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Abstract—Throughout the course of the COVID-19 pandemic,
several countries have developed and released contact tracing and
exposure notification smartphone applications (apps) to help slow
the spread of the disease. To support such apps, Apple and Google
have released Exposure Notification Application Programming
Interfaces (APIs) to infer device (user) proximity using Bluetooth
Low Energy (BLE) beacons. The Private Automated Contact
Tracing (PACT) team has shown that accurately estimating the
distance between devices using only BLE radio signals is challeng-
ing [1]. This paper describes the design and implementation of the
SonicPACT protocol to use near-ultrasonic signals on commodity
iOS and Android smartphones to estimate distances using time-
of-flight measurements. The protocol allows Android and iOS
devices to inter-operate, augmenting and improving the current
exposure notification APIs. Our initial experimental results are
promising, suggesting that SonicPACT should be considered for
implementation by Apple and Google.

Index Terms—COVID-19, contact tracing, proximity detection,
smartphone, ultrasonic, ultrasound, acoustic, ranging, PACT,
Bluetooth

I. INTRODUCTION

Since the onset of the COVID-19 pandemic there has been
significant interest in the use of smartphone applications (apps)
to facilitate contact discovery and tracing. Researchers have
been pursuing methods using Bluetooth Low Energy (BLE)
signals to estimate the duration and proximity of smartphones
(and those carrying them) to one another. One such effort is
the Private Automated Contact Tracing (PACT) Protocol [2],
which is a decentralized approach modeled after Apple’s “Find
My” protocol [3]. A smartphone using a PACT-based app
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periodically emits BLE chirps derived from a secret seed
known only to that phone. All smartphones log their seeds,
the times the seeds were active, and any BLE chirps received
with timestamps. If a user is diagnosed as COVID-19 positive,
a record of all BLE chirps sent by the user’s phone can be
voluntarily uploaded to a database through a trusted public
health authority. Other smartphones frequently check against
this database to see if they have received any BLE chirps
designated from a COVID-19 positive individual, and if so, the
phone’s owner can be notified to take the appropriate action
(for instance, self-isolate or seek COVID-19 testing).

In order for PACT and related efforts to be successful, a
Too Close For Too Long (TCFTL) detector must be developed
based on suitable signals (e.g., BLE) and associated mea-
surements, such as the transmit power level, Received Signal
Strength Indicator (RSSI), and received timestamp. There are
three desired features of the TCFTL detector:

1) a high probability of detection when the two users
(devices) are within a threshold distance (i.e., high
recall),

2) low probability of false alarm (high precision), and
3) ability to be tuned based on guidelines from local health

authorities (for example, based on an exposure of 15 or
more minutes within 6 feet of an infected individual [4]).

Apple and Google (A|G) have released BLE-based exposure
notification protocols and Application Programming Interfaces
(APIs) for iOS and Android devices, a significant step forward
for automated contact tracing efforts [5]. Unfortunately, the
initial implementations of these protocols only log received
BLE chirps when the device is awake, or no more often
than every 5 minutes when the device is not awake. This
limits the data available to a TCFTL detector, and it has been
shown to have relatively poor performance (up to 50% false
alarms and less than 25% of true contact events detected),
with an effectiveness that varies across smartphones [1], [6]–
[9]. Increasing the BLE sample rate and estimating the carriage
state of each smartphone has been shown to help [1], although
may not be possible due to battery life and privacy constraints.

In this paper, we show that ultrasonic (US)1 range mea-

1Ultrasonic frequencies are typically defined as those exceeding 20 kHz.
In the context of commodity smartphones and this paper, we use “ultrasonic”
for frequencies around 20 kHz, but not necessarily exceeding that threshold.
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surement using the speakers and microphones built-in to all
smartphones is a promising concept that could improve the
accuracy of BLE-based estimates significantly. By using a
BLE protocol augmented with US ranging (BLE+US), smart-
phones exchange time-tagged inaudible acoustic pulses in
the ultrasonic frequency range to measure the time-of-flight
between them. Because the speed of sound is known, the
devices can then jointly solve for the range between them.
By improving the ranging accuracy, this technique can be
used together with BLE-based protocols to reduce the false
alarm and miss rates of exposure notification services. For
example, a BLE-based approach may flag neighbors in an
apartment building as positive contacts, when they are actually
separated by physical barriers (ceilings or walls) because the
2.4 GHz BLE signals will propagate through such barriers. A
BLE+US approach would identify these BLE contacts as false
alarms and eliminate them, since US frequencies are more
significantly attenuated by the same barriers.

This paper introduces SonicPACT, an ultrasonic ranging
protocol developed by the PACT team to augment a BLE-
based TCFTL detector for contact tracing. SonicPACT has the
following key features:

1) It can be implemented on both Android and iOS and
allow interoperability between them.

2) It operates at inaudible near-ultrasonic frequencies to
avoid disturbing users while measurements are made.

3) It uses BLE advertisements (rather than Wi-Fi, although
it could also use Wi-Fi) to coordinate measurements and
exchange information. This feature simplifies integration
with BLE-based exposure notification protocols.

4) It uses pseudorandom noise (PN) waveforms generated
by a random number generator with a seed based on the
device’s unique Bluetooth Universally Unique Identifier
(UUID), allowing both devices to generate matched fil-
ters for the other’s waveform without prior coordination.

We have implemented SonicPACT as user-level apps on
Android and iOS and have conducted several experiments with
the initial implementation. Our results are promising:

1) In experiments done placing phones at distances between
2 feet (60 cm) and 12 feet (3,6 meters) of each other in
multiples of 2 feet, and considering a threshold of ≤ 6
feet as the critical distance at which to flag a “contact”,
we find that the missed detection rate indoors is between
0% and 5.1% with no false alarms.

