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LEARNING BINARY RELATIONS AND TOTAL ORDERS*
SALLY A. GOLDMAN’r, RONALD L. RIVEST*, AND ROBERT E. SCHAPIRE

Abstract. The problem of learning a binary relation between two sets of objects or between a set and itself is
studied. This paper represents a binary relation between a set of size n and a set of size rn as an n rn matrix of bits
whose (i, j) entry is if and only if the relation holds between the corresponding elements ofthe two sets. Polynomial
prediction algorithms are presented for learning binary relations in an extended on-line learning model, where the
examples are drawn by the learner, by a helpful teacher, by an adversary, or according to a uniform probability
distribution on the instance space.

The first part of this paper presents results for the case in which the matrix of the relation has at most k row
types. It presents upper and lower bounds on the number of prediction mistakes any prediction algorithm makes
when learning such a matrix under the extended on-line learning model. Furthermore, it describes a technique that
simplifies the proof of expected mistake bounds against a randomly chosen query sequence.

In the second part of this paper the problem of learning a binary relation that is a total order on a set is considered.
A general technique using a fully polynomial randomized approximation scheme (fpras) to implement a randomized
version of the halving algorithm is described. This technique is applied to the problem of learning a total order,
through the use of an fpras for counting the number of extensions of a partial order, to obtain a polynomial prediction
algorithm that with high probability makes at most n lg n + (lg e)lg n mistakes when an adversary selects the query
sequence. The case in which a teacher or the learner selects the query sequence is also considered

Key words, machine learning, computational learning theory, on-line learning, mistake-bounded learning, binary
relations, total orders, fully polynomial randomized approximation schemes
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1. Introduction. In many domains it is important to acquire information about a relation
between two sets. For. example, one may wish to learn a "has-part" relation between a set of
animals and a set of attributes. We are motivated by the problem of designing a prediction
algorithm to learn such a binary relation when the learner has limited prior information about
the predicate forming the relation. Although one could model such problems as concept
learning, they are fundamentally different problems. In concept learning there is a single
set of objects and the learner’s task is to classify these objects, whereas in learning a binary
relation there are two sets of objects and the learner’s task is to learn the predicate that relates
the two sets. Observe that the problem of learning a binary relation can be viewed as a concept
learning problem if one lets the instances be all ordered pairs of objects from the two sets.
However, the ways in which the problem may be structured are quite different when the true
task is to learn a binary relation as opposed to a classification rule. That is, instead of a rule
that defines which objects belong to the target concept, the predicate defines a relationship
between pairs of object.
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A binary relation is defined between two sets of objects. Throughout this paper we
assume that one set has cardinality n and the other has cardinality m. We. also assume that for
all possible pairings of objects the predicate relating the two sets of variables is either true (1)
or false (0). Before defining a prediction algorithm, we first discuss our representation of a
binary relation. Throughout this paper we represent the relation as an n x rn binary matrix,
where an entry contains the value-of the predicate for the corresponding elements. Since
the predicate is binary valued, all entries in this matrix are either 0 (false) or (true). The
two-dimensional structure arises from the fact that we are learning a binary relation.

For the sake of comparison we now briefly mention other possible representations. One
could represent the relation as a table with two columns, where each entry in the first column
is an item from the first set and each entry in the second column is an item from the second set.
The rows of the table consist of the subset of the potential nm pairings for which the predicate
is true. One could also represent the relation as a bipartite graph with n vertices in one vertex
set and rn vertices in the other set. An edge is placed between two vertices exactly when the
predicate is true for corresponding items.

Having introduced our method for representing the problem, we now informally discuss
the basic learning scenario. The learner is repeatedly given a pair of elements, one from each
set, and is asked to predict the corresponding matrix entry. After making its prediction, the
learner is told the correct value of the matrix entry. The learner wishes to minimize the number
of incorrect predictions. Since we assume that the learner must eventually make a prediction
for each matrix entry, the number of incorrect predictions depends on the size of the matrix.

Unlike problems typically studied, in which the natural measure ofthe size of the learner’s
problem is the size of an instance (or example), for this problem the natural measure is the size
of the matrix. Such concept classes with polynomial-sized instance spaces are uninteresting in
Valiant’s probably approximately correct (PAC) model oflearning [27]. In this model instances
are chosen randomly from an arbitrary unknown probability distribution on the instance space.
A concept class is PAC-learnable if the learner, after seeing a number of instances that are
polynomial in the problem size, can output a hypothesis that is correct on all but an arbitrarily
small fraction of the instances with high probability. For concepts whose instance space has
cardinality polynomial in the problem size, by asking to see enough instances the learner can
see almost all of the probability weight of the. instance space. Thus it is not hard to show
that these concept classes are trivially PAC-learnable. One goal of our research is to build a
framework for studying such problems.

To study learning algorithms for these concept classes we extend the basic mistake bound
model [14], [15], [19] to the cases in which a helpful teacher or the learner selects the query
sequence, and, in addition, to the cases in which instances are chosen by an adversary or
according to a probability distribution on the instance space. Previously, helpful teachers
have been used to provide counterexamples to conjectured concepts ], [2] or to break up
the concept into smaller subconcepts [23]. In our framework the teacher selects only the
presentation order for the instances.

If the learner is to have any hope of doing better than random guessing, there must be
some structure in the relation. Furthermore, since there are so many ways to structure a binary
relation, we give the learner some prior knowledge about the nature of this structure. Not
surprisingly, the learning task depends greatly on the prior knowledge provided. One way to
impose structure is to restrict one set of objects to have relatively few types. For example,
a circus may contain many animals but only a few different species. In the first part of this
paper we study the case in which the learner has a priori knowledge that there are a limited
number of object types. Namely, we restrict the matrix representing the relation to have at
most k distinct row types. (Two rows are of the same type if they agree in all columns.) We
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define a k-binary-relation to be a binary relation for which the corresponding matrix has at
most k row types. This restriction is satisfied whenever there are only k types of objects in
the set of n objects being considered in the relation. The learner receives no other knowledge
about the predicate forming the relation. With this restriction we prove that any prediction
algorithm makes at least (1 )km + n [lg(/k)J (1 -/)k/lg(/k)J mistakes in the worst
case for any fixed 0 < / < against any query sequence. So for/ , we get a lower
bound of + (n ) [lg k on the number ofmistakes made by any prediction algorithm.
If computational efficiency is not a concern, the halving algorithm [4], 19] makes at most
km+ (n k)lgk mistakes against any query sequence. (The halving algorithm predicts
according to the majority of the feasible relations (or concepts), and thus each mistake halves
the number of remaining relations.)

We present an efficient algorithm making at most krn + (n k)[lg kJ mistakes in the
case in which the learner chooses the query sequence. We prove a tight mistake bound2 of
km + (n k)(k 1) in the case in which the helpful teacher selects the query sequence.
When the adversary selects the query sequence, we present an efficient algorithm for k 2
that makes at most 2m + n 2 mistakes, and for arbitrary k we present an efficient algorithm
that makes at most krn + n/(k 1)rn mistakes. We prove that any algorithm makes at least
krn + (n k) llg kJ mistakes in the case in which an adversary selects the query sequence, and
we use the existence of projective geometries to improve this lower bound to f2 (kin + (n
k) [lg kJ + min{n/’, rn Vrff}) for a large class of algorithms. Finally, we describe a technique
for simplifying the proof of expected mistake bounds when the query sequence is chosen at
random, and we use it to prove an O(krn + nk/-) expected mistake bound for a simple
algorithm. (Here H is the maximum Hamming distance between any two rows.)

Another possibility for known structure is the problem of learning a binary relation on
a set where the predicate induces a total order on the set. (For example, the predicate may
be "<".) In the second half of this paper we study the case in which the learner has a priori
knowledge that the relation forms a total order. Once again, we see that the halving algorithm
[4], 19] yields a good mistake bound against any query sequence. This motivates a second
goal of this research: to develop efficient implementations of the halving algorithm. We
uncover an interesting application of randomized approximation schemes to computational
learning theory. Namely, we describe a technique that uses a fully polynomial randomized
approximation scheme (fpras) to implement a randomized version of the halving algorithm.
We apply this technique, using a fpras due to Dyer, Frieze, and Kannan 10] and to Matthews
[22] for counting the number of linear extensions of a partial order, to obtain a polynomial
prediction algorithm that makes at most n lg n + (lg e)lg n mistakes with very high probability
against an adversary-selected query sequence. The small probability of making too many
mistakes is determined by the coin flips ofthe learning algorithm and not by the query sequence
selected by the adversary. We contrast this result with an n mistake bound when the learner
selects the query sequence [28] and with an n mistake bound when a teacher selects the
query sequence.

