
Transitive Signature Schemes

Silvio Micali and Ronald L. Rivest

Laboratory for Computer Science, Massachusetts Institute of Technology,
Cambridge, MA 02139

rivest@mit.edu

Abstract. We introduce and provide the first example of a transitive
digital signature scheme. Informally, this is a way to digitally sign vertices
and edges of a dynamically growing, transitively closed, graph G so as
to guarantee the following properties:

– Given the signatures of edges (u, v) and (v, w), anyone can easily
derive the digital signature of the edge (u,w).

– It is computationaly hard for any adversary to forge the digital sig-
nature of any new vertex or other edge of G, even if he can request
the legitimate signer to digitally sign any number of G’s vertices and
edges of his choice in an adaptive fashion (i.e., even if he can choose
which vertices and edges the legitimate signer should sign next after
he sees the legitimate signatures of the ones requested so far).

Keywords: public-key cryptography, digital signatures, graphs, transi-
tive closure.

1 Introduction

Sometimes cryptosystems have (or can be designed to have) algebraic properties
that make them exceptionally useful for certain applications.

For example, cryptosystems with appropriate homomorphisms can be used
for “computing with encrypted data” [14,8,9,15].

Similarly, blind signatures [4,5] utilize similar homomorphic properties.
Of course, algebraic properties of cryptosystems are often undesirable; they

may yield avenues for attacking the cryptosystem such as undesirable “malleabil-
ity” properties [7].

We propose here a new property for signature schemes that may have inter-
esting applications. We call signature schemes with this property “transitive”
signature schemes, because the signature scheme is compatible with computing
the transitive closure of the graph being signed.

Subsequent to our work, Johnson et al. [11] have investigated related gener-
alizations under the rubric of “homomorphic signature schemes.”

Graphs are commonly used to represent a binary relation on a finite set. A
graph G = (V,E) has a finite set V of vertices and a finite set E ⊆ V × V
of edges. We write an edge from u to v as the ordered pair (u, v) in any case,
whether the graph is directed or undirected. Cormen et al. [6] describe graph
representations and algorithms.

B. Preneel (Ed.): CT-RSA 2002, LNCS 2271, pp. 236–243, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Transitive Signature Schemes 237

Many graphs are naturally transitive: that is, there is an edge from u to v
whenever there is a path from u to v.

For a directed example, consider a graph representing a military chain-of-
command. Here vertices represent personnel and a directed edge (u, v) from u
to v means that u commands (or controls) v. Clearly, if u commands v and v
commands w, then u commands w.

For an undirected example, consider a graph representing a set of administra-
tive domains. The vertices represent computers and an undirected edge means
that u and v are in the same administrative domain. Again, it is clear that if u
and v are in the same administrative domain, and if v and w are in the same
administrative domain, then u and w are in the same administrative domain.
Transitive (and reflexive) undirected graphs represent equivalence relations.

We are interested in situations where someone (let’s call her Alice) wishes to
publish a transitive graph in an authenticated (i.e., signed) manner. Signing the
graph allows others to know that they are working with the authentic graph (or
with authentic components of the graph).

Of course, Alice could just sign a representation of the entire graph as a
single signed message. This approach may, however, be awkward in practice,
particularly if the graph changes frequently or the components are large.

Regarding the efficiency of representation, we observe that a graph with n
vertices may have O(n2) edges. It may be more efficient for Alice to sign a smaller
graph, with the explicit understanding that the intended graph is the transitive
closure of the signed graph. In this way she never needs to sign more than O(n)
edges (in the undirected case).

The transitive closure G∗ = (V ∗, E∗) of a graph G = (V,E) is defined to
have V ∗ = V and to have an edge (u, v) in E∗ if and only if there is a path
(of length zero or greater) from u to v in G. (This is more properly called the
reflexive transitive closure, but we stick with standard usage.)

For further efficiency, we now restrict our attention to schemes wherein Alice
signs the vertices and edges of the graph G individually. This allows G to grow
dynamically: vertices and edges may be added later on without Alice having to
re-sign everything done before. (We assume that vertices and edges are never
deleted.)

Alice thus has two signature schemes for signing the components of the graph
G: one signature scheme for signing vertices, and one for signing edges. We
denote her signature of the vertice v as σ(v) and her signature of the edge (u, v)
as σ(u, v), with the understanding that the underlying signature schemes may
be different.

