800
-L0
-- Thu Aug 07 18:25:57 2008
-- d = 256 (digest length in bits)
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-- L = 0 (number of parallel passes)
-- r = 104 (number of rounds)
-- K = ’’ (key)
-- k = 0 (key length in bytes)

MD6 compression function computation (level 1, index 0):
Input (89 words):
A[ 0] = 7311c2812425cfa0 Q[0]
A[ 1] = 6432286434aac8e7 Q[1]
A[ 2] = b60450e9ef68b7c1 Q[2]
A[ 3] = e8fb23908d9f06f1 Q[3]
A[ 4] = dd2e76cba691e5bf Q[4]
A[ 5] = 0cd0d63b2c30bc41 Q[5]
A[ 6] = 1f8ccf6823058f8a Q[6]
A[ 7] = 54e5ed5b88e3775d Q[7]
A[ 8] = 4ad12aae0a6d6031 Q[8]
A[ 9] = 3e7f16bb88222e0d Q[9]
A[ 10] = 8af8671d3fb50c2c Q[10]
A[ 11] = 995ad1178bd25c31 Q[11]
A[ 12] = c878c1dd04c4b633 Q[12]
A[ 13] = 3b72066c7a1552ac Q[13]
A[ 14] = 0d6f3522631effcb Q[14]
A[ 15] = 0000000000000000 key K[0]
A[ 16] = 0000000000000000 key K[1]
A[ 17] = 0000000000000000 key K[2]
A[ 18] = 0000000000000000 key K[3]
A[ 19] = 0000000000000000 key K[4]
A[ 20] = 0000000000000000 key K[5]
A[ 21] = 0000000000000000 key K[6]
A[ 22] = 0000000000000000 key K[7]
A[ 23] = 0100000000000000 nodeID U = (ell,i) = (1,0)
A[ 24] = 0068000000000100 control word V = (r,L,z,p,keylen,d) = (104,0,0,0,0,256)
A[ 25] = 0000000000000000 data B[ 0] IV
A[ 26] = 0000000000000000 data B[ 1] IV
A[ 27] = 0000000000000000 data B[ 2] IV
A[ 28] = 0000000000000000 data B[ 3] IV
A[ 29] = 0000000000000000 data B[ 4] IV
A[ 30] = 0000000000000000 data B[ 5] IV
A[ 31] = 0000000000000000 data B[ 6] IV
A[ 32] = 0000000000000000 data B[ 7] IV
A[ 33] = 0000000000000000 data B[ 8] IV
A[ 34] = 0000000000000000 data B[ 9] IV
A[ 35] = 0000000000000000 data B[10] IV
A[ 36] = 0000000000000000 data B[11] IV
A[ 37] = 0000000000000000 data B[12] IV
A[ 38] = 0000000000000000 data B[13] IV
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A[ 39] = 0000000000000000 data B[14] IV
A[ 40] = 0000000000000000 data B[15] IV
A[ 41] = 1122334455667711 data B[16] input message word 0
A[ 42] = 2233445566771122 data B[17] input message word 1
A[ 43] = 3344556677112233 data B[18] input message word 2
A[ 44] = 4455667711223344 data B[19] input message word 3
A[ 45] = 5566771122334455 data B[20] input message word 4
A[ 46] = 6677112233445566 data B[21] input message word 5
A[ 47] = 7711223344556677 data B[22] input message word 6
A[ 48] = 1122334455667711 data B[23] input message word 7
A[ 49] = 2233445566771122 data B[24] input message word 8
A[ 50] = 3344556677112233 data B[25] input message word 9
A[ 51] = 4455667711223344 data B[26] input message word 10
A[ 52] = 5566771122334455 data B[27] input message word 11
A[ 53] = 6677112233445566 data B[28] input message word 12
A[ 54] = 7711223344556677 data B[29] input message word 13
A[ 55] = 1122334455667711 data B[30] input message word 14
A[ 56] = 2233445566771122 data B[31] input message word 15
A[ 57] = 3344556677112233 data B[32] input message word 16