The remainder of this paper is organized as follows. In the next section we formally
introduce the basic problem, the learning scenario, and the extended mistake bound model. In
3 we present our results for learning k-binary-relations. We first give a motivating example
and present some general mistake bounds. In the following subsections we consider query
sequences selected by the learner, by a helpful teacher, by an adversary, or at random. In
4 we turn our attention to the problem of learning total orders. We begin by discussing

1Throughout this paper we use lg to denote log2.
2The tight mistake bound is a worst-case mistake bound taken over all consistent learners; see 2 for formal

definitions.
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the relationship between the halving algorithm and approximate counting schemes in 4.1.
In particular, we describe how an fpras can be used to implement an approximate halving
algorithm. Then in 4.2 we present our results on learning a total order. Finally, in 5 we
conclude with a summary and discussion of related open problems.

2. Learning scenario and mistake bound model. In this section we give formal defini-
tions and discuss the learning scenario used in this paper. To be consistent with the literature
we discuss these models in terms of concept learning. As we have mentioned, the problem of
learning a binary relation can be viewed in this framework by letting the instance space be all
pairs of objects, one from each of the two sets.

A concept c is a Boolean function on some domain of instances. A concept class C
is a family of concepts. The learner’s goal is to infer some unknown target concept chosen
from some known concept class. Often C is decomposed into subclasses Cn according to
some natural dimension measure n. That is, for each n > let Xn denote a finite learning
domain. Let X [,.Jn>_l Xn, and let x X denote an instance. To illustrate these definitions
we consider the concept class of monomials. (A monomial is a conjunction of literals, where
each literal is either some Boolean variable or its negation.) For this concept class n is just
the number of variables. Thus IXnl 2, where each x Xn is chosen from {0, } and
represents the assignment for each variable. For each n > let C be afamily ofconcepts on
Xn. Let C Un>l Cn denote a concept class over X. For example, if Cn contains monomials
over n variables, then C is the class of all monomials. Given any concept c C, we say that x
is a positive instance of c if c(x) 1, and we say that x is a negative instance of c if c(x) O.
In our example the target concept for the class of monomials over five variables might be
xlx--xs. Then the instance 10001 is a positive instance and the instance 00001 is a negative
instance. Finally, the hypothesis space of algorithm A is simply the set of all hypotheses (or
rules) h that A may output. (A hypothesis for Cn must make a prediction for each x Xn.)

A prediction algorithm for C is an algorithm that runs under the following scenario. A
learning session consists ofa set of trials. In each trial the learner is given an unlabeled instance
x Xn. The learner uses its current hypothesis to predict whether x is a positive or negative
instance of the target concept c Cn, and then the learner is told the correct classification of x.
If the prediction is incorrect, the learner has made a mistake. Note that in this model there is no
training phase. Instead, the learner receives unlabeled instances throughout the entire learning
session. However, after each prediction the learner discovers the correct classification. This
feedback can then be used by the learner to improve the learner’s hypothesis. A learner is
consistent if on every trial there is some concept in Cn that agrees both with the learner’s
prediction and with all the labeled instances observed on preceding trials.

The number of mistakes made by the learner depends on the sequence of instances pre-
sented. We extend the mistake bound model to include several methods for the selection of
instances. A query sequence is a permutation yr (xl, x2 XlXnl of Xn, where xt is the
instance presented to the learner at the tth trial. We call the agent selecting the query sequence
the director. We consider the following directors"

Learner. The learner chooses yr. To select xt the learner may use time polynomial in
n and all information obtained in the first 1 trials. In this case we say that the learner is

self-directed.
Helpful teacher. A teacher who knows the target concept and wants to minimize the

learner’s mistakes chooses yr. To select xt the teacher uses knowledge of the target concept,
xl xt-, and the learner’s predictions on x xt-. To avoid allowing the learner and
teacher to have a coordinated strategy, in this scenario we consider the worst-case mistake
bound over all consistent learners. In this case we say the learner is teacher directed.
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TABLE
Summary of testing reactionsfor allergy testing example.

Degree of Epicutaneous Intradermal
patient allergy (scratch) (under the skin)

Not allergic Negative Negative

Mildly allergic Negative Weak positive

Highly allergic Weak positive Strong positive

Adversary. The adversary who selected the target concept chooses zr. This adversary,
who tries to maximize the learner’s mistakes, knows the learner’s algorithm and has unlimited
computing power. In this case we say the learner is adversary directed.

Random. In this model, re is selected randomly according to a uniform probability
distribution on the permutations of Xn. Here the number of mistakes made by the learner for
some target concept c in Cn is defined to be the expected number of mistakes over all possible
query sequences. In this case we say the learner is randomly directed.

We consider how a prediction algorithm’s performance depends on the director. Namely,
we letMBz (A, Cn denote the worst-case number ofmistakes made by A for any target concept
in Cn when the query sequence is provided by Z. (When Z adversary, MBz(A, Cn)
MA (Cn) in the notation ofLittlestone 19].) We say that A is apolynomialprediction algorithm
if A makes each prediction in time polynomial in n.

3. Learning binary relations. In this section we apply the learning scenario of the
extended mistake bound model to the concept class C of k-binary-relations. For this concept
class the dimension measure is denoted by n and m and by Xn, n} m }.
An instance (i, j) is in the target concept c Cn,m if and only if the matrix entry in row and
column j is a 1. So in each trial the learner is repeatedly given an instance x from Xn,m and is
asked to predict the corresponding matrix entry. After making a prediction the learner is told
the correct value of the matrix entry. The learner wishes to minimize the number of incorrect
predictions during a learning session in which the learner must eventually make a prediction
for each matrix entry.

"We begin this section with a motivating example from the domain of allergy testing. We
use this example to motivate both the restriction that the matrix has k row types and the use
of the extended mistake bound model. We then present general upper and lower bounds on
the number of mistakes made by the learner, regardless of the director. Finally, we study the
complexity of learning a k-binary-relation under each director.

3.1. Motivation: Allergist example. In this subsection we use the following example
taken from the domain of allergy testing to motivate the problem oflearning a k-binary-relation.

Consider an allergist with a set of patients to be tested for a given set of allergens. Each
patient is either highly allergic, mildly allergic, or not allergic to any given allergen. The
allergist may use either an epicutaneous (scratch) test, in which the patient is given a fairly
low dose of the allergen, or an intradermal (under the skin) test, in which the patient is given
a larger dose of the allergen. The patient’s reaction to the test is classified as strong positive,
weak positive, or negative. Table describes the reaction that occurs for each combination of
allergy level and dosage level. Finally, we assume that a strong positive reaction is extremely
uncomfortable to the patient but not dangerous.

What options does the allergist have in testing a patient for a given allergen? One option
(option 0) is just to perform the intradermal test. Another option (option 1) is to perform an



LEARNING BINARY RELATIONS AND TOTAL ORDERS 1011

epicutaneous test and, if it is not conclusive, then perform an intradermal test. (See Fig.
for decision trees describing these two testing options.) Which testing option is best? If the

Option 0:

Not
Allergic

n trong

Mildly Highly
Allergic Allergic

Option # 1"

n> \ weak

weak

Not Mildly Highly
Allergic Allergic, Allergic,

FIG. 1. Testing options available to the allergist.

patient has either no allergy or a mild allergy to the given allergen, then testing option 0 is best,
since the patient need not return for the second test. However, if the patient is highly allergic
to the given allergen, then testing option 1 is best, since the patient does not experience a bad
reaction. We assume that the inconvenience ofgoing to the allergist twice is approximately
the same as having a bad reaction. That is, the allergist has no preference for an error in a
particular direction. Although the allergist’s final goal is to determine each patient’s allergies,
we consider the problem of learning the optimal testing option for each combination of patient
and allergen.

The allergist interacts with the environment as follows. In each trial the allergist is asked
to predict the best testing option for a given patient-allergen pair. The allergist is then told
the testing results, thus learning whether the patient is not allergic, mildly allergic, or highly
allergic to the given allergen. In other words, the allergist receives feedback as to the correct
testing option. Note that we make no restrictions on how the hypothesis is represented, as
long as it can be evaluated in polynomial time. In other words, all we require is that given
any patient-allergen pair, the allergist decides which test to perform in a reasonable amount
of time.
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How can the allergist possibly predict a patient’s allergies? If the allergies of the patients
are completely random, then there is not much hope. What prior knowledge does the allergist
have? He or she knows that people often have exactly the same allergies, and so there is a set of
allergy types that occur frequently. (We do not assume that the allergist has a priori knowledge
of the actual allergy types.) This knowledge can help guide the allergist’s predictions.

Having specified the problem, we discuss our choice of using the extended mistake bound
model to evaluate learning algorithms for this problem. First of all, observe that we want an
on-line model. There is no training phase here; the allergist wants to predict the correct testing
option for each patient-allergen pair. Also, we expect that the allergist has time to test each
patient for each allergen; that is, the instance space is polynomial sized. Thus, as discussed
in 1, the distribution-free model is not appropriate.

How should we judge the performance of the learning algorithm? For each wrong predic-
tion made, a patient is inconvenienced by making a second trip or having a bad reaction. Since
the learner wants to give all patients the best possible service, he or she strives to minimize
the number of incorrect predictions made. Thus we want to use the absolute mistake bound
success criterion. Namely, we judge the performance of the learning algorithm by the number
of incorrect predictions made during a learning session in which the allergist must eventually
test each patient for each allergen.