2) Indoors, the estimated distances are within 1 foot (30
cm) of the true distance between 56.7% and 70.9% of
the time; outdoors, due to the absence of significant
multipath, estimates are within 1 foot between 82.9%
and 100% of the time.

3) These are proof-of-concept implementations with sig-
nificant optimizations that can be done, but the low
false alarm and miss rates compared to a BLE-only
method when estimating if two devices are “too close”
(within 6 feet or 1.8 meters) is an encouraging result for
exposure notification and is therefore worth studying for

implementation by A|G.
Our goal in developing SonicPACT was to demonstrate

that ultrasonic signaling, coupled with BLE technology widely
available on A|G APIs, can provide a more robust implemen-
tation of a TCFTL detector. Ultimately, a power-efficient and
ubiquitous implementation of an ultrasonic ranging protocol
may (will?) need to be integrated within the iOS and Android
operating systems, and may therefore need to be developed
by A|G themselves. As such, SonicPACT as proposed here is
not a turnkey app solution to contact discovery, but we view
it as a promising technology and protocol to incorporate into
Android and iOS. In addition to discussing our initial promis-
ing experimental results, we discuss at length the limitations of
both our SonicPACT implementation and of ultrasonic ranging
in general, along with directions for future work.

A. Related Work

Several research groups have sought to use the acoustic
channel on smartphones or mobile devices for communica-
tions [10]–[13], and indoor and outdoor localization [14]–[19]
with some success. Most prior acoustic indoor localization
techniques rely on external hardware to serve as beacons or
receivers. Ranging between smartphones without any external
hardware is more challenging, since depending on the method
employed, accurate transmit and receive timestamps may be
required to compute time-of-flight of the US signal between
devices. Obtaining the timestamps with low or predictable
latency from a user-space application is not easy.

Peng et al.’s BeepBeep method [18] provides a ranging
capability using only commercial off-the-shelf (COTS) hard-
ware available on smartphones. BeepBeep ranging uses linear
frequency modulated (LFM) chirp waveforms in the 1-6 kHz
frequency range and a sample-counting technique to eliminate
the latency and uncertainty introduced by time-stamping the
transmit and receive pulses. The protocol uses Wi-Fi to ex-
change measurements between devices, enabling each device
to compute the range to the other device. The BeepBeep paper
reports that sub-centimeter ranging accuracy was achievable
in many cases, and that performance could be achieved even
in challenging indoor environments with multipath mitigation
techniques. Fotouhi [20] extended this work by implementing
the BeepBeep protocol on Android devices using spread-
spectrum waveforms to differentiate between devices and
maintain user privacy.

In April 2020, Loh released the NOVID app, which was
the first-available COVID-19 contact tracing app to use both
Bluetooth and ultrasound for contact detection. Loh’s labora-
tory tests of the app shows excellent ranging performance in
a controlled setting [21]. At this time, the technical details of
the NOVID implementation have not been made available to
the public.

B. Security and Privacy Concerns

Here we review the security and privacy trade-offs inherent
in the use of SonicPACT, or any exposure notification app that
uses acoustic measurement.

2
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Potential Privacy Risks: Any acoustic measurement im-
plementation will require the ability to process audio, which
poses a risk to user privacy. At the outset, we suggest it is
appropriate to assess the privacy risks of this protocol relative
to the design and implementation of the current (A|G) service.
This protocol ought to satisfy the core privacy and security
commitments of the (A|G) BLE protocol, including

• voluntary adoption, implemented by requiring affirmative
opt-in to the service for all users

• protection of user location privacy, including no collec-
tion of GPS or other location information

• confidentiality protection for all users of the system, as
between potential contacts, between those contacts and
the public health authority, and as may be observed by
third party adversaries

Requiring constant audio access also allows an adversary
with control over the operating system or ranging app itself
to covertly record potentially sensitive conversations, and
normalizing the use of such systems may potentially lead to
overreach by the developers involved. We believe, however,
that such risks can be mitigated through carefully designed
technical and policy mechanisms to avoid leakage or over-
reach.

First, we advocate that the protocol be implemented by the
mobile operating system vendor (e.g., Apple or Google) at
the OS level via a privileged app, or as a part of the audio
processing path itself. This approach can limit the exposure
of such data to trusted applications with OS-level privileges, 2

which, beyond preventing leakage to apps that would already
be capable of such spying, would also represent the same risk
profile as currently-existing wake-word activation (“Hey Siri”
and “OK Google”).

Furthermore, ultrasonic sensing does not require the audible
range of the spectrum. Any frequency below, say, 18 kHz may
(should) be filtered and removed by the operating system (or,
if possible, at the hardware level), ensuring that the app is only
capable of listening at near-US frequencies.

Finally, we would expect that there would be little need to
store any information about prior interactions after a range as
been estimated. Indeed, our proof of concept implementations
discard audio samples after processing, and such information
is never intentionally stored on disk. We recommend the same
no-storage policy for a production implementation.

Resolving Weaknesses in the (A|G) Protocol: A weakness
of the (A|G) protocol is that Bluetooth packets may be heard,
recorded, and rebroadcast later (a replay attack) or somewhere
else (a relay attack). An interactive protocol, such as the
SonicPACT protocol presented in this paper, can be augmented
to avoid this weakness. Such protection may be obtained
by blending SonicPACT with a standard Diffie-Hellman key-
agreement protocol.

Here, each device’s unique identifier key can serve a dual
purpose as a freshly-generated Diffie-Hellman public key (as is

2This could be the SEPolicy equivalent of priv_app or system_app
for Android.