A[ 58] = 4455667711223344 data B[33] input message word 17
A[ 59] = 5566771122334455 data B[34] input message word 18
A[ 60] = 6677112233445566 data B[35] input message word 19
A[ 61] = 7711223344556677 data B[36] input message word 20
A[ 62] = 1122334455667711 data B[37] input message word 21
A[ 63] = 2233445566771122 data B[38] input message word 22
A[ 64] = 3344556677112233 data B[39] input message word 23
A[ 65] = 4455667711223344 data B[40] input message word 24
A[ 66] = 5566771122334455 data B[41] input message word 25
A[ 67] = 6677112233445566 data B[42] input message word 26
A[ 68] = 7711223344556677 data B[43] input message word 27
A[ 69] = 1122334455667711 data B[44] input message word 28
A[ 70] = 2233445566771122 data B[45] input message word 29
A[ 71] = 3344556677112233 data B[46] input message word 30
A[ 72] = 4455667711223344 data B[47] input message word 31
A[ 73] = 5566771122334455 data B[48] input message word 32
A[ 74] = 6677112233445566 data B[49] input message word 33
A[ 75] = 7711223344556677 data B[50] input message word 34
A[ 76] = 1122334455667711 data B[51] input message word 35
A[ 77] = 2233445566771122 data B[52] input message word 36
A[ 78] = 3344556677112233 data B[53] input message word 37
A[ 79] = 4455667711223344 data B[54] input message word 38
A[ 80] = 5566771122334455 data B[55] input message word 39
A[ 81] = 6677112233445566 data B[56] input message word 40
A[ 82] = 7711223344556677 data B[57] input message word 41
A[ 83] = 1122334455667711 data B[58] input message word 42
A[ 84] = 2233445566771122 data B[59] input message word 43
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A[ 85] = 3344556677112233 data B[60] input message word 44
A[ 86] = 4455667711223344 data B[61] input message word 45
A[ 87] = 5566771122334455 data B[62] input message word 46
A[ 88] = 6677112233445566 data B[63] input message word 47
Intermediate values A[89..1736] omitted...
Output (16 words of chaining values):
A[1737] = d0e1686ab52f2642 output chaining value C[0]
A[1738] = 23ae78b2f1225d3d output chaining value C[1]
A[1739] = 1d3f60e3f6ebe9e6 output chaining value C[2]
A[1740] = 0e2a6dd7ca126f8f output chaining value C[3]
A[1741] = 9ced68e939d173e8 output chaining value C[4]
A[1742] = f1260e4e80af4bac output chaining value C[5]
A[1743] = dcd5ab34b0084bb0 output chaining value C[6]
A[1744] = 0d4486d2a95c0ea7 output chaining value C[7]
A[1745] = e0c1456140162bc6 output chaining value C[8]
A[1746] = 5c9b43a4afb76f91 output chaining value C[9]
A[1747] = 5e2e233293e7832b output chaining value C[10]
A[1748] = 8bb542c30087934c output chaining value C[11]
A[1749] = 801da4582d8c3b82 output chaining value C[12]
A[1750] = bdac086c24adb7e1 output chaining value C[13]
A[1751] = a4b6198b4f41a95b output chaining value C[14]
A[1752] = 5a362e4725f93b78 output chaining value C[15]