Up to now the standard on-line model (which uses absolute mistake bounds to judge the
learners) appears to be the appropriate model. We now discuss the selection of the instances.
Since the allergist has no control over the target relation (i.e., the allergies of the patients),
it makes sense to view the feedback as coming from an adversary. However, do we really
want an adversary to select the presentation order for the instances? It could be that the
allergist is working for a cosmetic company and, because of the restrictions of the Food and
Drug Administration and the cosmetic company, the allergist is essentially told when to test
each person for each allergen. In this case it is appropriate to have an adversary select the
presentation order. However, in the typical situation the allergist can decide in what order to
perform the testing so that he or she can make the best predictions possible. In this case we
want to allow the learner to select the presentation order. One could also imagine a situation
in which an intern is being guided by an experienced allergist; in this case a teacher helps to
select the presentation order. Finally, random selection of the presentation order may provide
us with a better feeling for the behavior of an algorithm.

3.2. Learning k-binary-rdations. In this section we begin our study of learning k-
binary-relations by presenting general lower and upper bounds on the mistakes made by the
learner, regardless of the director.

Throughout this section we use the following notation" We say an entry (i, j) of the
matrix (M j) is known if the learner was previously presented that entry. We assume without
loss of generality that the learner is never asked to predict the value of a known entry. We say
that rows and i’ are consistent (given the current state of knowledge) if Mij Mi,j for all
columns j in which both entries (i, j) and (i’, j) are known.

We now look at general lower and upper bounds on the number of mistakes that apply
for all directors. First of all, note that k < 2m since there are only 2m possible row types for a
matrix with rn columns. Clearly, any learning algorithm makes at least km mistakes for some
matrix, regardless of the query sequence. The adversary can divide the rows into k groups
and reply that the prediction was incorrect for the first column queried for each entry of each
group. We generalize this approach to force mistakes for more than one row of each type.

THEOREM 3.1. For any 0 < 6 < 1 any prediction algorithm makes at least (1 )km +
n/lg(6k)J (1 -/)k/lg(/k)J mistakes, regardless ofthe query sequence.
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Proof. The adversary selects its feedback for the learner’s predictions as follows. For
each entry in the first llg(/Sk)J columns the adversary replies that the learner’s response is
incorrect. At most/Sk new row types are created by this action. Likewise, for each entry in the
first (1 fl)k rows the adversary replies that the learner’s response is incorrect. This creates
at most (1 -/5)k new row types. The adversary makes all remaining entries in the matrix
zero (see Fig. 2). The number of mistakes is at least the area of the unmarked region. Thus
the adversary has forced at least (1 )km + n llg(/3k)J (1 -/5)k/lg(/Sk)J mistakes while
creating at most/Sk + (1 -/5)k k row types.

m oluaxtm

FIG. 2. Final matrix created by the adversary in the proof of Theorem 3.1. All entries in the unmarked area
will contain the bit not predicted by the learner; that is, a mistake isforced on each entry in the unmarked area. All
entries in the marked area will be zero.

By letting/5 we obtain the following corollary.
COROLLARY 3.2. Any algorithm makes at least + (n Llg k 1J mistakes in the

worst case, regardless of the query sequence.
If computational efficiency is not a concern, for all query sequences the halving algorithm

[4], 19] provides a good mistake bound.
Observation. The halving algorithm achieves a km + (n k) lg k mistake bound.

Proof. We use a simple counting argument on the size of the concept class Cn,m. There
are 2km ways to select the k row types, and there are k(n-k) ways to assign one of the k
row types to each of the remaining n k rows. Thus [Cn,ml <_ 2kmk(n-k). Littlestone [19]
proves that the halving algorithm makes at most lglCn,ml mistakes. Thus the number of
mistakes made by the halving algorithm for this concept class is at most lg(2kmkn-k)) < km
+(n k) lg k.

In the remainder of this section we study efficient prediction algorithms designed to
perform well against each of the directors. In some cases we are also able to prove lower
bounds that are better than that of Theorem 3.1. In 3.3 we consider the case in which the
query sequence is selected by the learner. We study the helpful-teacher director in 3.4. In
3.5 we consider the case of an adversary director. Finally, in 3.6 we consider instances
drawn uniformly at random from the instance space.

3.3. Self-directed learning. In this section we present an efficient algorithm for the case
of self-directed learning.
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THEOREM 3.3. There exists a polynomial prediction algorithm that achieves a km + (n
k) lg kl mistake bound with a learner-selected query sequence.

Proof. The query sequence selected simply specifies the entries of the matrix in row-
major order. The learner begins by assuming that there is only one row type. Let/ denote

the learner’s current estimate for k. Initially/ 1. For the first row the learner guesses each
entry. (This row becomes the template for the first row type.). Next the leamer assumes that
the second row is the same as the first row. If a mistake is made, then the learner revises the
estimate for/ to be 2, guesses for the rest of the row, and uses that row as the template for the
second row type. In general, to predict Mij the learner predicts according to a majority vote
of the recorded row templates that are consistent with row (breaking ties arbitrarily). Thus
if a mistake is made, then at least half of the row types can be eliminated as the potential type
of row i. If more than/lg/[ mistakes are made in a row, then a new row type has been found.

In this case,/ is incremented, the learner guesses for the rest of the row, and the learner makes
this row the template for row type/ + 1.

How many mistakes are made by this algorithm? Clearly, at most m mistakes are made
for the first row found of each of the k types. For the remaining n k rows, since < k, at
most lg kJ mistakes are made.

Observe that this upper bound is within a constant factor of the lower bound of Corollary
3.2. Furthermore, we note that this algorithm need not know k a priori. In fact, it obtains the
same mistake bound even if an adversary tells the learner which row to examine and in what
order to predict the columns, provided that the learner sees all of a row before going on to the
next. As we will later see, this problem becomes harder if the adversary can select the query
sequence without restriction.

3.4. Teacher-directed learning. In this section we present upper and lower bounds on
the number of mistakes made under the helpful-teacher director. Recall that in this model we
consider the worst-case mistake bound over all consistent learners. Thus the question asked
here is" What is the minimum number of matrix entries a teacher must reveal so that there is
a unique completion of the matrix? That is, until there is a unique completion of the partial
matrix, a mistake could be made on the next prediction.

We now prove an upper bound on the number of entries needed to uniquely define the
target matrix.

THEOREM 3.4. The number ofmistakes made with a helpful teacher as the director is at
most km + (n k)(k 1).

Proof. First the teacher presents the learner with one row of each type. For each of the
remaining n k rows the teacher presents an entry to distinguish the given row from each of
the k incorrect row types. After these km + (n k)(k 1) entries have been presented we
claim that there is a unique matrix with at most k row types that is consistent with the partial
matrix. Since all k distinct row types have been revealed in the first stage, all remaining rows
must be the same as one of the first k rows presented. However, each of the remaining rows
have been shown to be inconsistent with all but one of these k row templates. q

Is Theorem 3.4 the best such result possible? Clearly, the teacher must present a row of
each type. But, in general, is it really necessary to present k entries of the remaining rows
to uniquely define the matrix? We now answer this question in the affirmative by presenting
a matching lower bound.

THEOREM 3.5. The number ofmistakes made with a helpful teacher as the director is at
least min{nm, km + (n k)(k 1)}.

Proof. The adversary selects the following matrix. The first row type consists of all zeros.
For 2 < z < min{m + 1, k}, row type z contains z 2 zeros, followed by a one, followed by
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m z / zeros. The first k rows are each assigned to be a different one of the k row types.
Each remaining row is assigned to be the first row type (see Fig. 3). Until there is a unique
completion of the partial matrix, by definition there exists a consistent learner that could make
a mistake. Clearly, if the learner has not seen each column of each row type, then the final
matrix is not uniquely defined. This part of the argument accounts for km mistakes. When
m + > k, for the remaining rows, unless all of the first k columns are known, there
is some row type besides the first row type that must be consistent with the given row. This
argument accounts for (n k)(k 1) mistakes. Likewise, when m + < k, if any of the first
m columns are not known then there is some row type besides the first row type that must be
consistent with the given row. This accounts for (n k)m mistakes. Thus the total number of
mistakes is at least min{nm, km + (n k)(k 1)}.

5 row
types

000600 00
100000000
010000000
001000000
000100000
000000000

000000000

FIG. 3. Matrix created by the adversary against the helpful teacher director. In this example five row types
appear in the firstfive rows of the matrix.

Because of the requirement that mistake bounds in the teacher-directed case apply to all
consistent learners, we note that it is possible to get mistake bounds that are not as good as those
obtained when the learner is self-directed. Recall that in 3.2 we proved a km + (n k) llg kJ
mistake bound for the learner director. This bound is better than that obtained with a teacher
because the learner uses a majority vote among the known row types for making predictions.
However, a consistent learner may use a minority vote and could thus make km+ (n k)(k 1)
mistakes.