TABLE I: Laptop Experiment Waveform Parameters

Parameter Value
Pulse Width 200 ms
Pulse Repetition Interval 2 s
Center Frequency 20 kHz
Sampling Rate 48 kHz
Bandwidth 2 kHz
Rise/Fall Time (to reduce audible clicks) 10 ms

done in the Apple Find My protocol [3]). A pair of devices can
therefore create an agreed upon shared secret key K, which
can then be used to seed the generation of the waveforms used
in the protocol, and to generate message authentication codes
(MACs) for additional confirmation messages after the fact. If
the parties use distinct keys for each session bounded by some
fixed time period, then they also have “freshness” guarantees
since the cryptographic key K will inherently depend on the
time period.

II. LAPTOP EXPERIMENT

Before starting on Android and iOS devices, we conducted
experiments using laptops as smartphone surrogates to demon-
strate that accurate US ranging is possible without specialized
hardware, and to understand what the performance of smart-
phone ranging performance might be. We used the built-in
laptop speakers and microphones to exchange US pulses and
processed the signals on both laptops using MATLAB software
to compute the range between the devices.

We used LFM chirp waveforms ranging with the parameters
listed in Table I. Laptop A (a Dell Precision 5540) transmitted
up-chirps (frequency swept from low to high) while Laptop B
(a MacBook Pro, 2018 model, 13-inch display) transmitted
down-chirps (frequency swept from high to low) to allow the
processing code to easily differentiate between the two signals
using a matched filter. We staggered the signal transmissions
by 1 second to avoid interference. After data collection, we
matched the signals recorded on both laptops against both
transmit waveforms, yielding four signal comparisons between
laptops A and B:

1) A’s recording against A’s transmit waveform
2) A’s recording against B’s transmit waveform
3) B’s recording against A’s transmit waveform
4) B’s recording against B’s transmit waveform

Then, we computed the range between laptops using the
sample-counting method described in [18].

We conducted an outdoor experiment by setting the laptops
on lawn chairs as shown in Figure 1. We varied the distance be-
tween laptops and measured the ground truth distance between
them with a tape measure. We took US range measurements
at each position by averaging around 10 pulse exchanges.

The results (Figure 2) show that the measured range values
were consistently within 1 foot (30 cm) of ground truth. Likely
explanations for the apparent systematic error that manifests
as a bias in Figure 2 include multipath and non-colocated
speakers and microphones on the laptops.

3
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Fig. 1: Laptop experiment, outdoor setup.
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Fig. 2: Laptop experiment results: range measurement vs truth.
1 ft = 30 cm.

III. SYSTEM DESIGN

Though BeepBeep served as a starting point for our work,
the protocol has a few weaknesses that make it less functional
for practical, widespread adoption. SonicPACT attempts to
improve on this in the following ways:

• The audio signal processing uses LFM chirps that are not
easily differentiable between devices and will be more
difficult to scale to tens or hundreds of devices.

• BeepBeep’s broadcasts are in audible frequency ranges

A. Protocol

The intent of SonicPACT is to act in concert with BLE
measurement estimates that indicate that the devices may be
in range for a sufficient amount of time (as defined by public
health authorities), following the (A|G) Exposure Notification
framework. Each phone maintains a table of BLE UUIDs (or
other identifiers) and the length of time for which they have
been observed over a sliding window, for instance 15 minutes.
The table is updated during each BLE scan period, and if
packets are received from a device for greater than or equal
to some threshold (which we anticipate would be lower than

the threshold for contact duration), then SonicPACT ultrasonic
waveforms are exchanged to more accurately estimate the
proximity between phones.

SonicPACT must then perform the following tasks after
BLE has initiated the ranging process:

1) Generate the ranging waveforms, ensuring that the ran-
dom samples are consistent between devices (drawn
from the same random number generator using the same
seed).

2) Transmit and receive audio, accounting for any delays
by using a transmit-receive loopback measurement.

3) All devices must be able to detect waveforms from both
themselves and nearby counterparts.

4) Finally, each pair of nearby devices exchanges timing
measurements over BLE to compute the range to the
other device.

The SonicPACT protocol is shown in Figure 3. Each phone
generates waveform samples for its own UUID and prepares
to transmit that signal. To process a received waveform, a
phone must know the UUID of the transmitter, which has been
previously broadcast on the BLE channel. We describe here
how a pair of phones can estimate their range, but this method
can be extended to multiple devices in the same neighborhood
as well.

The two phones select a leader and follower, so they know
roughly when to expect the other’s waveform. In practice this
could be chosen a number of ways. One idea is to compute
an integer hash from the UUIDs of both phones and always
choose the lower integer to be the leader. The leader then
starts the process by sending a start command via BLE. In
our implementation, the leader sends its ultrasonic signal after
a delay of 50 ms, and the follower sends its ultrasonic signal
250 ms after receiving the BLE start command. Both phones
receive samples for a total of 400 ms, after which they perform
matched filtering and detection for their own waveform and
the other phone’s waveform. These are unoptimized and over-
engineered parameters to demonstrate the feasibility of the
underlying concepts.

For the initial implementation we allocated up to 600 ms for
receiver processing and 500 ms for the BLE data exchange. A
single measurement between two phones would therefore take
a total of 1.5 seconds, but this included a generous margin.
Based on the discussion in the next section, this time could
be reduced substantially.

B. Alternative Protocols

Before settling on the above protocol, we considered several
other approaches and discarded then. We discuss why we
didn’t pursue two of these promising alternatives here.

Receive and echo: An initial design involved the first phone
emitting a signal and the second phone receiving, amplifying,
and “echoing” the signal back to the first phone.

The benefit of the design is its simplicity; in particular, the
task of the second phone is simple and all timing measure-
ments are made with respect to time on the first phone, and

4
PACT Technical Report #2 



Fig. 3: Prototype BLE/Ultrasonic Protocol.

Fig. 4: Prototype BLE/Ultrasonic Protocol Message Timeline.

the time difference measured at the first phone will include
twice the time-of-flight and any loopback delays.

Unfortunately, while this approach might work in clear
outdoor environments, multipath reflections will also return to
the first phone from objects in the environment. Distinguishing
the desired return from the multipath reflection is challenging
without significant processing.

