
Designs, Codes and Cryptography, 5, 109-114 (1995)
�9 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Complete Variable-Length "Fix-Free" Codes

DAVID GILLMAN* gillman @ es.toronto.edu
Computer Science Department, University of Toronto, Toronto, Ontario Canada MSSIA4

RONALD L. RIVEST** rivest@theory.lcs.mit.edu

Laboratory for Computer Science, Massachusetts btstitute of Technology, Cambridge, MA 02139

Communicated by: S. Vanstone

Received July 26, 1993; Revised May 11, 1994

Abstract . A set of codewords isfix-free if it is both prefix-free and suffix-free: no codeword in the set is a prefix
or a suffix of any other. A set of codewords {Xl, x2 x, } over a t-letter alphabet E is said to be complete if it
satisfies the Kraft inequality with equality, so that

~ t - l x l] = . 1

l<_i<n

The set E k of all codewords of length k is obviously both fix-free and complete. We show, surprisingly, that there
are other examples of complete fix-free codes, ones whose codewords have a variety of lengths. We discuss such
variable-length (complete) fix-free codes and techniques for constructing them.

1. Introduct ion

While investigating the properties of Huffman codes [1], we became interested in codes
that were both prefix-free and suffix-free (or "fix-free"). Fix-free codes have a number
of interesting properties. For example, a word constructed by concatenating together a
number of codewords from a fix-free code can be uniquely parsed from either end. (And
fix-free codes have terrible synchronization properties: being suffix-free means that if the
channel drops a bit the receiver can not easily resynchronize. 1) However, it was not clear
to us whether fix-free codes could be as efficient as ordinary prefix-free codes. We thus
became interested in complete "fix-free" codes, as defined in the abstract above. Preliminary
investigation led us to conjecture that a complete fix-free code over a given t-letter alphabet
Z must be of the form Z k for some integer k.

Conjecture. A complete fix-free code over a given t-letter alphabet Z must be of the form
E k for some integer k. That is, there are no variable-length complete fix-free codes.

We attempted to prove this conjecture, but were surprised to find out that it is false. Here
is the first counterexample we found, over a binary alphabet:

A = {01,000, io0, ii0, iii, 0010, 0011, i010, i011}

The "prefix tree" and "suffix tree" for the code A are given in Figure 1.

* The first author was supported by NSF grant 9212184-CCR and Darpa contract N00014-92-J-1799.
** Supported by NSF grants CCR-8914428 and CCR-9310888, and the Siemens Corporation.

110 DAVID GILLMAN AND RONALD L. RIVEST

o I

o I

(b)

Figure 1. (a) Prefix tree and (b) suffix tree for fix-free code A = {01, 000,100, 110,111,
0010, 0011, i010, i011}.

Any such counterexample to the conjecture generates a family of counterexamples by
forming products: let A k be the set of concatenations of k words from A. Since A is
fix-free, A k must also be fix-free.

Given that the conjecture is false, it is natural to ask for general techniques for construct-
ing fix-free codes, much as one can construct Huffman codes. However, the problem of
constructing fix-free codes seems much more difficult, and we do not know how to generate
all such codes. For use in applications, it would seem advantageous to have codes with
arbitrarily large ratios between the lengths of the longest and shortest codewords. In the
set A just described, the ratio of the lengths of the longest and shortest words is 2. In the
next section we show that A is an example of a general construction that gives a ratio of
longest word to shortest word approaching 3. We further generalize this by developing a
recursive construction which gives arbitrarily large ratios. We leave as an open problem
the question of constructing "efficient" fix-free codes, given a probability distribution on a
source alphabet.

2. General Construction Techniques

2.1. First Construction Method

Here is a general construction of a complete fix-free code A over a t-letter alphabet E.