3.5. Adversar)-directed learning. In this section we derive upper and lower bounds on
the number of mistakes made when the adversary is the director. We first present a stronger
information-theoretic lower bound on the number of mistakes an adversary can force the
learner to make. Next we present an efficient prediction algorithm that achieves an optimal
mistake bound if k < 2. We then consider the related problem of computing the minimum
number of row types needed to complete a partially known matrix. Finally, we consider
learning algorithms that work against an adversary for arbitrary k.

We now present an information-theoretic lower bound on the number of mistakes made
by any prediction algorithm when the adversary selects the query sequence. We obtain this
result by modifying the technique used in Theorem 3.1.

THEOREM 3.6. Any prediction algorithm makes at least min{nm, km+ (n k)llg kJ
mistakes against an adversary-selected query sequence.

Proof. The adversary starts by presenting all entries in the first /lg k] columns (or m
columns if m < /lg kJ) and by replying that each prediction is incorrect. If m > [lg kJ, this
step causes the learner to make n/lg kJ mistakes. Otherwise, this step causes the learner to
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make nm mistakes. Each row can now be classified as one of k row types. Next the adversary
presents the remaining columns for one row of each type, again replying that each prediction
is incorrect. For m > [lgkJ this step causes the learner to make k(m [lgkJ) additional
mistakes. For the remaining matrix entries the adversary replies as dictated by the completed
row of the same row type as the given row. So the number of mistakes made by the learner is
at least min{nm, n [lg kJ

Special case: k 2. "We now consider efficient prediction algorithms for learning the
matrix under an adversary-selected query sequence. (Recall that if efficiency is not a concern,
the halving algorithm makes at most km + (n k) lg k mistakes.) In this section we consider
the case in which k _< 2 and present an efficient prediction algorithm that performs optimally.

THEOREM 3.7. There exists a polynomial prediction algorithm that makes at most 2m
n 2 mistakes against an adversary-selected query sequencefor k 2.

Proof The algorithm uses a graph G whose vertices correspond to the rows of the matrix
and that initially has no edges. To predict mij the algorithm 2-colors the graph G and then
proceeds as follows:

1. If no entry of column j is known, it guesses randomly.
2. Else if every known entry of column j is zero (respectively, one), it guesses zero

(one).
3. Else it finds a row i’ assigned the same color as and known in column j, and it

guesses Mi,j.
Finally, after the prediction is made and the feedback received, the graph G is updated by
adding an edge ii’ to G for each row i’ known in column j for which Mij Mi,j. Note that
one of the above cases always applies. Also, since k 2, it will always be possible to find a
2-coloring.

How many mistakes can this algorithm make? It is not hard to see that cases and 2 each
occur only once for every column, and so there are at most m mistakes made in each of these
cases. Furthermore, the first case-2 mistake adds at least one edge to G. We now argue that
each case-3 mistake reduces the number of connected components of G by at least 1. We use
a woof by contradiction. That is, assume that a case-3 mistake does not reduce the number
of connected components. Then it follows that the edge e Vl v2 added to G must form a
cycle (see Fig. 4). We now separately consider the cases in which this cycle contains an odd
number of edges or an even number of edges.

v

FIG. 4. Situation that occurs if a case-3 mistake does not reduce the number of connected components of G.
The thick gray edges and the thick black edge show the cycle created in G. Let e (shown as a thick black edge) be
the edge added toform the cycle.

Case 1" Odd-length cycle. Since G is known to be 2-colorable, this case cannot occur.

Case 2: Even-length cycle. Before e is added, since Vl and v2 were connected by an odd
number of edges, in any legal 2-coloring they must have been different colors. Since step 3 of
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the algorithm picks nodes of the same color, an edge could have never been placed between
vl and v2. Thus we again have a contradiction.

In both cases we reach a contradiction, and thus we have shown that every case-3 mistake
reduces the number of connected components of G. Thus after at most n 2 case-3 mistakes,
G must be fully connected and thus there must be a unique 2-coloring of G and no more
mistakes can occur. Thus the worst-case number of mistakes made by this algorithm is
2m+n-2.

Note that for k 2 this upper bound matches the information-theoretic lower bound of
Theorem 3.6. Also note that if there is only one row type, then the algorithm given in Theorem
3.7 makes at most m mistakes, matching the information-theoretic lower bound.

An interesting theoretical problem is to find a linear mistake bound for constant k >_ 3
when provided with a k-colorability oracle. However, such an approach would have to
be greatly modified to yield a polynomial prediction algorithm since a polynomial-time k-
colorability oracle exists only if 79 A/’79. Furthermore, even good polynomial-time approx-
imations to a k-colorability oracle are not known [5], 8].

The remainder of this section focuses on designing polynomial prediction algorithms for
the case in which the matrix has at least three row types. One approach that may seem promising
is to make predictions as follows: Compute a matrix that is consistent with all known entries
and that has the fewest possible row types; then use this matrix to make the next prediction.
We now show that even computing the minimum number of row types needed to complete a
partially known matrix is A/’79-complete. Formally, we define the matrix k-complexity problem
as follows" Given an n m binary matrix M that is partially known, decide if there is some
matrix with at most k row types that is consistent with M. The matrix k-complexity problem
can be shown to be A/’79-complete by a reduction from graph k-colorability for any fixed k > 3.

THEOREM 3.8. Forfixed k > 3 the matrix k-complexity problem is ./V’79-complete.
Proof. Clearly, this problem is in A/’79 since we can easily verify that a guessed matrix

has k row types and is consistent with the given partial matrix.
To show that the problem is A/’79-complete, we use a reduction from graph k-colorability.

Given an instance G (V, E) of graph k-colorability we transform it into an instance of the
matrix k-complexity problem. Let m n IV I, For each edge {vi, vj E we add entries
to the matrix so that row and row j cannot be the same row type. Specifically, for each vertex

vi we set Mii 0, and Mji for each neighbor vj of vi. An example demonstrating this
reduction is given in Fig. 5.

We now show that there is some matrix of at most k row types that is consistent with
this partial matrix if and only if G is k-colorable. We first argue that if there is a matrix M’
consistent with M that has at most k row types, then G is k-colorable. By construction, if two
rows are of the same type, there cannot be an edge between the corresponding nodes. So just
let the node color for each node be the type of the corresponding row in Mt.

Conversely, if G is k-colorable, then there exists a matrix M consistent with M that has
at most k row types. By the construction of M, if a set of vertices are the same color in G,
then the corresponding rows are consistent with each other. Thus there exists a matrix with at
most k row types that is consistent with M. [3

Row-filter algorithms. In this section we study the performance of a whole class of
algorithms designed to learn a matrix with arbitrary complexity k when an adversary selects
the query sequence. We say that an algorithm A is a row-filter algorithm if A makes its
prediction for Mij strictly as a function of j and all entries in the set I of rows consistent with
row and defined in column j. That is, A’s prediction is f (I, j), where f is some (possibly

3Two 2-colorings under renaming of the colors are considered to be the same.
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6(3 7

2 0 1
3 1 1 0
4
5 1
6

7 1

0 1o

G M

FIG. 5. Example ofthe reduction used in Theorem 3.8. Graph G is the instancefor the graph coloring problem,
and partial matrix M is the instance for the matrix complexity problem. Note that there exists a matrix that is a

completion of M that uses only three "row types. The corresponding 3-coloring of G is demonstrated by the node
colorings used in Go

probabilistic) function. So to make a prediction for Mij a row-filter algorithm considers all
rows that could be the same type as row and whose value for column j is known and uses
these rows in any way one could imagine to make a prediction. For example, it could take a
majority vote on the entries in column j of all rows that are consistent with row i. Or, of the
rows defined in column j, it could select the row that has the most known values in common
with row and predict according to its entry in column j. We have found that many of the
prediction algorithms we considered are row-filter algorithms.

Consider the simple row-filter algorithm ConsMajorityPredict, in which f (I, j) computes
the majority vote of the entries in column j of the rows in I. (Guess randomly in the case of
a tie.) Note that ConsMajorityPredict takes only time linear in the number of known entries
of the matrix to make a prediction. We now give an upper bound on the number of mistakes
made by ConsMajorityPredict.

THEOREM 3.9. The algorithm ConsMajorityPredict makes at most km + nv/(k 1)m
mistakes against an adversary-selected query sequence.

Proof For all let d(i) be the number of rows consistent with row i. We define the
potential of a partially known matrix to be -]i= d(i). We first consider how much the
potential function can change over the entire learning session.

LEMMA 3.10. The potentialfunction decreases by at most -Zl n2 during the learning
session.