Time difference of arrival between BLE and audio: If
a device were capable of sending a BLE packet and audio
at the exact same time, any receiver would be able to learn
the sender’s distance by marking the time difference between
when it received the start of the BLE packet and initially
received the audio waveform, as in the Cricket system [14].
Unfortunately, the actual action of sending a packet (and,
indeed, all of the RF capabilities of a smartphone), are con-
trolled by the device’s baseband, which runs an unmodifiable
proprietary OS that is outside the purview of phone OS
vendors. For example, the Qualcomm baseband on the Pixel
2 phone provides no explicit guarantees about the timing of
packets, nor any feedback to the kernel software about when
a packet was actually sent.

C. SonicPACT Ranging Protocol

A key challenge in estimating the range using time-of-
flight between phones is the lack of accurate synchronization
of time between the devices. At the speed of sound (346
meters/second at sea level), a timing offset of 10 ms is
equivalent to a range error of 3.46 meters (11.4 feet). It
is likely that independent phones will have varying offsets
in practice, depending on variables such as the processing
load, OS version, manufacturer Stock Keeping Unit (SKU),

5
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or other details, making it necessary to use an approach that
can account for variability between phones.

To account for these timing uncertainties, the protocol uses
a loopback measurement—each device estimates the time it
takes to hear its own broadcasts in order to estimate its own
processing delay. As long as this process takes place before the
range between the phones has changed, and the timing offsets
are the same between hearing its own signal and the signal
from the other phone, the offsets will cancel and allow each
phone to estimate the range. This is a well known technique
for two-way time transfer, and is summarized by the steps
below:

1) Leader sends a waveform x1 at t1 = ∆1 + T1 + δT1

• ∆1 is the Leader’s offset from global time
• T1 is the time the Leader thinks it is sending x1
• δT1

is the delay before the Leader actually sends x1
2) The Follower receives x1 at t2 = ∆2 + T2 − δR2

• ∆2 is the Follower’s offset from global time
• T2 is the local time when the Follower detects x1
• δR2 is the delay between x1 being received and

timestamped by software
3) The Follower sends a waveform x2 at t3 = ∆2+T3+δT2

• T3 is the time the Follower thinks it is sending x2
• δT2

is the delay before the Follower actually sends
x2

4) The Leader receives x2 at t4 = ∆1 + T4 − δR1

• T4 is the local time when the Leader detects x2
• δR1

is the delay between x2 being received and
timestamped by software

We now have two equations for the range between the
phones:

R = c(t2 − t1) = c(t4 − t3)

where c is the speed of propagation of sound. By adding the
two equations (twice the range), substituting, and rearranging,
the range is

R =
c

2
[(T4−T1)−(δT1+δR1)]−[(T3−T2)+(δT2+δR2)], (1)

where the quantity within the first set of brackets is computed
by the Leader and the quantity within the second set of
brackets is computed by the Follower. This equation can also
be obtained more directly from Figure 4. Thus, each phone
needs to know the time when it sends its own waveform, the
time when it detects the waveform from the other phone, and
its transmit/receive loopback delay (δT + δR). If each phone
also receives its own waveform to measure the loopback delay,
say at T5 on the Leader for the signal sent at T1 and at T6 on
the Follower for the signal sent at T3, then

(δT1 + δR1) = (T5 − T1)

(δT2 + δR2) = (T6 − T3)

and substituting into the equation for range shows that the
transmit times T1 and T3 also cancel. Therefore, the range
can also be written as

R =
c

2
([T4 − T5] + [T2 − T6]) (2)

and each phone only needs to compute the difference in
arrival times of the other phone’s waveform and their own
waveform. In this case the variability in loopback delay is
less of a concern. However, Eq. (1) may still be useful
for situations where reduced processing is necessary, since
potentially the loopback delay is a constant calibration factor.
Either way, after each phone has computed the quantity within
the brackets, it exchanges its measurement with the other
phone over BLE and both phones can estimate the range
between them.

D. Waveform Generation

In order for the ultrasonic ranging concept to be imple-
mented, the smartphone’s speaker and microphone hardware
must be capable of passing signals at ultrasonic frequencies
(ideally 20 kHz and above) without significant attenuation.
Public documentation suggests that most newer iPhones sup-
port an audio sample rate of 48 KSPS, and so should have the
digital bandwidth to represent signals up to 24 kHz. However,
the analog hardware is likely not optimized for this range. As
a first step, some simple experiments were done to evaluate
the frequency response of the iPhones available to the group
to get some idea of how well ultrasonic ranging would work.

We wrote an application to simultaneously play and record
audio waveforms using Apple’s AVFoundation framework.
The first test was to loopback White Gaussian Noise (WGN)
from the speaker to microphone in order to characterize the
frequency response. While this doesn’t inform us of the inde-
pendent frequency responses of the speaker and microphone,
it gives us a reasonable sense of the hardware capabilities. We
used Welch’s method to estimate the Power Spectral Density
(PSD) from the received samples. The results (Figure 5) for an
iPhone 7 and 8 show that both responses drop sharply above
20 kHz, but may be able to pass frequencies in the 17-19
kHz range. The attenuation profile is not ideal, but by using
signals with a large time-bandwidth product we can expect a
large processing gain and high-resolution time delay estimate.