THEOREM 1 Let S be any subset of Ek, and p be a fixed positive integer less than k,
such that for any two (not necessarily distinct) words orS (say, x = x[1]x[2] . . . x[k] and

COMPLETE VARIABLE-LENGTH "FIX-FREE" CODES 1 1 1

y = y[1]y[2] . . . y{k]), we have that

x[i] r y[i + p] for some i, 1 < i < k - p . (1)

Then the set o f codewords

Fk.p(S) = S U Z P S ~ p U (E k+p - S ~ p - E P S)

is both fix-free and complete.

(2)

Proof Condition (1) ensures that no element of S can be a prefix or a suffix of any string
in]~PS~ p. It is immediate that no element of S is a prefix or a suffix of any string in
(Nk+p _ SNp - ZPS), and that no element of (E ~+p - SNp - EPS) is a prefix or a suffix
of any string in ~ P S ~ p. Thus Ft,p(S) is fix-free.

To show that Fk,p (S) is complete, we verify that the Kraft inequality is tight. Condition (1)
ensures that SZP and EPS are disjoint. Let s = ISI. Then Fk,p(S) contains s words of
length k, st 2p words of length k + 2p, and t k+p - st p+1 words of length k + p. We thus
have

Z t_lx I

x~F~..p(S)

= st -k + st2pt -k-2p + (t t+p - stp+l)t -k-p (3)

= st -k + st -k + (1 - st -k+l) (4)

= 1 , (5)

[] so that Fk,p is complete.

The ratio of the longest word to the shortest word in this fix-free code is (2p + k) / k ; if
we choose p = k - I (which we certainly can do for some S), the ratio is 3 - 2/k , which
approaches 3 as k goes to infinity. It is possible to pick a set S satisfying condition (1) for
any k and any p < k; for example, let S be a set containing a single element x for which
xl ~ Xp+l. In our example from the previous section the set A arises by letting S = {01}
and p = 1 (so that k = 2).

2.2. Second (Recursive) Construction Method

We now generalize the above construction. We describe how to construct a complete fix-
free code recursively and prove that the code is fix-free as long as there exists a number m
and sets of codewords $1 Sr such that:

1. For i = 1, 2 r, we have that Si is a subset of Nk~, and

kl <k2 < ' " < k r < m .

2 . The set S = $1 U . - �9 U Sr is fix-free, but not complete.

3. I f j 7 ~ i + 1 then SjY, m-kj 71 ~m-k~S i = 0.

1 12 DAVID GILLMAN AND RONALD L. RIVEST

4. There is a sequence of strings Xl, x2 x r such that xi ~ Si for 1 < i < r, and xi is
a suffix of some string in xi+l E rn-k~+~ for 1 < i < r - 1.

Remark. Conditions (1)-(4) are the most general we know of to ensure the validity of the
construction that follows. The special case to keep in mind while reading the construction
is the one in which Si = {xi } for every i. We illustrate this special case in the next section.

We assume that SI Sr satisfy conditions (1)-(4), and using them we construct a
complete fix-free code Tr as follows.

Step O. Let To denote S U (Em - SE*); thus To is the union of S with the set of all
codewords of length m that do not begin with a word from S.

Step i, for i = 1, 2 r. Let T/denote the set of strings in T/_], except that each string
x of T/_I having a proper suffix in some Sj is replaced by xEm-~J. (Each such word x
is replaced by t m-kj words of length Ixl + m - kj .) Since S is suffix-free by condition
(2) no string of T/_I has more than one such suffix, so this step is well-defined.

It is easy to argue by induction that each T/is both prefix-free and complete. (In fact it is
helpful to think of T/as a prefix tree, with certain branches being extended to create T/+I .)
Therefore, it only remains to argue that T~ is suffix-free.

Claim 1. L e t 0 < i < r. I f x 6 Ti is a proper suffix of some string in T/ then
x c S1 U �9 �9 �9 U Sr- i . In particular, Tr is fix-free.