Proof. Initially, for all i, d (i) = n. So (I)init n2. Let C(z) be the number ofrows oftype z
for < z < k. By definition, (Ifinal Z=I C(Z)2. Thus our goal is to minimize =1 C(z)2

kunder the constraint that z= C(z) n. Using the method of Lagrange multipliers, we

obtain that (I)final is minimized when for all z, C(z) n/k. Thus (I)final >_ ()2k -. So
(I) (I)init- (I)final < n2 n ---n2

k k
Now that the total decrease in over the learning session is bounded, we need to determine

how many mistakes can be made without decreasing by more than/---n2. We begin by
noting that is strictly nonincreasing. Once two rows are found to be inconsistent, they
remain inconsistent. So to bound the number of mistakes made by ConsMajorityPredict we
must compute a lower bound on the amount is decreased by each mistake. Intuitively, one
expects to decrease by larger amounts as more of the matrix is seen. We formalize this
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intuition in the next two lemmas. For a given row type z let B(j, z) denote the set of matrix
entries that are in column j of a row of type z.

LEMMA 3.11. The rth mistake made when predicting an entry in B(j, z) causes to
decrease by at least 2(r 1).

Proof.. Suppose that this mistake occurs in predicting entry (i, j) where row is of type z.
Consider all the rows of type z. Since r mistakes have occurred in column j, at least r
entries of B (j, z) are known. Since ConsMajorityPredict is a row-filter algorithm, these rows
must be in I. Furthermore, ConsMajorityPredict uses a majority voting scheme, and thus if a
mistake occurs there must be at least r entries in I (and thus consistent with row i) that
differ in column j with row i. Thus if a mistake is made, row is found to be inconsistent
with at least r 1 rows it was thought to be consistent with. When two previously consistent
rows are found to be inconsistent, (P decreases by 2. Thus the total decrease in (P caused by
the rth mistake made when an entry is predicted in B(j, z) is at least 2(r 1). [3

From Lemma 3.11 we see that the more entries known in B (j, z), the greater the decrease
in (P for future mistakes on such entries. So intuitively it appears that the adversary can
maximize the number of mistakes made by the learner by balancing the number of entries
seen in B(j, z) for all j and z. We prove that this intuition is correct and apply it to obtain a
lower bound on the amount must have decreased after the learner has made/z mistakes.

LEMMA 3.12. After lZ mistakes are made, the total decrease in (P is at least km (-m 1)2.
Proof From Lemma 3.11, after the rth mistake in the prediction of an entry from B(j, z),

the total decrease in from its initial value is at least Y-=I 2(x 1) >_ (r 1)2. Let W(j, z)
be the number of mistakes made in column j of rows of type z. The total decrease in is at
least

m k

D (W(j, z) 1)2

j=l z=l

subject to the constraint jm=l ---1 W(j, z) lz.
Using the method ofLagrange multipliers, we obtain that D is minimized when W(j, z)

__u for all j and z. (Since any algorithm clearly must make km mistakes,/z > km and thuskm
Iz/km > 1.) So the total decrease in (I) is at least

k

(ll" )2
j=l z=l

=km(-m -1)2

"We now complete the proof of the theorem. Combining Lemma 3.10 and Lemma 3.12, along
with the observation that is strictly nonincreasing, we have shown that

( )2 k-1 2km -1 < n.
km k

This implies that tz _< km / n4’(k 1)m.
We note that by using the simpler argument that each mistake, except for the first mistake

in each column of each row type, decreases (I) by at least 2, we obtain a km / n2 mistake
bound for any row-filter algorithm. Also, Goldman and Warmuth [12] give an algorithm,
based on the weighted majority algorithm of Littlestone and Warmuth [20], that achieves an
0 (km + nv/m lg k) mistake bound. Their algorithm builds a complete graph of n vertices in
which row corresponds to vertex vi and all edges have initial weights of 1. To predict a value
for (i, j) the learner takes a weighted majority of all active neighbors of vi (v is active if Mkj
is known). After receiving feedback the learner sets the weight on the edge from vi to Vk to
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be 0 if Mkj Mij. Finally, if a mistake occurs, the leamer doubles the weight of (1)i, 13k) if
Mkj Mij (i.e., the edges to neighbors that predicted correctly). We note that this algorithm
is not a row-filter algorithm.

Does ConsMajorityPredict give the best performance possible by a row-filter algorithm?
We now present an information-theoretic lower bound on the number of mistakes an adversary
can force against any row-filter algorithm.

nTHEOREM 3.13. Any row-filter algorithmfor learning an n x m matrix with m > 7 and
k > 2 makes f2 (nv/--) mistakes when the adversary selects the query sequence.

Proof. We assume that the adversary knows the learner’s algorithm and has access to any
random bits the learner uses. (One can prove a similar lower bound on the expected mistake
bound when the adversary cannot access the random bits.)

x x X

X X X

X X X

X x

X x x

X x

X X

FG. 6. Projective geometryfor p 2, m’ 7.

Let m’ (p2 + p + 1) be the largest integer of the given form such that p is prime and
m’ < m. Without loss of generality we assume in the remainder of this proof that the matrix
has m’ columns, and we prove an g2 (n/-7) mistake bound. From Bertrand’s conjecture4 it
follows from this result that the adversary has forced f2 (n/-) mistakes in the original matrix.

Our proof depends on the existence of a projective geometry F on m’ points and lines [6].
That is, there exists a set of m’ points and a set of m’ lines such that each line contains exactly
p + points and each point is at the intersection of exactly p 4- lines. Furthermore, any pair
of lines intersects at exactly one point, and any two points define exactly one line. (The choice
of m’ p2 4- p 4- for p prime comes from the fact that projective geometries are known
to exist only for such values.) Figure 6 shows a matrix representation of such a geometry; an

"" in entry (i, j) indicates that point j is on line i. Let F’ denote the first [ J lines of F.
Note that since m > 7, all entries of F’ are contained within M.

The matrix M consists of two row types: The odd rows are filled with ones and the even
rows with zeros. Two consecutive rows of M are assigned to each line of F’ (see Fig. 7). We
now prove that the adversary can force a mistake for each entry of F’. The adversary’s query

Fsequence maintains the condition that an entry (i, j) is not revealed unless line ] of
contains point j. In particular, the adversary will begin by presenting one entry of the matrix
for each entry of F’. We prove that for each entry of F’ the learner must predict the same value
for the two corresponding entries of the matrix. Thus the adversary forces a mistake for the

[ J (p 4- 1) [2 (n--7) entries of F’. The remaining entries of the matrix are then presented
in any order.

Let I be the set ofrows that may be used by the row-filter algorithm when it predicts entry
(2i, j). Let I’ be the set of rows that may be used by the row-filter algorithm when it predicts

4Bertrand’s conjecture states that for any integer n > 2 there exists a prime p such that n < p < 2n. Although
this is known as Bertrand’s conjecture, it was proved by Chebyshev in 1831.
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1 1 N

FIG. 7. Matrix created by the adversary in the proof of Theorem 3.13. The shaded regions correspond to the
entries in Ft. The learner isforced to make a mistake on one of the entries in each shaded rectangle.

entry (2i 1, j). We prove by contradiction that I I’. If I 5 I’, then it must be the case
that there is some row r that is defined in column j and consistent with row 2i, yet inconsistent
with row 2i (or vice versa). By the definition of the adversary’s query sequence it must be

the case that lines [] and I (2/-1)]2 of F’ contain point j. Furthermore, since (2/- 1, j)

is being queried, that entry is not known. Thus rows r and 2i must both be known in
some other column j’ since they are known to be inconsistent. Thus since only entries in
F’ are shown, it follows that lines [] and of F’ also contain point j’ for j’ :/: j. So this

implies that lines [ q and of F’ must intersect at two points, giving a contradiction. Thus
I I’, and so f(I, j) f(I’, j) for entry (2i, j) and entry (2i 1, j). Since rows 2i and
2i 1 differ in each column and the adversary has access to the random bits of the learner,
the adversary can compute f(I, j) just before making the query and then ask the learner to

predict the entry for which the mistake will be made. This procedure is repeated for the pair
of entries corresponding to each element of Ft.

n This bound, combinedWe use a similar argument to get an (mx/-ff) bound for rn < 7"
with the lower bound of Theorem 3.6 and Theorem 3.13, permits us to obtain a f2 (km + (n
k) [lg kJ + min{nx/, mx/-ff}) lower bound on the number of mistakes made by a row-filter
algorithm.

COROLLARY 3.14. Any row-filter algorithm makes 2 (km+(n-k) [lg kJ +min{nx/-, mx/-ff})
mistakes against an adversary-selected query sequence.

Comparing this lower bound to the upper bound proven for ConsMajorityPredict, we
see that for fixed k the mistake bound of ConsMajorityPredict is within a constant factor of
optimal.

Given this lower bound, one may question the 2m + n 2 upper bound for k 2 given in
Theorem 3.7. However, the algorithm described is not a row-filter algorithm. Also, compared
to our results for the learner-selected query sequence, it appears that allowing the learner to
select the query sequence is quite helpful.