Ranging systems, such as those used in RADAR, SONAR,
and radio communications, typically use signals with a large
time-bandwidth product [22]. Signals with a long duration can
be integrated to boost signal-to-noise ratio (SNR) for detection,
and signals with a wide bandwidth have fine time resolution
(and therefore fine range resolution). Some popular signals
include LFM chirps and Binary Phase Shift Keying (BPSK)
modulated pulses. For the ultrasonic use case, we desired a
signal that is:

• Uniquely identifiable for each phone
• Simple to generate and detect
• Capable of high-accuracy ranging
The Cramér-Rao Lower Bound (CRLB) is one starting point

for understanding the minimum variance of an unbiased range
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Fig. 5: iPhone 7 and iPhone 8 Frequency Responses.

estimator. For a signal in Additive White Gaussian Noise
(AWGN), the CRLB for range is [23]:

σ2
r ≤

c2

E
N0/2

F 2
, (3)

where σ2
r is the variance of the range, c is the speed of

propagation, E
N0/2

is a SNR, and F 2 is the mean squared
bandwidth of the signal. Note that the CRLB does not tell us
how to estimate range, but it is informative to see that the
variance is reduced linearly with the SNR and quadratically
with the bandwidth of the signal.

The CRLB for range is plotted in Figure 6 as a function of
integrated SNR for various rectangular (uniform) bandwidths.
Also shown is an error floor if the device were to have
variability in its reported timestamps with a standard deviation
of 0.1 ms. It is worth noting that practical estimators require
an integrated SNR of 13-16 dB for an unambiguous solution
[24]. Based on this plot, we could choose a waveform with
200 Hz bandwidth and target an integrated SNR of 28 dB, or
500 Hz bandwidth and target an integrated SNR of 20 dB, and
have a similar performance bound.

The simple model used to derive the CRLB does not
consider correlated noise or interference. We built a large
margin into the signal design to help boost the SNR and
overcome these effects while keeping the receiver processing
relatively simple. As a starting point we used a waveform
with 500 Hz bandwidth and 100 ms duration, which has a
time-bandwidth product of 50 and can yield a processing gain
of about 17 dB. Based on Figure 5, the iPhone 8’s frequency
response starts to significantly attenuate signals above 19 kHz,
so we used a carrier frequency of 18.5 kHz. While this is not
quite in the ultrasonic range, it should be inaudible to the
majority of the population (particularly for adults).

We choose a modulation scheme such that each phone
generates a waveform orthogonal to any other phone. Initially,
we considered LFM chirps and BPSK-modulated signals, but
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pursued instead a noise-like waveform due to its ease of
generation. The noise waveform has a high peak-to-average
power ratio, and will therefore produce less output power than
other modulations. Additional schemes should be considered
for scenarios where phones may be in pockets, purses, or other
sound-deadening material. We considered orthogonal chirps
and chirp spread spectrum signals, but did not implement
them.

We generate WGN samples using a Gaussian Random
Number Generator (RNG) seeded by a hash of a UUID. The
WGN is then passed through a bandpass filter with 500 Hz of
bandwidth centered at 18.5 kHz, as shown in Figure 7. Finally,
a tone at 18.5 kHz is embedded at 10 dB below full scale.
The reason for the tone is to aid in any frequency recovery
that must be done by the receiver, since clock offsets or the
Doppler effect will cause the received waveform to decorrelate
with the reference copy. A Fast Fourier Transform (FFT) can
be used to estimate the frequency of the received tone and
enable the receiver to correct for any offset, avoiding the need
to compute the full time/frequency ambiguity function.

An example signal is shown in the time and frequency
domains in Figure 8 and Figure 9, respectively. The signal
has a high correlation with itself when time aligned, low cor-
relation with itself when not time aligned, and low correlation
with signals generated using other UUIDs. These are favorable
properties for multiple signals to coexist simultaneously on a
channel with minimal interference to one another. An example
of the correlation is shown in Figure 10 over the full span of
the signal and in Figure 11 expanded to +/- 3 ms around the
peak. The oscillations are due to the fact that we are directly
processing a real bandpass signal (without first shifting to
baseband and filtering), however, with a large excess SNR
we should be able to correctly detect the peak at the receiver.

Finally, to prevent audible clicks due to the discontinuities
when the signal begins and ends, a linear ramp-up and ramp-
down of 2.5 ms is applied to the signal before it is transmitted
for iOS, and a 1.5 ms ramp is used for Android. These
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TABLE II: Smartphone Waveform Parameters

Parameter Value
Pulse Width 100 ms
Center Frequency 18.5 kHz
Sampling Rate 48 kHz
Bandwidth 500 Hz
Modulation a Bandpass WGN generated from BLE UUID
Rise/Fall Time b 2.5 ms

aProcessing gain and orthogonality for robustness
against co-channel interference

bTo reduce audible clicks

0 5 10 15 20

Frequency, kHz

-80

-60

-40

-20

0

M
a

g
n

it
u

d
e

, 
d

B

Bandpass Filter

Fig. 7: Bandpass filter centered at 18.5 kHz.

timings were determined empirically for the iPhone 7, iPhone
8, and Pixel 2 hardware specifically – it is likely that other
devices will require different ramps for the transmission to be
inaudible.

A summary of the waveform design is shown in Table II.
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Fig. 8: Ultrasonic signal in the time domain.
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Fig. 9: Ultrasonic signal in the frequency domain (note tone
at 18.5 kHz).
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Fig. 10: Correlation of two bandpass noise signals x1 and x2.

E. Waveform Detector

The detection processing is based on the concept of matched
filtering, wherein we design a digital filter with its coefficients
(taps) matched to a set of known waveform samples. As
covered by the previous section, these samples are generated
by a Gaussian RNG, filtered, and loaded into a buffer to
be transmitted. This process is done twice: once based on a
phone’s own UUID, and again for the UUID of the remote
phone. A block diagram of the transmitter is shown in Figure
12, where the contents of the buffer are transmitted at time t0.