Because we are focussing on the situation where the graph Alice intends
to sign is transitive, she need only sign a subset of the edges, as long as the
transitive closure of that subset is equal to the intended graph. For example,
in the chain-of-command example, she need only sign edges representing the
relationship between an individual and his immediate superior; other edges can
be inferred from these. Or, for another example, in the administrative domain



238 Silvio Micali and Ronald L. Rivest

example, she need only sign enough edges to form a spanning tree within each
administrative domain.

An observer who then sees a signed edge σ(u, v) and another signed edge
σ(v, w) can then infer that (u,w) is also in the graph being signed by Alice. It is
as if Alice had actually signed the edge (u,w) directly. And then if the observer
sees another edge (w, x), he can infer that (u, x) is in the graph as well.

In some applications, however, it may be necessary for a party to actually
prove that Alice signed (either explicitly or implicitly by transitivity) an edge.
For example, a party x may need to prove that he is in the chain of command
underneath party u. Or, party x may need to prove that he is in the same
administrative domain as party u. How can this be done, if the edge (u, x) was
not explicitly signed, but is only inferrable by transitivity?

A straightforward approach to proving that (u, x) is in the graph is to produce
a “proof” consisting of a sequence of signed edges forming a path from u to x
(with their signatures). In this example, a proof that (u, x) is in the graph might
consist of the sequence:

(u, v), (v, w), (w, x) (1)

and their corresponding signatures:

σ(u, v), σ(v, w), σ(w, x) . (2)

(Actually, the proof includes Alice’s signatures on each of the vertices as well:

σ(u), σ(v), σ(w), σ(x) .) (3)

This sequence of signed edges forms a path from u to x, thus proving that the
edge (u, x) is in the graph being signed by Alice.

The problem with using such “path-proofs” is that they may become cumber-
some if the path is long, and may introduce unnecessary detail and information
in the proof. (Why should a soldier need to mention each of his superior officers
if all he is trying to prove is that he is in the U.S. Army?)

We are thus led to wonder whether some signature schemes might be com-
patible with a “path compression” operator that produces an inferred signature
that is indistinguishable from one that might have been produced by Alice.

More specifically, let us informally define a “transitive signature scheme” to
be a scheme for signing the vertices and edges of a graph such that if someone
sees Alice’s signatures on vertices u, v, and w and also sees Alice’s signatures on
edges (u, v) and (v, w), then that someone can easily compute a valid signature
on the edge (u,w) that is indistinguishable from a signature on that edge that
Alice would have produced herself. See Figure 1.

With a transitive signature scheme Alice only needs to sign a minimum num-
ber of edges that has the same transitive closure as her intended graph; an
observer can infer her signatures on the remaining (inferred) edges.

We note for the record that this minimum subset of edges having the same
transitive closure is called the transitive reduction of a graph and can be com-
puted efficiently in both the undirected and directed cases [1].



Transitive Signature Schemes 239

u

v

w
�
�
�
�
�
�
��� �

�
�
�
�
�
���
�

Fig. 1. With a transitive signature scheme anyone can compute a signature on edge
(u,w) given signatures on edges (u, v) and (v, w).

With a transitive signature scheme, anyone can produce a short “proof” that
a given edge is in the graph. Even if Alice didn’t sign that edge explicitly, the
proof is a signature that might as well been produced by Alice. Most conveniently,
one does not need to have the verifier understand chains or sequences of signed
edges (as one typically has to do for certificate chains in an analagous situation,
for example [12, Section 13.6.2]).

Having providing some motivation, we can then ask: do transitive signature
schemes exist?

We provide a partial answer below.

2 An Undirected Transitive Signature Scheme

In this section we describe a transitive signature scheme for working on undi-
rected graphs (which we dub a undirected transitive signature scheme) and prove
it secure. It is based on the difficulty of the discrete logarithm problem.
User setup: Each user selects a public-key signature scheme for signing vertices.
The vertex signature scheme should have the usual security properties, but need
not have any special algebraic properties. For example, the scheme proposed
by Goldwasser, Micali, and Rivest [10] is satisfactory here as a vertex signature
scheme. The user selects a public-key/private-key pair, and publishes the public-
key.

For use in signing edges, each user selects and publishes the following param-
eters:

– large primes p and q such that q divides p− 1, and
– generators g and h of the subgroup Gq of order q of Z∗p, such that the base-g

logarithm of h modulo p is infeasible for others to compute.

Creating a new vertex: When a user Alice wishes to create a new vertex and
add it to the graph, she does the following:

– Let n denote the number of vertices previously created. Increment n by 1.
– Select two values xn and yn independently at random from Zq.
– Compute vn as gxnhyn (mod p).