3.6. Randomly directed learning. In this section we consider the case in which the
learner is presented at each step with one of the remaining entries of the matrix selected
uniformly and independently at random. We present a prediction algorithm that makes O (km+
nkr) mistakes on average, where H is the maximum Hamming distance between any two
rows of the matrix. We note that when H f2 () the result of Theorem 3.9 supersedes
this result. A key result of this section is a proof relating two different probabilistic models
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for analyzing the mistake bounds under a random presentation. We first consider a simple
probabilistic model in which the requirement that matrix entries are known is simulated by
assuming that each entry of the matrix is seen independently with probability t_L_. We then

nm
prove that any upper bound obtained on the number ofmistakes under this simple probabilistic
model holds under the true model (to within a constant factor) in which there are exactly
entries known. This result is extremely useful since in the true model the dependencies among
the probabilities that matrix entries are known makes the analysis significantly more difficult.

We define the algorithm RandomConsistentPredict to be the row-filter algorithm in which
the learner makes a prediction for Mij by choosing one row i’ of I uniformly at random and
predicting the value Mi,j. (If I is empty, then RandomConsistentPredict makes a random
guess.)

THEOREM 3.15. Let H be the maximum Hamming distance between any two rows of M.
Then the expected number ofmistakes made byRandomConsistentPredict is 0 (k(n/-+m ).

Proof. Let Ut be the probability that the prediction rule makes a mistake on the (t 4- 1)st
step. That is, Ut is the chance that a prediction error occurs on the next randomly selected
entry, given that exactly other randomly chosen entries are already known. Clearly, the

S-1expected number of mistakes is t=0 Ut, where S nm. Our goal is to find an upper bound
for this sum.

The condition that exactly entries are known makes the computation of Ut rather messy
since the probability of having seen some entry of the matrix is not independent of knowing
the others. Instead, we compute the probability Vt of a mistake under the simpler assumption

independent of the rest of thethat each entry of the matrix has been seen with probability 3’
S-1matrix. We first compute an upper bound for the sum Yt=0 Vt, and we then show that this

S-1sum is within a constant factor of t=0 Ut.
S-1LEMMA 3.16. -t=0 Vt 0 (km 4- nkv/-).

Also, let d(i) be the number of rows of the same type asProof. Fix t, and let p 3"
row i. We bound V0 by trivially, and we assume henceforth that p > 0.

By definition, Vt is the probability of a mistake occurring when a randomly selected
unknown entry is presented, given that all other entries are known with probability p. Since

it follows thateach entry (i, j) is presented next with probability 3,

Wt

where Rij is the probability of a mistake occurring, given that entry (i, j) is unknown and is
presented next.

Let Iij be the random variable describing the set of rows consistent with row and known
in column j, and let Jij be the random variable describing the set of rows i’ in Iij for which
Mij =/: Mi,j. If Iij is nonempty, then the probability of choosing a row i’ for which Mij =/: Mi,j
is clearly Jij[ / lijl. Thus the probability of a mistake is just the expected value ofthis fraction,
if it is assumed that lij =/: 0.

Unfortunately, expectations of fractions are often hard to deal with. To handle this situ-
ation we therefore place a probabilistic lower bound on the denominator of this ratio, i.e., on
lij [. Note that if and i’ are of the same type, then the probability that i’ Iij is just the
chance p that (i’, j) is known. Since there are d(i) rows of type (including itself), we see
that Pr[llijl < y] is at most the chance that fewer than y of the other d(i) rows of the same
type as are in Iij. In other words, this probability is bounded by the chance of fewer than y
successes in a sequence of d(i) Bernoulli trials, each succeeding with probability p.

We use the following form of Chernoff bounds, due to Angluin and Valiant [3], to bound
this probability:
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LEMMA 3.17. Consider a sequence ofm independent Bernoulli trials, each succeeding
with probability p. Let S be the random variable describing the total number of successes.
Thenfor 0 < < the following hold:

Pr[S < (1 ?,)mp] < e-’2mp/2,

and

Pr[S > (1 + ?’)mp] < e-V2mp/3.

Thus by letting y p(d(i) 1)/2 and applying this lemma, it follows that

Pr[lI/;I < p(d(i)- 1)/2] < e-p(d(i)-l)/8.

Note that this bound applies even if d(i) 1.
Thus we have

Rij <_ Pr[llijl < y] + E, ,lijl [Iij > y Pr[lli#l > y]

Pr[lI/al < y] +

< Pr[llijl < y] +

E[IJij[ lIijl Y]

So to bound Rij it will be useful to bound E[I Ji I].
We have

EtlJijl]= Pr[i’elij].
i’i, MFjMij

Pr[]lial >_ y]

If Mij Mi,j, then Pr[i’ lij] is the chance that (i’, j) is known and that and i’ are
consistent. Entry (i’, j) is known with probability p, and and i’ are consistent if either

(i, j’) or (i’, j’) is unknown for each column j’ - j in which and i’ differ, if h(i, i’) is the
Hamming distance between rows and i’, then this probability is (1 p2)h(i,i’)-l.

Combining these facts, we have

Zi,#i,Mi,jMi p(1 p2)h(i,i’)-I
V, < - EE e-p(d(i)-l)/8 + - E E p(d(i)- 1)/2d(i)>- 2h(i, i’)(1 p2)h(i,i’)-Ie-P(d(i)-l)/8 +-d(i)>l i’i

d(i)Ft

S-1Recall that our goal is to upper bound the sum Yt=0 Vt. Applying the above upper bound for
Vt, we get

(1)

ZVt< Z e-
t=0 t=0 n

s- 2h(i, i’)
1-/, " E d(i) 1

t=0 d(i)>l
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We now bound the first part of the above expression. We begin by noting that

zS-,___., e-(t/S)(d(i)-l)/8 < +
t=0 n

i=1
n

i=1

e-(t S)(d(i)- )/8dt)
1(16S)_<- l+d---n

i=1

where this last bound follows by evaluating the integral in the two cases that d(i) and
d(i) > 1. This last expression equals

+ 16m
d(i)i=1

16km+ 1,

where the last step is obtained by rewriting the summation to go over all the row types: There
are d(i) terms for rows of the same type as row i; thus each row type contributes to the
summation.

We next bound the second part of expression (1). To complete the proof of the lemma it
suffices to show that

s- h(i’i)Z - Z Zd(i)_l
t--O d(i)> i’i

We begin by noting that this expression is bounded above by- - h(i, i’) (1 + foS( ()2)
h(i’i’)-I

dt
S d(i)-d(i)> i’i

If h(i, i’) 1, then this integral is trivially evaluated to be S. Otherwise, by applying the
inequality e > + x we get

(2) (())h(i,i’)-I fo { ( 1 ]s 2 s 2

’)1- dt <_ exp (h(i,i -1) dt.

A standard integral table [13] gives

(3) exp (h(i, i’) l) dt
2/h(i, i’)

Combining these bounds, we have

(4) loS (l (t2)
h(i’i’)-I

dt <
S/-

/2h(i,i’)

for h(i, i’) > 1. Thus we arrive at an upper bound of

!
1 h(i, i’) [- Z d(i)_d(i)> i’i

1+ t )2

dt
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2h(i,i’) (< i d(i)
1+

S
i’#i

)/2h(i, i’)

2m /h(i, i’)
< i -+/-i d(i)S

i’#i i’#i

O(nk/-).

This implies the desired bound. [3

To complete the theorem we prove the main result of this section, namely, that the upper
bound obtained under this simple probabilistic model holds (to within a constant factor) for
the true model. In other words, to compute an upper bound on the number of mistakes made
by a prediction algorithm when the instances are selected according to a uniform distribution
on the instance space, one can replace the requirement that exactly matrix entries are known
by the requirement that each matrix entry is known with probability mm"

LEMMA 3.18. -.tS__-0 Ut 0 (’.st_d V,).
Proof. We first note that

r--O

To see this, observe that for each r, where r is the number of known entries, we need only
multiply Ur by the probability that exactly r entries are known if it is assumed that each entry

Therefore,is known with probability of .
(5)

S-1

t=O r=O

Thus to prove the lemma it suffices to show that the inner summation is bounded below by a
positive constant. By symmetry assume that r < and let y S- r. Stirling’s approximation
implies that

Applying this formula to the desired summation, we obtain that

(6)
t=0

-’-I Y t--0 Y

S - r+x y-x Y

r y

The last step above follows by letting x r and reducing the limits of the summation. To
complete the proof that equation (6) is bounded below by a positive constant we need prove
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only that

f()
r y

for all 1 < x < /ry/ S.
By using the inequality q- x < ex it can be shown that for -- y > O, -+- y > ey/(I+y)

We apply this observation to get that

r,-,,x __,X
y

(1*)r r

{x x}> exp
+ - 1 x

y

=exp{ rx yx}r+x y-x

--X2 (r + y)
=exp

(r+x)(y-x)

_Sx2 }=exp
(r + x)(y x)

Since x < /ry/S, it follows that Sx2 <_ ry. By applying this observation to the above
inequality it follows that

(r-l-x)r (Y-yX)Y Ir
> exp

(r
-ry }-+- x)(y x)

exp { --ry

ry + (y r)x x2

-ry ]>_ exp ryry--

{_1}exp
1 X

Finally, we note that for S > 2, e-1/(1-1/S) e-2. This completes the proof of the
lemma. [3

Clearly, Lemma 3.16 and Lemma 3.18 together imply that y’tsf0 Ut O(km + nk/-),
giving the desired result. [3

This completes our discussion of learning k-binary-relations.