The receiver was designed to perform batch processing
based on a single buffer of samples returned with timestamp
t1. Based on experimenting with the iPhone 7 and 8, it was
determined that a 400 ms buffer (19200 samples at 48 KSPS)
could be reliably supported. Once a buffer was returned the
first step was to apply a matched filter (correlate) with the
phone’s own transmitted signal samples and perform peak
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Fig. 11: Expanded peak from 10 showing oscillations that
result from directly processing a real bandpass signal.

detection to estimate the time of arrival as t2. The time of
arrival is then used for time domain excision (zeroing) of the
phone’s own signal in the buffer, so that it will not interfere
with the detection for the much weaker signal from the remote
phone. This processing is shown by the top portion of Figure
13.

After time domain excision the remaining samples contain
the remote waveform along with any noise and interference.
As mentioned in the previous section, any carrier frequency
offset between the two phones (potentially due to motion and
the Doppler effect) will cause the output of the matched filter
to be reduced. Therefore, the next step is to perform frequency
recovery by estimating an offset f0 from the ideal carrier fre-
quency of fc. This is done by performing an FFT on the buffer
(including samples that were zeroed out), finding the bin with
the peak magnitude, and identifying the difference between
that bin’s frequency and the nominal carrier frequency. The
offset between the two is used to generate a sinusoid to be
mixed with the buffer samples and correct for the offset. Note
that the reason for including the zero samples in the FFT
is to interpolate the frequency domain data (which helps in
identifying the true peak).

After frequency correction the samples are processed by
a matched filter designed for the remote phone’s transmitted
signal. We used a basic detector with an adaptive threshold
to attempt to find the first received copy of this signal by
comparing the filter output power to an estimate of the
background noise. An adaptive threshold is important for the
processing to work when delayed copies of the signal arrive via
multipath propagation, or when the background noise changes
significantly due to interference. Some example matched filter
outputs are shown in Figure 14. The top plot shows a case
without multipath and the two phones within inches of each
other. The bottom plot shows multiple peaks from multipath
off of the walls and furniture in a room and the phones 12

Fig. 12: Transmitter processing block diagram.

Fig. 13: Receiver processing block diagram.

feet apart. Note the significant difference in magnitudes and
potentially challenging problem detecting the first true peak
in the bottom plot.

Ideally a large amount of data and truth would be collected
to design a robust detector. However, the short time span of this
project did not permit that, so a simple scheme was devised
based on a limited amount of data. The adaptive threshold
is set to 15 times the mean power output from the matched
filter. The first sample out of the filter to cross this threshold
is identified and used to return the next 50 samples (1 ms,
about 1 foot in range). Within these samples we search for
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Fig. 14: Matched filter output with and without multipath. The
red circle in each figure is the true peak. The times on the x
axis of the two graphs are not comparable (i.e., time 0 is not
when the signal was sent or received).
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the two maxima and sort them by their times of arrival. If
the maxima are separated by more than 15 samples (0.3 ms,
about 3 inches in range), we choose the first maxima for the
time of arrival estimate t3. Otherwise we choose the largest
of the two maxima for t3. These heuristics seemed to work
reasonably well on the initial data sets, but other schemes,
such as a Constant False Alarm Rate (CFAR) detector [22],
may perform better.

Once the phone has estimated the times of arrival, it can
compute the terms in Eq. (2) for use by the ranging algorithm.
As described in III-C, the transmit time cancels and we are
left with the difference in the receive times to exchange with
the other phone.

IV. IMPLEMENTATION

In this section, we describe system design aspects that are
common to both iOS and Android implementations. We then
go on to discuss OS-specific implementation details for iOS
and Android. We discuss our experiments and results in the
section that follows. All source code is available under MIT
license at https://github.com/mit-ll/BluetoothProximity for iOS
and https://github.com/mspecter/SonicPACT for Android.

The iOS app was written entirely in Swift, while the
Android version is a combination of C++ and Java. For
convenience and processing speed, both the iOS and Android
implementations use libraries that take advantage of system
hardware (e.g., ARM’s NEON extensions). For iOS, we used
GameplayKit [25] and vDSP [26]; for Android we used
OpenCV [27].

A. iOS Implementation Details

The ranging algorithm and BLE/ultrasonic protocol were
implemented on an iPhone 7 and 8 for initial evaluation. The
implementation follows Figures 12, 13, and 4, apart from the
FFT processing not being included in the real-time version due
to time constraints (this was separately evaluated using offline
processing and shown to perform as expected). This real-
time limitation meant that tests could only be done between
stationary phones, and that any motion or frequency offsets
between the devices would result in degraded performance.
Additionally, the implementation was only focused on the
ultrasonic ranging measurements, so did not include the full
PACT BLE protocol or contact duration estimator. Below are
a few notes from working through the implementation:

• Sinusoid generation, such as that for the embedded tone,
required double precision arithmetic for the phase argu-
ment. Using single precision resulted in audible tones
during the transmission period (hypothesized to be har-
monic distortion).

• The Accelerate framework and vDSP provide highly
efficient signal processing functions. As one data point,
the convolution and correlation functions were over 2000
times faster using vDSP instead of nested for loops in
Swift.

• The total receiver processing time for 400 ms worth of
data was benchmarked to take 240 ms on the iPhone 7.

This model is nearly 4 years old, and new ones are likely
to require even less processing time.

• The iOS BLE stack does not provide a means for inserting
custom data bytes into advertising packets, but it can
encode an advertised name (string). Since we did not
want to establish a full BLE connection to transfer data,
we encoded our commands and data into the advertised
name.

• The delay between a BLE command being sent from
one phone and received by the other appeared to nearly
always be within the 50 ms window, but varied signifi-
cantly. Even if we lost 10 ms of the waveform (due to
the follower starting late), it is unlikely to be an issue
because of the excess processing gain.

B. Android Implementation Details

We implemented and tested SonicPACT on a Google Pixel2.
As with the iOS implementation, we left FFT processing and
BLE contact duration estimation for future work.