MD6 compression function computation (level 1, index 1):
Input (89 words):
A[ 0] = 7311c2812425cfa0 Q[0]
A[ 1] = 6432286434aac8e7 Q[1]
A[ 2] = b60450e9ef68b7c1 Q[2]
A[ 3] = e8fb23908d9f06f1 Q[3]
A[ 4] = dd2e76cba691e5bf Q[4]
A[ 5] = 0cd0d63b2c30bc41 Q[5]
A[ 6] = 1f8ccf6823058f8a Q[6]
A[ 7] = 54e5ed5b88e3775d Q[7]
A[ 8] = 4ad12aae0a6d6031 Q[8]
A[ 9] = 3e7f16bb88222e0d Q[9]
A[ 10] = 8af8671d3fb50c2c Q[10]
A[ 11] = 995ad1178bd25c31 Q[11]
A[ 12] = c878c1dd04c4b633 Q[12]
A[ 13] = 3b72066c7a1552ac Q[13]
A[ 14] = 0d6f3522631effcb Q[14]
A[ 15] = 0000000000000000 key K[0]
A[ 16] = 0000000000000000 key K[1]
A[ 17] = 0000000000000000 key K[2]
A[ 18] = 0000000000000000 key K[3]
A[ 19] = 0000000000000000 key K[4]
A[ 20] = 0000000000000000 key K[5]
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A[ 21] = 0000000000000000 key K[6]
A[ 22] = 0000000000000000 key K[7]
A[ 23] = 0100000000000001 nodeID U = (ell,i) = (1,1)
A[ 24] = 0068000000000100 control word V = (r,L,z,p,keylen,d) = (104,0,0,0,0,256)
A[ 25] = d0e1686ab52f2642 data B[ 0] chaining from (1,0)
A[ 26] = 23ae78b2f1225d3d data B[ 1] chaining from (1,0)
A[ 27] = 1d3f60e3f6ebe9e6 data B[ 2] chaining from (1,0)
A[ 28] = 0e2a6dd7ca126f8f data B[ 3] chaining from (1,0)
A[ 29] = 9ced68e939d173e8 data B[ 4] chaining from (1,0)
A[ 30] = f1260e4e80af4bac data B[ 5] chaining from (1,0)
A[ 31] = dcd5ab34b0084bb0 data B[ 6] chaining from (1,0)
A[ 32] = 0d4486d2a95c0ea7 data B[ 7] chaining from (1,0)
A[ 33] = e0c1456140162bc6 data B[ 8] chaining from (1,0)
A[ 34] = 5c9b43a4afb76f91 data B[ 9] chaining from (1,0)
A[ 35] = 5e2e233293e7832b data B[10] chaining from (1,0)
A[ 36] = 8bb542c30087934c data B[11] chaining from (1,0)
A[ 37] = 801da4582d8c3b82 data B[12] chaining from (1,0)
A[ 38] = bdac086c24adb7e1 data B[13] chaining from (1,0)
A[ 39] = a4b6198b4f41a95b data B[14] chaining from (1,0)
A[ 40] = 5a362e4725f93b78 data B[15] chaining from (1,0)
A[ 41] = 7711223344556677 data B[16] input message word 48
A[ 42] = 1122334455667711 data B[17] input message word 49
A[ 43] = 2233445566771122 data B[18] input message word 50
A[ 44] = 3344556677112233 data B[19] input message word 51
A[ 45] = 4455667711223344 data B[20] input message word 52
A[ 46] = 5566771122334455 data B[21] input message word 53
A[ 47] = 6677112233445566 data B[22] input message word 54
A[ 48] = 7711223344556677 data B[23] input message word 55
A[ 49] = 1122334455667711 data B[24] input message word 56
A[ 50] = 2233445566771122 data B[25] input message word 57
A[ 51] = 3344556677112233 data B[26] input message word 58
A[ 52] = 4455667711223344 data B[27] input message word 59
A[ 53] = 5566771122334455 data B[28] input message word 60
A[ 54] = 6677112233445566 data B[29] input message word 61
A[ 55] = 7711223344556677 data B[30] input message word 62
A[ 56] = 1122334455667711 data B[31] input message word 63