4. Learning a total order. In this section we present our results for learning a binary
relation on a set where it is known a priori that the relation forms a total order. One can view
this problem as that of learning a total order on a set of n objects where an instance corresponds
to comparing which of two objects is greater in the target total order. Thus this problem is
like comparison-based sorting, except for two key differences: We vary the agent selecting
the order in which comparisons are made (in sorting the learner does the selection), and we
charge the learner only for incorrectly predicted comparisons.
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Before describing our results, we motivate this section with the following example. There
are n basketball teams that are competing in a round-robin tournament. That is, each team

will play all other teams exactly once. Furthermore, we make the (admittedly simplistic)
assumption that there is a ranking of the teams such that a team wins its match if and only if
its opponent is ranked below it. A gambler wants to place a $10 bet on each game: if he bets
on the winning team he wins $10 and if he bets on the losing team he loses $10. Of course,
his goal is to win as many bets as possible.

We formalize the problem of learning a total order as follows. The instance space Xn
n} x n }. An instance (i, j) in Xn is in the target concept if and only if object

precedes object j in the corresponding total order.
If computation time is not a concern, then the halving algorithm makes at most n lg n

mistakes. However, we are interested in efficient algorithms, and thus our goal is to design an
efficient version of the halving algorithm, in the next section we discuss the relation between
the halving algorithm and approximate counting. Then we show how to use an approximate
counting scheme to implement a randomized version of the approximate halving algorithm,
and we apply this result to the problem of learning a total order on a set of n elements. Finally,
we discuss how a majority algorithm can be used to implement a counting algorithm.

4.1. The halving algorithm and approximate counting. In this section we review the
halving algorithm and approximate counting schemes. We first cover the halving algorithm
[4], 19]. Let ) denote the set of concepts in C,, that are consistent with the feedback from
all previous queries. Given an instance x in Xn, for each concept in 12 the halving algorithm
computes the prediction ofthat concept for x and predicts according to the majority. Finally, all
concepts in l that are inconsistent with the correct classification are deleted. Littlestone 19]
shows that this algorithm makes at mostlglC mistakes. Now suppose the prediction algorithm
predicts according to the majority of concepts in set 12’, the set of all concepts in Cn consistent
with all incorrectly predicted instances. Littlestone [19] also proves that this space-efficient
halving algorithm makes at most lglCn mistakes.

We define an approximate halving algorithm to be the following generalization of the
halving algorithm. Given instance x in Xn, an approximate halving algorithm predicts in

agreement with at least q)IVl of the concepts in for some constant 0 < p < .
THEOREM 4.1. An approximate halving algorithm makes at most lOg(l_e- ICn mistakes

for learning Cn.
Proof Each time a mistake is made, the number of concepts that remain in 12 are reduced

by a factor of at least 1 q). Thus after at most log(l_0_ Cn mistakes there is only one

consistent concept left in Cn. U
We note that the above result holds also for the space-efficient version of the approximate

halving algorithm.
When we are given an instance x Xn, one way to predict as dictated by the halving

algorithm is to count the number of concepts in 12 for which c(x) 0 and for which c(x)
and then to predict with the majority. As we shall see, by using these ideas we can use an

approximate counting scheme to implement the approximate halving algorithm.
We now introduce the notion of an approximate counting scheme for counting the number

of elements in a finite set $. Let x be a description of a set Sx in some natural encoding.
An exact counting scheme on input x outputs ISxl with probability 1. Such a scheme is

polynomial if it runs in time polynomial in Ix I, Sometimes exact counting can be accomplished
in polynomial time; however, many counting problems are #P-complete and thus are assumed
to be intractable. (For a discussion of the class #79 see Valiant [26].) For many #P-complete
problems good approximations are possible [16], [24], [25]. A randomized approximation
scheme R for a counting problem satisfies the following condition for all , 3 > 0:
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Pr
(1+)

where R(x, , 3) is R’s estimate on input x, , and 3. In other words, with high probability,
R estimates ISxl within a factor of + . Such a scheme is fully polynomial if it runs in time

and lgpolynomial in Ix I, , . For further discussion see Sinclair [24].
We now review work on counting the number of linear extensions of a total order. That is,

given a partial order on a set of n elements, the goal is to compute the number of total orders
that are linear extensions of the given partial order. We discuss the relationship between this
problem and that of computing the volume of a convex polyhedron. (For more details on
this subject, see Lovfisz [21, 2.4].) Given a convex set S and an element a of )]n, a weak
separation oracle either (i) asserts that a 6 S or (ii) asserts that a ’ S and supplies a reason
why. In particular, for closed convex sets in 9n, if a ’ S, then there exists a hyperplane
separating a from S. So if a ’ S, the oracle responds with such a separating hyperplane as
the reason why a ’ S.

We now discuss how to reduce the problem of counting the number of extensions of
a partial order on n elements to that of computing the volume of a convex n-dimensional
polyhedron given by a separation oracle. The polyhedron built in the reduction will be a
subset of [0, ]n (i.e., the unit hypercube in tn), where each dimension corresponds to one
of the n elements. Observe that any inequality xi > xj defines a half-space in [0, 1]n. Let
A (t) denote the polyhedron obtained by taking the intersection of the half-spaces given by
the inequalities of the partial order t. (See Fig. 8 for an example with n 3.) For any pair

x (O.l,i)
(Id.i)

(o,od)

(i.l.O)

(o.o,o) (1 .o.o)

FIO. 8. Polyhedronformed by the total order z > y > x.

of total orders tl and t2 the polyhedra A(tl) and A(t2) are simplices that intersect only in a
face (zero volume): A pair of elements, say, xi and xj, that are ordered differently in tl and tg.

(such a pair must exist) define a hyperplane xi xj that separates A (tl) and A (t). Let Tn be
the set of all n! total orders on n elements. Then

(7) [0, ]n U A(t).
6Tn

In other words, the union of the polyhedra associated with all total orders yields the unit
hypercube. We have already seen that polyhedra associated with the 6 Tn are disjoint. To
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see that they cover all of [0, In observe that any point y 6 [0, 1 ]n defines some total order
t, and clearly y 6 A(t). Let P be a partial order on a set of n elements. From equation (7)
and the observation that the volumes of the polyhedra formed by each total order are equal,
it follows that the volume of the polyhedron defined by any total order is . Thus it follows
that for any partial order P

(8)
number of extensions of P

volume of A(P).
n!

Rewriting equation (8), we obtain that

(9) number of extensions of P n!. (volume of A(P)).

Finally, we note that the weak separation oracle is easy to implement for any partial order.
Given inputs a and S, it just checks each inequality of the partial order to see whether a is in
the convex polyhedron S. If a does not satisfy some inequality, then it replies that a ( S and
returns that inequality as the separating hyperplane. Otherwise, if a satisfies all inequalities,
it replies that a 6 S.

Dyer, Frieze, and Kannan 10] give a fully polynomial randomized approximation scheme
(fpras) for approximating the volume of a polyhedron, given a weak separation oracle. From
equation (9) we see that this fpras for estimating the volume of a polyhedron can be easily
applied to estimating the number of extensions of a partial order. Furthermore, Dyer and
Frieze [9] prove that it is #P-hard to exactly compute the volume of a polyhedron given either
by a list of its facets or its vertices.

Independently, Matthews [22] has described an algorithm to generate a random linear
extension of a partial order. Consider the convex polyhedron K defined by the partial order.
Matthew’s main result is a technique to sample nearly uniformly from K. Given such a
procedure to sample uniformly from K, one can sample uniformly from the set ofextensions of
a partial order by choosing a random point in K and then selecting the total order corresponding
to the ordering of the coordinates of the selected point. A procedure to generate a random
linear extension of a partial order can then be used repeatedly to approximate the number of
linear extensions of a partial order [22].

4.2. Application to learning. We begin this section by studying the problem of learning
a total order under teacher-directed and self-directed learning. Then we show how to use an
fpras to implement a randomized version of the approximate halving algorithm, and we apply
this result to the problem of learning a total order on a set of n elements.

Under the teacher-selected query sequence we obtain an n mistake bound. The teacher
can uniquely specify the target total order by giving the n 1 instances that correspond to
consecutive elements in the target total order. Since n 1 instances are needed to uniquely
specify a total order, we get a matching lower bound. Winkler [28] has shown that under the
learner-selected query sequence, one can also obtain an n mistake bound. To achieve this
bound the learner uses an insertion sort, as described, for instance, by Cormen, Leiserson,
and Rivest [8], where for each new element the learner guesses it is smaller than each of the
ordered elements (starting with the largest) until a mistake is made. When a mistake occurs,
this new element is properly positioned in the chain. Thus at most n mistakes will be made
by the learner. In fact, the learner can be forced to make at least n 1 mistakes. The adversary
gives feedback by using the following simple strategy: The first time an object is involved in
a comparison, reply that the learner’s prediction is wrong. In doing so, one creates a set of
chains, where a chain is a total order on a subset of the elements. If c chains are created by this
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process, then the learner has made n c mistakes. Since all these chains must be combined
to get a total order, the adversary can force c additional mistakes by always replying that
a mistake occurs the first time that elements from two different chains are compared. (It is
not hard to see that the above steps can be interleaved) Thus the adversary can force n 1
mistakes.