240 Silvio Micali and Ronald L. Rivest

– Compose, sign, and publish a statement of the form, “The n-th vertex of
the graph is represented by the value vn.” (The message is signed using the
vertex-signing public-key signature scheme. The value vn is given explicitly
in the message. The values xn and yn are kept secret by Alice.)

Signing the edge (i, j): To sign the edge between the i-th vertex and the j-th
vertex, Alice computes and publishes the quadruple:

(i, j, αij , βij)
where

αij = xi − xj (mod q)
βij = yi − yj (mod q) .

We note that the vertex-signing procedure is very similar to the information-
theoretically secure commitment scheme of Pedersen [13] (or equivalently, of
Chaum, van Heijst, and Pfitzmann [3]).
Verifying an edge signature: Anyone can verify the signature on an edge by
checking that

vi = vjg
αijhβij (mod q) . (4)

Composing edge signatures: Given a signature (i, j, αij , βij) of edge (i, j)
and a signature (j, k, αjk, βjk) of edge (j, k), anyone can compute the signature

(i, k, αik, βik)
on edge (i, k) as:

αik = αij − αjk (mod q)
= xi − xk (mod q)

βik = βik − βik
= yi − yk (mod q) .

This signature is identical to what Alice would produce when signing the edge
(i, k).

3 Security

As with any signature scheme, proving security means proving that an adversary
will not be able to forge new signatures having seen some previous legitimate
signatures. Of course, when the signature scheme has the kind of algebraic prop-
erty considered in this paper, the adversary is intentionally given for free the
ability to “forge” signatures on new edges, as long as they are in the transi-
tive closure of previously signed edges. Since the adversary is being explicitly
given this capability for free, it is considered a feature (and not a defect) that
the adversary can compute these signatures. It is thus the ability of the adver-
sary to compute signatures on edges outside the transitive closure of previously
signed edges that should be considered as “forgery” and a break of the signature



Transitive Signature Schemes 241

scheme; our proof shows that forging signatures outside of the transitive closure
of previously signed edges is provably hard.

There is another subtle issue regarding the definition of security, regarding
how the previously signed edges are determined. The simplest sort of “static”
adversary would be asked to forge a signature on a “new” edge, given as input
a graph with a given set of edge signatures.

A more powerful adversary, which our scheme is capable of defeating, would
be given the following capabilities, which he could exercise at will, until he is
ready to attempt a forgery. The adversary can make the following requests of
the signer.

– Initialize. Ask the signer to discard any previously signed vertices and
edges, and begin with a “clean slate”; ask the signer to make up a new
name N for a new graph to be constructed.

– Add a new vertex i. Ask the signer to sign a statement saying that “vertex
i is now part of the graph N .”

– Add a new edge (i, j). Ask the signer to sign a statement saying that
“edge (i, j) is now part of the graph N .”

Once the adversary is done with his requests, he is challenged to forge an edge
signature on any edge of his choice, as long as the edge is not in the transitive
closure of the edges previously signed.

It is important to emphasize that the adversary is adaptive in the sense that
each such request need be formulated by the adversary only after he has seen
the response to all previous requests. The adversary does not need to commit to
all of his requests in advance; he makes them up as he goes along.

(We note that if the adversary is static rather than adaptive, in the sense that
he must commit to all of requests before seeing the responses to any of them,
then other simpler schemes will work. For example, it suffices for the signer to
publicly assign a random number xi to each vertex i, and to sign edge (i, j)
by giving an RSA signature on the value xi/xj , that is, (xi/xj)d (mod n). The
multiplicative property of RSA ensure the desired transitive property. However,
we don’t know how to prove this scheme is secure against an adaptive adversary,
as the usual reduction techniques seem to require knowing ahead of time (when
the xi values are committed to) what the final connected components will be,
so that the xi values can be appropriately set up for the reduction, and there
are too many possible arrangements of the connected components to guess it
correctly with a inverse polynomial chance of success.)

In our scheme, starting a new graph means making up a new set of system
parameters for that graph, and publishing the details of the corresponding vertex
and edge signature schemes. Each vertex and edge signature is accomplished as
described in the previous section.

Theorem 1. The proposed undirected transitive signature scheme is secure in
the sense that an adversary can not forge a signature for an edge not in the
transitive closure of edges already seen, even if he can adaptively request new
vertices to be created and signed and request edges to be signed, assuming that
computing discrete logarithms is hard.