Proof. It will suffice to show that each new string created in step i contains no proper
suffix from among (To U . . . U Tr) \ ($1 U . . . U Sr-i) . We prove this by induction on i. The
case i = 0 is obvious. Suppose a string x was created in Step i > 0 by appending some
string in E m-kj . By induction we have j < r - (i - 1). By condition (3), i f x has a proper
suffix y 6 S, then y must be an element of Sj-1, which is contained in $1 U . . . U Sr- i . We
must now show that x has no proper suff• from among (To U . . . U Tr) \ S.

Suppose for purposes of contradiction that y 6 (To U . . . U Tr) \ S and y is a proper suffix
of x. The last m letters of y have an element of Sj as a prefix; therefore y was created
at some step i ' > 0 by appending some string in Em-kj. Snip the last m - kj letters off
x and y to get x ' and y'. Then x ' was created at step i - 1 and yl was created at step
i ' - 1 and yl is a suffix of x' . Also, y ' r S, which contradicts the inductive hypothesis.

[]

Claim 2. The longest word in Tr has length m +]~;=l(m - kj) .

Proof. We show by induction that for 0 < i < r - 1, the string Xr_ i given by condition (4)
is a suffix of some string in T /o f length m + I]~= 1 (m - kr-(j -1)) . The case i = 0 follows
from condition (3). Suppose i > 0. By induction Xr_(i_l) is a suffix of some string in T/_I
of length m + ~ - 1 l (m - kr-(j-1)). The construction of T/ appends all strings of length
m - - kr_(i_l) to this string, and by condition (4) one of the new strings so created has Xr_ i

as a suffix. This completes the induction.

COMPLETE VARIABLE-LENGTH "FIX-FREE" CODES l 13

~]r -1 [in We have shown that xl is a suffix of some string of Tr-t of length m +)=1 t - k r - (j - 1)) .
Now the construction of Tr appends all strings of length m - kl. This creates strings in Tr
of length m + N~= 1 (m - kj). By a similar argument and condition (3) every string created

S t
after step 0 has length m + Ej=, (m - k j) for some 1 < s < s ' < r. Therefore, the strings
whose existence we just established are the longest in Tr. []

The construction in Theorem 1 is a special case of the construction of Tr given here,
with r = 1, S = SI, k = kl, and m = k + p. Hypothesis (1) in Theorem 1 implies that
condition (3) holds.

3. Example

In this section we construct, for each whole number n, a binary fix-free code in which
the longest word has length (5n 2 + 13n + 2)/2 and the shortest word has length 3n + 1.
The ratio of longest word to shortest word is therefore greater than 5 n / 6 . It is possible to
improve the constants slightly with a little effort; that is, to attain a larger ratio for the same
maximum length string.

Let n _> I be an integer. Referring to the notation of the previous section, set m = 6n + 1
and r = n. For 1 < i < r, put ki = 3n + i and xi = 0 2 i - l l o 3 n - i - l l . T h e collection of
singleton sets Si = {xi }, i = t r , clearly satisfies conditions (1)-(4). The construction
of the fix-free code proceeds as in the previous section.

4. Further Work

There are fix-free codes unaccounted for by the construction of this paper. (We have written
a C program to search for such codes; this program and its output are available from the
authors.) We do not know how common fix-free codes are among the complete prefix-free
codes. It would be interesting to find an upper bound on the average codeword length of
an optimal fix-free encoding of an arbitrary n-letter source alphabet; for example, some
constant multiple of the entropy of the source alphabet.

Acknowledgment

We would like to thank Peter Elias and Mojdeh Mohtashemi for helpful discussions.

Notes

1. The receiver first parses the transmission into codewords and then decodes each one. Because of the suffix-free
property, the receiver will parse incorrectly from the dropped bit onward, and the end of a parsed word will
never coincide with the end of a source word. This is what we mean by failure to resynchronize.

114 DAVID GILLMAN AND RONALD L. RIVEST

References

1. David A. Huffman, A method for the construction of minimum-redundancy codes, Proceedings of the IRE,
Vol. 40, No. 9 (1952) pp. 1098-1101.