Next we consider the case in which an adversary selects the query sequence. We first
prove an f2 (n lg n) lower bound on the number of mistakes made by any prediction algorithm.
We use the following result of Kahn and Saks [17]: Given any partial order P that is not a
total order there exists an incomparable pair of elements xi,xj such that

3 number of extensions of P with X Xj 8

11 number of extensions of P 11

So the adversary can always pick a pair of elements, so that regardless of the learner’s pre-
diction, the adversary can report that a mistake was made while only eliminating a constant
fraction of the remaining total orders.

Finally, we present a polynomial prediction algorithm making n lg n + (lg e)lg n mistakes
with very high probability. We first show how to use an exact counting algorithm R, for
counting the number of concepts in Cn consistent with a given set of examples, to implement
the halving algorithm.

LEMMA 4.2. Given a polynomial algorithm R to exactly count the number ofconcepts in

Cn consistent with a given set E of examples, one can construct an efficient implementation
of the halving algorithmfor Cn.

Proof. We show how to use R to efficiently make the predictions required by the halving
algorithm. To make a prediction for an instance x in Xn the following procedure is used:
Construct E- from E by appending x as a negative example to E. Use the counting algorithm
R to count the number of concepts C- 6 V that are consistent with E-. Next, construct E+

from E by appending x as a positive example to E. As before, use R to count the number of
concepts C+ 6 V that are consistent with E+. Finally, if IC-I IC/I, then predict that x is
a negative example; otherwise, predict that x is a positive example.

Clearly, a prediction is made in polynomial time, since it only requires calling R twice.
It is also clear that each prediction is made according to the majority of concepts in V. [3

We modify this basic technique to use an fpras instead of the exact counting algorithm
to obtain an efficient implementation of a randomized version of the approximate halving
algorithm, in doing so, we obtain the following general theorem describing when the existence
of an fpras leads to a good prediction algorithm. We then apply this theorem to the problem
of learning a total order.

THEOREM 4.3. Let R be anfprasfor counting the number ofconcepts in Cn consistent with
a given set E ofexamples. IflXl is polynomial in n, one can produce a prediction algorithm

and makes at most lg ICnl(1 + 1_)thatfor any 3 > 0 runs in time polynomial in n and lg
mistakes with probability at least 1 3.

Proof. The prediction algorithm implements the procedure described in Lemma 4.2 with
the exact counting algorithm replaced by the fpras R (n, g, ). Consider the prediction for
an instance x Xn. Let l be the set of concepts that are consistent with all previous instances.
Let r+ (respectively, r-) be the number of concepts in 12 for which x is a positive (negative)
instance. Let ;+ (respectively, -) be the estimate output by R for r+ (r-). Since R is an
fpras, with probability at least 1

F- ?’+<;- <(l+)r- and <r+ < (l+)r+,
1+ 1+
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where +/-. Without loss of generality assume that the algorithm predicts that x is a
n

negative instance and thus ;- > ;+. Combining the above inequalities and the observation
that r- + r+ IVI, we obtain that r- _> l+(l_t_e)2.IVl

We define an appropriate prediction to be a prediction that agrees with at least IVI
l+(i+e)

of the concepts in V. To analyze the mistake bound for this algorithm we suppose that each
prediction is appropriate. For a single prediction to be appropriate, both calls to the fpras R
must output a count that is within a factor of + e of the true count. So any given prediction
is appropriate with probability at least ITI’ and thus the probability that all predictions
are appropriate is at least

IXnl 1-N.

Clearly, if all predictions are appropriate, then the above procedure is in fact an implementation
of the approximate halving algorithm with q9 1+(1+)2, and thus by Theorem 4.1 at most

and simplifying thelog(l_ol-, Cn[ mistakes are made. Substituting e with its value of g
expression, we obtain that with probability at least 6

lg ICl(1 0) number of mistakes <
lg 1__1

lg ICnl

n 2Since n2/Zn+l >- n’

n2

1-

lg(l+l-n2-)

l+lg(1- 1/4)
lg(1 1/4)

l+lg(1- 1/4)"
and + lg (1 lgBy applying the inequalities lg (1 ) _> n-1 g) _< -h-- it follows that

lg(1- ) > n--1
lge

-lge
n- 1- n---211g e
-lge

Finally, applying these inequalities to equation (10) yields that

lg Ifnlnumber of mistakes <
lg + n2+2n+l

lge)_<lglCnl 1+

Note that we could modify the above proof by not requiring that all predictions be appro-
priate. In particular, if we allow , predictions not to be appropriate, then we get a mistake

bound oflglCn[ l+--if- +g.
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We now apply this result to obtain the main result of this section. Namely, we describe
a randomized polynomial prediction algorithm for learning a total order in the case in which
the adversary selects the query sequence.

THEOREM 4.4. There exists a prediction algorithm A for learning total orders such that
on input (for all > 0), andfor any query sequence provided by the adversary, A runs in
time polynomial in n and lg 1/2 and makes at most n lg n + (lg e)lg n mistakes with probability
at least 8.

Proof We apply the results of Theorem 4.3 by using the fpras for counting the number
of extensions of a partial order given independently by Dyer, Frieze, and Kannan 10] and by
Matthews [22]. We know that with probability at least the number of mistakes is at most
lg ICnl(1 q- lge). Since ]Cnl n!, the desired result is obtained.

We note that the probability that A makes more than n lg n + (lg e)lg n mistakes does not

depend on the query sequence selected by the adversary. The probability is taken over the
coin flips of the randomized approximation scheme.

Thus, as in learning a k-binary-relation by using a row-filter algorithm, we see that a
learner can do asymptotically better with self-directed learning than with adversary-directed
learning. Furthermore, whereas the self-directed learning algorithm is deterministic, here the
adversary-directed algorithm is randomized.

As a final note, observe that we have just seen how a counting algorithm can be used to

implement the halving algorithm. In her thesis Goldman 11 has described conditions under
which the halving algorithm can be used to implement a counting algorithm.

5. Conclusions and open problems. We have formalized and studied the problem of
learning a binary relation between two sets of objects and between a set and itself under an
extension of the on-line learning model. We have presented general techniques to help develop
efficient versions ofthe halving algorithm. In particular, we have shownhow a fully polynomial
randomized approximation scheme can be used to efficiently implement a randomized version
of the approximate halving algorithm. We have also extended the mistake bound model by
adding the notion of an instance selector. The specific results are summarized in Table 2.
In this table all lower bounds are information-theoretic bounds and all upper bounds are for
polynomial-time learning algorithms. Also, unless otherwise stated, the results listed are for
deterministic learning algorithms.

From Table 2 one can see that several of the above bounds are tight and several others
are asymptotically tight. However, for the problem of learning a k-binary-relation there is
a gap in the bound for the random and adversary (except k < 2) directors. Note that. the
bounds for row-filter algorithms are asymptotically tight for k constant. Clearly, if we want
asymptotically tight bounds that include a dependence on k, we cannot use only two row types
in the matrix used for the projective geometry lower bound.5

For the problem of learning a total order all the above bounds are tight or asymptotically
tight. Although the fully polynomial randomized approximation scheme for approximating
the number of extensions of a partial order is a polynomial-time algorithm, the exponent on n is
somewhat large and the algorithm is quite complicated. Thus an interesting problem is to find
a practical prediction algorithm for the problem of learning a total order. Another interesting
direction of research is to explore other ways of modeling the structure in a binary relation.
Finally, we hope to find other applications of fully polynomial randomized approximation
schemes to learning theory.

5Chen [7] has recently extended the projective geometry argument to obtain a lower bound of (nv/m lg k) for

rn > nlgk.
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TABLE 2
Summary of results.

Concept Lower Upper
class Director bound bound Notes

Learner + (n )[lgk lJ km+ (n k) Llg k

Teacher km + (n k) (k 1) km + (n k) (k 1)

Binary relation Adversary km + (n k) [lg kJ O(km+n lg k) Due to M. Warmuth

(k row types) Adversary 2m + 2 2m + 2 k 2

/-
Adversary f2(km+(n-k) lgk+min{n/, mq/-ff}) km + nv/(k 1)m Row-filter algorithm

kmUniform dist. -- + (n )[lg k 1J O (km + nk/-) Avg. case, row-filter alg.

Teacher

Total order Learner n Due fo P. Winkler

Adversary f2 (n lg n) lg + (lg e) lg Randomized algorithm

aNote that if computation time is not a concern, we have shown that the halving algorithm makes at most km + (n k) lg k
mistakes.
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