A[ 57] = 2233445566771122 data B[32] input message word 64
A[ 58] = 3344556677112233 data B[33] input message word 65
A[ 59] = 4455667711223344 data B[34] input message word 66
A[ 60] = 5566771122334455 data B[35] input message word 67
A[ 61] = 6677112233445566 data B[36] input message word 68
A[ 62] = 7711223344556677 data B[37] input message word 69
A[ 63] = 1122334455667711 data B[38] input message word 70
A[ 64] = 2233445566771122 data B[39] input message word 71
A[ 65] = 3344556677112233 data B[40] input message word 72
A[ 66] = 4455667711223344 data B[41] input message word 73
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A[ 67] = 5566771122334455 data B[42] input message word 74
A[ 68] = 6677112233445566 data B[43] input message word 75
A[ 69] = 7711223344556677 data B[44] input message word 76
A[ 70] = 1122334455667711 data B[45] input message word 77
A[ 71] = 2233445566771122 data B[46] input message word 78
A[ 72] = 3344556677112233 data B[47] input message word 79
A[ 73] = 4455667711223344 data B[48] input message word 80
A[ 74] = 5566771122334455 data B[49] input message word 81
A[ 75] = 6677112233445566 data B[50] input message word 82
A[ 76] = 7711223344556677 data B[51] input message word 83
A[ 77] = 1122334455667711 data B[52] input message word 84
A[ 78] = 2233445566771122 data B[53] input message word 85
A[ 79] = 3344556677112233 data B[54] input message word 86
A[ 80] = 4455667711223344 data B[55] input message word 87
A[ 81] = 5566771122334455 data B[56] input message word 88
A[ 82] = 6677112233445566 data B[57] input message word 89
A[ 83] = 7711223344556677 data B[58] input message word 90
A[ 84] = 1122334455667711 data B[59] input message word 91
A[ 85] = 2233445566771122 data B[60] input message word 92
A[ 86] = 3344556677112233 data B[61] input message word 93
A[ 87] = 4455667711223344 data B[62] input message word 94
A[ 88] = 5566771122334455 data B[63] input message word 95
Intermediate values A[89..1736] omitted...
Output (16 words of chaining values):
A[1737] = 2fae6767b4be2806 output chaining value C[0]
A[1738] = a2c58070961ed34b output chaining value C[1]
A[1739] = e904278982816f0e output chaining value C[2]
A[1740] = 934bdf1bfaf89a48 output chaining value C[3]
A[1741] = 76b58590d48adde3 output chaining value C[4]
A[1742] = cd05fbf6a5f96726 output chaining value C[5]
A[1743] = 8ec3ff4d0c6af6c7 output chaining value C[6]
A[1744] = b87fbb6355077b92 output chaining value C[7]
A[1745] = d337638251ab837e output chaining value C[8]
A[1746] = fdafde77a9159856 output chaining value C[9]
A[1747] = ce755bb68e28b108 output chaining value C[10]
A[1748] = 3f71a3d304cc9f0b output chaining value C[11]
A[1749] = b9c42ccf1105e74a output chaining value C[12]
A[1750] = 3f0735075312a67f output chaining value C[13]
A[1751] = 1a6353195d8e1adf output chaining value C[14]
A[1752] = 6a9b5a6553635aab output chaining value C[15]