Below are a few notes from working through the implemen-
tation:

• Audio processing on Android is more complicated than
on iOS. For example, initial implementations that at-
tempted to record and play audio directly from Java
resulted in unacceptable variations in timing and loss of
specificity in time. We instead used Java only for the
high-level protocol implementation, relying on C/C++ for
most processing. We used Oboe [28], a real-time audio
processing library, for high-speed audio access.

• There are no OS-specific libraries for fast DSP processing
(similar to vDSP on iOS). We instead had to rely on third
party libraries for general matrix operations – specifically
OpenCV [27] – to provide equivalent processing speeds.

• Android’s BLE stack is far more customizable than iOS,
allowing for use of Bluetooth 5’s extended advertisements
to share timing and UUID information. Unfortunately,
due to the privacy concerns associated with Bluetooth,
this access also requires that the user accept that the app
have access to “fine-grained location information.”

• Unlike iOS, Android does not allow us to pre-buffer audio
for a particular time delay. Instead, all audio is sent to
the device through a high-priority process called Me-
diaFlinger. MediaFlinger also performs OS-level mixing
and filtering, further complicating matters.

Beyond the differences provided in the above list, Android
is a fragmented ecosystem with a diverse set of hardware-
dependent quirks. It is likely that optimizing SonicPACT for
each device type will require some device-specific engineering.

V. EVALUATION

To evaluate our protocol, we took indoor and outdoor mea-
surements to characterize the performance with various ranges
between the phones in both Line-of-Sight (LOS) conditions
and with one of the phones in a pocket. The test conditions
were as follows:
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Fig. 15: Indoor test setup for iOS devices (one phone on stool
at the end of the tape measure).

Fig. 16: Indoor test setup for Android devices.

• Outdoor, no obstructions, some multipath, ranges 2 to 20
feet (60 cm to 6 m) in 2-foot increments

• Indoor, no obstructions, high multipath, ranges 2 to 12
feet (60 cm to 3.6 m) in 2-foot increments

In each case, we conducted two sets of tests:

• LOS: One phone in hand, second phone on a chair
• Pocket: One phone in hand, second phone in a pants

pocket

The indoor test setups for iOS and Android are shown in
Figures 15 and 16, respectively. In each case we used a tape
measure to record the true distance between the midpoints
of each phone. We took at least ten measurements at each
true distance. Both phones were set to one step below their
maximum volume in the case of iOS, and at maximum volume
in the case of Android.
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(a) Indoor range errors for iOS devices.
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(b) Indoor range errors for Android devices.

Fig. 17: Indoor Results.

A. Metrics

We studied two sets of metrics. The first set is the miss rate
and the false alarm rate, where we took the ranging data from
each individual test and calculated the miss rate assuming a
certain “too close” threshold. We show results for two such
thresholds, 6 feet (1.8 m) and 8 feet (2.4 m). The miss rate
measures how often the true distance is under the threshold
but the measured distance was higher. The false alarm rate
measures how often the measured distance was under the
threshold but the true distance was higher than the threshold.
Because the measurements have some noise, we permit a 1-
foot slack; if the true distance is 6 feet and that is also the
threshold, then we treat any measured distance < 7 feet to be
a correct detection (after all, if the measured distance were 6.3
feet, for example, any practical exposure notification system
would consider that to be close enough to 6 feet). We use the
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Fig. 18: Outdoor Results.

same logic to assess false alarms.
We also report the fraction of measurements in each test

where the measured distance was within 1 foot (30 cm) of
the truth.

Because the thresholds of interest for COVID-19 are in the
6-foot range, we restrict our analysis in the outdoor case to
true distances ≤ 12 feet; larger distances artificially lower miss
rates.

The second set of metrics evaluates the raw ranging per-
formance showing the measured distance as a function of the
true distance along with the standard deviations. It is worth
noting that in many of these results single outliers cause the
standard deviation to be large.

B. Results

Indoor: The miss rates and false alarm rates for the indoor
tests are shown in Table III.

Test 6-ft 6-ft 8-ft 8-ft Within
miss % false % miss % false % 1 foot %

LOS Android 0.0 0.0 0.0 0.0 80.3
LOS iOS 5.1 0.0 11.9 0.0 57,6
Pocket Android 0.0 0.0 1.3 0.0 70.9
Pocket iOS 3.3 0.0 13.3 0.0 56.7

TABLE III: Miss rates and false alarm rates for the indoor
experiments. The “Within 1 foot” column shows the percent-
age of measured distances in the tests between 2 feet and 12
feet that were within 1 foot of the truth. These results show
low miss rates and false alarm rates with a 1-foot slack across
both platforms. We caution against drawing conclusions that
Android is somehow better than iOS because the tests were
done in different indoor conditions. It is likely that the iOS
tests had higher multipath and Android tests had more sound
absorbers.

The results of measured versus true distance in the indoor
experiments are shown in Figure 17a for iOS and Figure
17b for Android. For both charts, the points show the mean
error and the vertical lines represent the standard deviation of
the error. The errors are generally larger at shorter distances,
especially at ranges beyond 6 feet. Based on a preliminary
inspection, in our iOS experiments, strong multipath compo-
nents are causing the detector to select a peak after the true
peak, resulting in an estimated range a little greater than the
true range. The impact of phone placement (in hand or in a
pocket) is small, possibly due to additional indoor multipath
corrupting the SNR estimates. It is important to note that the
iOS and Android experiments were done in different locations,
so we caution against comparing them directly because the
multipath effects are different.

Outdoor: The miss rates and false alarm rates for the
outdoor tests are shown in Table IV.

Test 6-ft 6-ft 8-ft 8-ft Within
miss % false % miss % false % 1 foot %

LOS Android 0.0 0.0 0.0 0.0 82.9
LOS iOS 5.0 0.0 0.0 0.0 93.3
Pocket Android 0.0 0.0 1.3 0.0 100.0
Pocket iOS 1.7 0.0 1.7 0.0 96.7

TABLE IV: Miss rates and false alarm rates for the indoor
experiments. The “Within 1 foot” column shows the percent-
age of measured distances in the tests between 2 feet and 12
feet that were within 1 foot of the truth. Outdoor performance
is strong across both platforms both for LOS and when one
device is in a pocket.