242 Silvio Micali and Ronald L. Rivest

Proof sketch: A straightforward reduction from the discrete logarithm in Gq,
the subgroup of prime order q modulo p. Given an instance (g, y, p, q) of the
discrete logarithm problem (where g and y are in Gq and the goal is to compute
logg(y) mod p) we create a transitive signature scheme with g = g and h = y. It
is easy to see how a simulator can respond successfully to requests for signatures
of edges. However, the usual linear algebra (see Pedersen [13]) can be used to
show that it is hard for an adversary to forge signatures since it would imply
being able to compute logg(h). One needs to argue that the adversary learns
nothing about the true xi and yi values from the signatures he observes. The
adversary’s forgery on an edge is thus extremely unlikely to be equal to the
simulator’s signature for that edge. Given two signatures on the same edge,
logg(h) can be computed. (A more complete proof will be given in the complete
version of this paper.) ��

4 Remarks and Discussion

The problem of finding a directed transitive signature scheme remains a very
interesting open problem. We have not been able to make much progress on this
problem.

We note that there is some similarity between our problem and the problem
of “atomic proxy cryptography” due to Blaze et al. [2]. However, we have not
been able to come up with a provably secure undirected transitive signature
scheme for a scheme modelled on their ideas without losing too much efficiency
in the proof.

Another interesting open problem is the following: Given Alice’s signature
on message M and on (in some special way) Bob’s public key, Bob can then “cut
himself out of the middle” and produce Alice’s signature on M and on (in the
same special way) Carol’s public key. This would be very useful for collapsing
chains of delegation or certification.

Acknowledgments

We would like to thank Shafi Goldwasser for Mihir Bellare for many interesting
discussions, encouragement, and suggestions. (In particular, Mihir Bellare sent
us a proof that the RSA-based scheme give works against a static adversary.)

References

1. A. V. Aho, M. R. Garey, and J. D. Ullman. The transitive reduction of a directed
graph. SIAM J. Comput., 1:131–137, 1972.

2. Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and atomic
proxy cryptography. In Kaisa Nyberg, editor, Proceedings EUROCRYPT ’98, pages
127–144. Springer, 1998.

3. D. Chaum, E. van Heijst, and B. Pfitzmann. Cryptographically strong undeniable
signatures, unconditionally secure for the signer. In J. Feigenbaum, editor, Pro-
ceedings CRYPTO ’91, pages 470–484. Springer, 1992. Lecture Notes in Computer
Science No. 576.



Transitive Signature Schemes 243

4. David Chaum. Blind signatures for untraceable payments. In R. L. Rivest, A. Sher-
man, and D. Chaum, editors, Proceedings CRYPTO 82, pages 199–203, New York,
1983. Plenum Press.

5. David Chaum. Security without identification: Transaction systems to make big
brother obsolete. Communications of the ACM, 28(10):1030–1044, Oct 1985.

6. Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. MIT Press/McGraw-Hill, 1990.

7. D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. In Proc. STOC
’91, pages 542–552. ACM, 1991.

8. Joan Feigenbaum. Encrypting problem instances: Or...can you take advantage
of someone without having to trust him? In H. C. Williams, editor, Proceedings
CRYPTO 85, pages 477–488. Springer, 1986. Lecture Notes in Computer Science
No. 218.

9. Joan Feigenbaum and Michael Merritt. Open questions, talk abstracts, and sum-
mary of discussions. In DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, volume 2, pages 1–45, 1991.

10. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM, 17(2):281–308, April 1988.

11. Robert Johnson, David Molnar, Dawn Song, and David Wagner. Homomorphic sig-
nature schemes. In Topics in Cryptology—CT-RSA 2002, pages 244–262. Springer,
2002. Lecture Notes in Computer Science No. 2271 (This Volume).

12. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1997.

13. T.P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In J. Feigenbaum, editor, Proceedings CRYPTO ’91, pages 129–140.
Springer, 1992. Lecture Notes in Computer Science No. 576.

14. Ronald L. Rivest, Leonard Adleman, and Michael L. Dertouzos. On data banks
and privacy homomorphisms. In R. DeMillo, D. Dobkin, A. Jones, and R. Lipton,
editors, Foundations of Secure Computation, pages 169–180. Academic Press, 1978.

15. Tomas Sander, Adam Young, and Moti Yung. Non-interactive cryptocomputing for
NC1. In Proceedings 40th IEEE Symposium on Foundations of Computer Science,
pages 554–566, New York, 1999. IEEE.


	1 Introduction
	2 An Undirected Transitive Signature Scheme
	3 Security
	4 Remarks and Discussion
	References