MD6 compression function computation (level 1, index 2):
Input (89 words):
A[ 0] = 7311c2812425cfa0 Q[0]
A[ 1] = 6432286434aac8e7 Q[1]
A[ 2] = b60450e9ef68b7c1 Q[2]
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A[ 3] = e8fb23908d9f06f1 Q[3]
A[ 4] = dd2e76cba691e5bf Q[4]
A[ 5] = 0cd0d63b2c30bc41 Q[5]
A[ 6] = 1f8ccf6823058f8a Q[6]
A[ 7] = 54e5ed5b88e3775d Q[7]
A[ 8] = 4ad12aae0a6d6031 Q[8]
A[ 9] = 3e7f16bb88222e0d Q[9]
A[ 10] = 8af8671d3fb50c2c Q[10]
A[ 11] = 995ad1178bd25c31 Q[11]
A[ 12] = c878c1dd04c4b633 Q[12]
A[ 13] = 3b72066c7a1552ac Q[13]
A[ 14] = 0d6f3522631effcb Q[14]
A[ 15] = 0000000000000000 key K[0]
A[ 16] = 0000000000000000 key K[1]
A[ 17] = 0000000000000000 key K[2]
A[ 18] = 0000000000000000 key K[3]
A[ 19] = 0000000000000000 key K[4]
A[ 20] = 0000000000000000 key K[5]
A[ 21] = 0000000000000000 key K[6]
A[ 22] = 0000000000000000 key K[7]
A[ 23] = 0100000000000002 nodeID U = (ell,i) = (1,2)
A[ 24] = 00680010b0000100 control word V = (r,L,z,p,keylen,d) = (104,0,1,2816,0,256)
A[ 25] = 2fae6767b4be2806 data B[ 0] chaining from (1,1)
A[ 26] = a2c58070961ed34b data B[ 1] chaining from (1,1)
A[ 27] = e904278982816f0e data B[ 2] chaining from (1,1)
A[ 28] = 934bdf1bfaf89a48 data B[ 3] chaining from (1,1)
A[ 29] = 76b58590d48adde3 data B[ 4] chaining from (1,1)
A[ 30] = cd05fbf6a5f96726 data B[ 5] chaining from (1,1)
A[ 31] = 8ec3ff4d0c6af6c7 data B[ 6] chaining from (1,1)
A[ 32] = b87fbb6355077b92 data B[ 7] chaining from (1,1)
A[ 33] = d337638251ab837e data B[ 8] chaining from (1,1)
A[ 34] = fdafde77a9159856 data B[ 9] chaining from (1,1)
A[ 35] = ce755bb68e28b108 data B[10] chaining from (1,1)
A[ 36] = 3f71a3d304cc9f0b data B[11] chaining from (1,1)
A[ 37] = b9c42ccf1105e74a data B[12] chaining from (1,1)
A[ 38] = 3f0735075312a67f data B[13] chaining from (1,1)
A[ 39] = 1a6353195d8e1adf data B[14] chaining from (1,1)
A[ 40] = 6a9b5a6553635aab data B[15] chaining from (1,1)
A[ 41] = 6677112233445566 data B[16] input message word 96
A[ 42] = 7711223344556677 data B[17] input message word 97
A[ 43] = 1122334455667711 data B[18] input message word 98
A[ 44] = 2233445566771122 data B[19] input message word 99
A[ 45] = 0000000000000000 data B[20] padding
A[ 46] = 0000000000000000 data B[21] padding
A[ 47] = 0000000000000000 data B[22] padding
A[ 48] = 0000000000000000 data B[23] padding
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A[ 49] = 0000000000000000 data B[24] padding
A[ 50] = 0000000000000000 data B[25] padding
A[ 51] = 0000000000000000 data B[26] padding
A[ 52] = 0000000000000000 data B[27] padding
A[ 53] = 0000000000000000 data B[28] padding
A[ 54] = 0000000000000000 data B[29] padding
A[ 55] = 0000000000000000 data B[30] padding
A[ 56] = 0000000000000000 data B[31] padding
A[ 57] = 0000000000000000 data B[32] padding
A[ 58] = 0000000000000000 data B[33] padding
A[ 59] = 0000000000000000 data B[34] padding
A[ 60] = 0000000000000000 data B[35] padding
A[ 61] = 0000000000000000 data B[36] padding
A[ 62] = 0000000000000000 data B[37] padding
A[ 63] = 0000000000000000 data B[38] padding
A[ 64] = 0000000000000000 data B[39] padding
A[ 65] = 0000000000000000 data B[40] padding
A[ 66] = 0000000000000000 data B[41] padding
A[ 67] = 0000000000000000 data B[42] padding
A[ 68] = 0000000000000000 data B[43] padding
A[ 69] = 0000000000000000 data B[44] padding
A[ 70] = 0000000000000000 data B[45] padding
A[ 71] = 0000000000000000 data B[46] padding
A[ 72] = 0000000000000000 data B[47] padding
A[ 73] = 0000000000000000 data B[48] padding
A[ 74] = 0000000000000000 data B[49] padding
A[ 75] = 0000000000000000 data B[50] padding
A[ 76] = 0000000000000000 data B[51] padding
A[ 77] = 0000000000000000 data B[52] padding
A[ 78] = 0000000000000000 data B[53] padding
A[ 79] = 0000000000000000 data B[54] padding
A[ 80] = 0000000000000000 data B[55] padding
A[ 81] = 0000000000000000 data B[56] padding
A[ 82] = 0000000000000000 data B[57] padding
A[ 83] = 0000000000000000 data B[58] padding
A[ 84] = 0000000000000000 data B[59] padding
A[ 85] = 0000000000000000 data B[60] padding
A[ 86] = 0000000000000000 data B[61] padding
A[ 87] = 0000000000000000 data B[62] padding
A[ 88] = 0000000000000000 data B[63] padding
Intermediate values A[89..1736] omitted...
Output (16 words of chaining values):
A[1737] = 969f16af5a7eeda6 output chaining value C[0]
A[1738] = 75483a88c579b003 output chaining value C[1]
A[1739] = 0dc223df76efa88a output chaining value C[2]
A[1740] = 830ae40e6a3c26cb output chaining value C[3]