The outdoor results are shown in Figure 18a for iOS and
Figure 18b for Android. Here we see that the mean error is
within 1 foot of truth, and the standard deviation is contained
within 1 foot for several ranges, particularly before the device
is outside of the 10 ft radius.

For iOS, the large spread at ranges such as 6, 14, and 16
feet are from single outliers that can likely be eliminated with
a more robust detector. We also see that the performance with
one phone in and out of a pocket is similar.
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For Android, we note that the range errors worsen dra-
matically outside of 10 ft. We found experimentally that the
Pixel2’s speakers are forward-firing and highly directional,
which likely explains some of the error rate, though there is
likely some systematic error causing the negative bias. The
TCFTL constraint is currently set (by public health authorities)
at 6 ft, so this limitation is not a major problem.

The results of all these experiments show that accurate
ultrasonic ranging is possible on both iOS and Android smart-
phone platforms, and that SonicPACT is a viable technique for
COVID-19 contact discovery and exposure notification.

VI. OPEN QUESTIONS

Though these early results are promising, several open
questions remain and there are several opportunities for future
work on this subject. It is also worth noting that the path to this
demonstration was not a direct one; several naive approaches
were considered and ultimately discarded.

Our implementation serves as an existence proof that US
ranging can work, but there are hurdles that must be overcome
for practical use. Many of these can be considered for future
work, but it is worth noting that some can only be resolved
by trusted computing within the operating system.

1) Operation at Scale: Though the use of a matched filter
should minimize the impact of hidden terminals and other
interference, careful protocol design will still be required to
enable US ranging technology to operate effectively at scale.
A crowded subway car with 50 devices and potential sources
of interference is a significantly more challenging scenario
than two devices in a quiet home or office. Additionally, US
phenomenology is poorly understood and it is unclear how
much interference at US frequencies will be present in real-
world scenarios. The impact of multipath on measurement
accuracy is unclear, as is the extent to which signal attenuation
from fabric or body blockage will reduce the ability to make
US measurements.

2) Hardware Compatibility: The speakers and microphones
used by various smartphone models have different frequency
responses. The percentage of devices currently in-use by
consumers that support reliable operation in the US frequency
bands is unknown. However, anecdotal evidence observed by
the PACT (and NOVID) teams suggests that this will not be a
significant issue. Additionally, Lee et al. [10] have measured
the speaker and microphone frequency responses of several
devices, and they all appear to be quite similar.

3) Bluetooth Restrictions: iOS does not allow inserting a
custom payload into a BLE advertising packet. However, it
does allow setting the advertised name to a custom string.
Because of this limitation, and the short time span of this
project, the advertised name was encoded with commands
and measurements for initial demonstration of the US ranging
protocol. This approach was taken since it was preferred
to avoid establishing a full BLE connection and only use
advertising packets, similar to the Exposure Notification API.
Android does allow for this sort of extended advertising, but

at the cost of requiring further location permissions from
the operating system. We expect this can be solved on both
platforms with greater OS integration.

4) Audio Routing and Volume Control: On the iOS version
of the application, we found that applications cannot control
the precise route the audio will take. For instance, an attached
pair of headphones (either analog or Bluetooth) will claim
the audio interface and prevent the built-in speaker from
being used by an app. On Android, the app is allowed to
select the appropriate input/output devices, though there is
significant variation on which devices exist, where they are,
and which would be the most advantageous. Further, an app
which overrides the user’s volume settings may be problematic
and interfere with normal smartphone usage unless properly
designed.

5) Efficiency & Power: Outside of cursory analysis, we
currently do not consider, nor do we measure, the impact on
battery life. There is likely further engineering effort to ensure
that power and efficiency are correct, but, given the complexity
of this scheme as compared to normal activation commands,
we believe that this protocol can be made to be efficient and
robust, particularly if the existing voice-activation detection
co-processors are used.

6) Impact of US Broadcasts on Adults, Children, and Pets:
Though adults typically cannot hear ultrasonic frequencies,
they are often audible to children and pets. It is unclear to what
extent the US measurement signals will be audible to children
and/or pets and whether or not they will be bothersome or
harmful. The PACT team has not, at this point, observed
any such harmful effects. It would be useful consulting with
an audiologist regarding the use of US frequencies for this
purpose.

7) Variability of the Speed of Sound: The speed of sound
depends on the medium in which it is propagating, to include
the temperature, pressure, and humidity. For a highly accurate
implementation, the speed of sound may need to configured
based on a coarse location (for example, the zip code) and/or
a weather report.

8) Variability of Devices: Android is a fragmented ecosys-
tem with many devices running many different versions of
the operating system, baseband, hardware profiles and SKUs.
Timing is likely significantly different in these devices and,
while this protocol does attempt to account for the majority
of them, differences in mixing, hardware timing, and other
variables leads us to believe that there is a strong possibility
that there is a not-insignificant task of testing this protocol on
a larger diversity of devices for particular quirks.

VII. CONCLUSION

This paper provides a proof-of-concept that ultrasonic rang-
ing is viable on commodity smartphones for the purposes
of COVID-19 contact discovery and exposure notification,
helping to reduce the false alarm and miss rates. A lower false
positive rate may boost public confidence in the technique
and encourage more widespread adoption. As noted in our
discussion section, many unanswered questions remain, but
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these are surmountable by Apple and Google, as well as the
research community. We urge Apple and Google to strongly
consider ultrasonic ranging in general, and SonicPACT in
particular, as a way to improve performance of the Exposure
Notification APIs they have developed recently.
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