APPENDIX C. SAMPLE MD6 COMPUTATIONS 226

A[1741] = 5e6465d14c92e806 output chaining value C[4]
A[1742] = b45bfef654e87974 output chaining value C[5]
A[1743] = 0e94db3983fc413c output chaining value C[6]
A[1744] = a6fe8edf36ea4d92 output chaining value C[7]
A[1745] = 9506fe8428a971cd output chaining value C[8]
A[1746] = d4ea6a408a2ad417 output chaining value C[9]
A[1747] = c47b1bad0cd35209 output chaining value C[10]
A[1748] = 577c2a468919e473 output chaining value C[11]
A[1749] = 4e78ab5ec8926a3d output chaining value C[12]
A[1750] = b0dcfa09ed48de6c output chaining value C[13]
A[1751] = 33a7399e70f01ebf output chaining value C[14]
A[1752] = c02abb52767594e2 output chaining value C[15]

4e78ab5ec8926a3db0dcfa09ed48de6c33a7399e70f01ebfc02abb52767594e2 -B800

The final hash value is 0x4e78ab5e...94e2 .



Appendix D

Notation

Variable Default Usage
A – a vector of words used in the definition of f .
a rc+ n length of the vector A used in the definition of f .
B – the data block portion of a compression function input.
b 64 the number of words in array B.
c 16 number of words in the compression function output.
d – number of bits in the MD6 final output (1 ≤ d ≤ 512).
f – the MD6 compression function mapping Wn to W c.
fQ – f without the fixed prefix, mapping Wn−q to W c: fQ(x) = f(Q||x).
g – an intra-word diffusion function.
K 0 the key variable (an input to f).
k 8 number of compression input words for the key variable K.

keylen 0 the length in bytes of the supplied key; 0 ≤ keylen ≤ kw/8.
` – the level number of a compression node.
`i – a left-shift amount for compression function step i.
L 64 mode parameter (maximum level number).
M – The input message to be hashed.
m – the length of the input message M , in bits.
N – the input block to the compression function.
n 89 the length of N in words.
p – the number of padding bits in a data block B.
Q – an approximation to

√
6.

q 15 the length of Q in words.
r 40 + bd/4c number of 16-step rounds in the compression function computation.
ri – a right-shift amount for compression function step i.
Si – a constant used in step i of the compression function.
S′j – an auxiliary sequence of values used to define sequence Si.
t rc the number of computation steps in the compression function.
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Variable Default Usage
t0 17 first tap position.
t1 18 second tap position.
t2 21 third tap position.
t3 31 fourth tap position.
t4 67 fifth tap position.
t5 n last tap position.
U – one-word unique node ID
u 1 length of U in words
V – a control word input to a compression function.
v 1 length of V in words.
W {0, 1}w the set of all w-bit words.
w 64 the number of bits in a word.
z – flag bit in V indicating this is final compression.



Appendix E

Additional documents

This appendix describes some additional documents submitted to NIST (or
publicly available) that help to describe or illustrate the MD6 hash function.

E.1 Powerpoint slides from Rivest’s CRYPTO
talk

We have also included the Powerpoint slides from Professor Rivest’s CRYPTO
2008 talk on MD6; this is file crypto2008.ppt.

E.2 Crutchfield thesis

The June 2008 MIT EECS Master’s Thesis of Christopher Crutchfield, entitled
“Security Proofs for the MD6 Mode of Operation,” is included with our NIST
submission.

E.3 Code

The MD6 Reference Implementation, Optimized 32Bit Implementation, and
Optimized 64Bit implementation, are included with our NIST submission, as
required.

Also included with our submission are the following programs:

shiftopt.c — A program used to optimize the shift amounts for MD6.

tapopt.c — A program used to optimize the tap locations for MD6.

md6sum.c — A utility program used to test MD6 and produce the intermediate
value printouts.
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All of our software is provided under the open source “MIT License” 1, which
has very liberal terms for copying, redistribution, modification, etc.

E.4 KAT and MCT tests

Our submission to NIST includes the KAT (Known Answer Test) and MCT
(Monte Carlo Test) results as required by NIST.

There are no NIST requirements for submitting KAT or MCT test results
for keyed (or “salted”) versions of a submitted hash function, but Appendix C
provides some such examples (albeit with reduced number of rounds).

E.5 One-block and two-block examples

Our submission to NIST also includes one-block and two-block examples of MD6
sample computations.

These examples include the required NIST digest sizes: 224 bits, 256 bits,
384 bits, and 512 bits.

For each digest size, a one-block example and a two-block example are pro-
vided. The one-block examples have an input of length 400 bytes (recall that
a single MD6 compression function call can handle inputs of length up to 512
bytes). The “two-block” examples have an input of length 800 bytes.

For each combination of digest size and input size (one-block or two-block),
there are three sample outputs provided:

• Standard MD6.

• MD6 in sequential mode (i.e., with L = 0).

• MD6 with a nine-byte key in standard mode.

Note that the “two-block” examples show three compression function calls,
since in standard mode there will be two compression function calls at level 1,
and one at level 2 that produces the final output, and in sequential mode the
800-byte input doesn’t quite fit into two 384-byte input blocks.

E.6 Web site

We have created a web site that makes publicly available the documents we have
submitted to NIST for the SHA-3 competition, as well as copies of (or pointers
to) other documents about MD6.

This web site is available at URL:

http://groups.csail.mit.edu/cis/md6/.

1http://www.opensource.org/licenses/mit-license.php

http://groups.csail.mit.edu/cis/md6/
http://www.opensource.org/licenses/mit-license.php
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MD6 team members

Here we give a little more information about each of the MD6 team members, the
aspects of the MD6 development they participated in, and contact information.

(Thanks to all of the MD6 team members for their efforts!)

• Ronald L. Rivest is the lead MD6 architect and team leader. He is a
Professor in the MIT EECS Department.
Web site: http://people.csail.mit.edu/rivest
Phone: 617-253-5880
Email: rivest@mit.edu

• Benjamin Agre is an MIT undergraduate. He worked on testing MD6
using various statistical packages.
Email: bagre@mit.edu

• Daniel V. Bailey studied fast embedded crypto implementation with Christof
Paar at WPI. He is now at RSA, and worked on the performance figures
for MD6 on 8-bit processors.
Email: dbailey@rsa.com

• Christopher Crutchfield finished his Master’s thesis on the MD6 mode of
operation at MIT in 2008, and is now working at a startup.
Email: cycrutchfield@gmail.com

• Yevgeniy Dodis is a Professor in the Department of Computer Science at
New York University; he contributed to the proofs of security for the MD6
compression function and for the MD6 mode of operation.
Email: dodis@cs.nyu.edu

• Kermin Elliott Fleming is a graduate student in the Computation Struc-
tures Group at MIT’s Computer Science and Artificial Intelligence Labo-
ratory. He did the MD6 hardware designs reported in Chapter 5, and also
the GPU implementation reported in Section 4.7.2.
Email: kfleming@mit.edu
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• Asif Khan is a graduate student in the Computation Structures Group
at MIT’s Computer Science and Artificial Intelligence Laboratory. He
worked on the custom multicore designs for MD6 reported in Section 5.4.
Email: aik@mit.edu

• Jayant Krishnamurthy is an MEng student in MIT’s EECS Department.
He has worked on a variety of software aspects of MD6, including the
“clean-room” implementation, the testing framework, efficiency optimiza-
tions, and a CILK implementation.
Email: jayant@mit.edu
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