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Summary

Searching for exact matches to unique signatures of hazardous genes enables secure and automated DNA synthesis

screening.

Abstract

In 1992, members of the Aum Shinrikyo cult tried but failed to obtain Ebolavirus for use as a biological weapon
1
.

Today, many individuals can assemble viruses from synthetic DNA that is not screened for hazards
2,3

. A major barrier

to universal screening is the high rate of false alarms requiring expensive human curation. Here we develop, test, and

implement “random adversarial threshold” (RAT) search, a highly specific approach that looks for exact matches to

short peptide windows and predicted functional equivalents found in hazards but not in any unrelated genes. To

determine whether bad actors could obtain replication-competent viruses by incorporating mutations to evade

screening, we built databases to protect nine windows found in M13 bacteriophage virus and launched ~21,000 attacks

at each window by experimentally building and measuring the fitness of variants with up to six amino acid changes.

Finding that defensible windows capable of reliably blocking attacks shared certain predictable features, we identified

similar windows from the Australia Group list of pathogens, constructed databases of variants, and wrote software

enabling cryptographically secure screening of synthesis orders. RAT search offers a way to safeguard biotechnology by

automating DNA synthesis screening.

Introduction

The ongoing COVID-19 pandemic has underscored the

danger posed by exponentially spreading biological

agents. Virus assembly protocols and inexpensive

commercial de novo DNA synthesis services have made

many hazardous agents accessible to a large and growing

number of individuals with relevant technical skills
4
.

Future advances may one day lead to publicly available

genetic blueprints for pandemic agents considerably

more destructive than SARS-CoV-2
5
.

Fortunately, most individuals with the skills required to

create potential pandemic agents cannot synthesize DNA

on their own. Members of the International Gene

Synthesis Consortium (IGSC), a trade industry group

committed to biosecurity, screen commercial DNA

synthesis orders above a certain length for sequences

that match the Regulated Pathogen Database
6
.

The IGSC firms deserve praise for voluntarily prioritizing

safety because doing so is costly: current screening

methods based on BLAST generate many false alarms

from unrelated sequences that require evaluation by

human experts
3,7,8

. As the price of synthetic DNA

continues to fall, the effective cost of screening grows.
3

Unfortunately, ~20% of commercially synthesized DNA

is generated by non-members who do not screen. Since

the list of IGSC members is public, the extent to which

current screening meaningfully restricts access to

bioweapons is questionable. Even if all current providers

did screen, the anticipated arrival of benchtop machines

enabling immediate on-site gene synthesis
5

may open

another window of vulnerability
3
.

Creating a system to screen all commercial and academic

DNA synthesis for current and emerging hazards
5,7

demands a method triggering negligibly few false alarms.

We hypothesized that automated DNA synthesis

screening could be achieved by “random adversarial

threshold” (RAT) search, a strategy that relies on

exact-match screening against a database comprising

unique signatures of hazards (Fig. 1a). Here we sought to
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determine whether our approach is specific and secure

enough to fully automate DNA synthesis screening.

Results

Random adversarial threshold search (254)

To screen DNA via random adversarial threshold search,

a database of hazard signatures is created for comparison

to orders (Fig. 1b). We randomly choose 19-amino-acid

peptide windows from the protein-coding gene(s) of a

hazard for inclusion in the database using a distribution

function biased towards defensible windows (see

“security analysis” below). 57 nucleotides is short enough

that reliably assembling hazards from smaller DNA

pieces would be challenging
9

since most methods use

much larger oligonucleotides
10

; current approaches only

screen 200 base pair fragments and above. Next, a list of

peptide variants predicted to be functional is computed

for each window using one or more variant effect

predictors
11–17

. Variants are curated to remove peptides

matching to unrelated sequences in repositories, with the

remaining variants included in the database (Supp. Fig.

1). Curation of database entries ensures the system will

never wrongly flag unrelated sequences known to

science, reducing false alarms. Finally, DNA synthesis

orders are searched for exact matches to database

entries, and any matched orders are rejected. Given

sufficiently high specificity (see below), RAT search can

in principle be fully automated, avoiding the requirement

for human curation characteristic of current screening

procedures.

The identities of all database entries can be guarded

using multi-party oblivious encryption, which protects

the privacy of DNA synthesis orders sent to be screened

and can prevent attacks aiming to determine all of the

windows protected for a given hazard. The cryptographic

approach is provably secure and may enable screening

for emerging hazards without disclosing their identities,

a possibility discussed separately
18

.

Theoretical specificity analysis

Database curation ensures that RAT search will never

flag an unrelated sequence from any known repository.

Other sources of false alarms include purely random

matches, legitimate research on related pathogens, and

oligo libraries encoding variants of known sequences.

Figure 1 | Improving DNA synthesis screening

a) Current screening methods yield false alarms from similar

but unrelated sequences, requiring human curation (left).

Predicting functional variants of k-mers, curating them to

avoid false alarms, and searching orders for exact matches

could automate screening (right). b) In random adversarial

threshold (RAT) search, predicted functional variants of

randomly chosen k-mer windows are computed, curated to

remove unrelated sequences in repositories, and randomly

added to a database. Since adversaries don’t know which

windows or how many variants are included, evasion

requires them to include many mutations throughout the

gene or genome and gamble that the result will still be

functional. Window sizes of 19 amino acids are large enough

to avoid random false alarms. Efficient exact match search

allows cryptographic methods to protect the privacy of DNA

synthesis orders and the entries in the hazards database
18

.
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The frequency of random matches depends on the

quantity of DNA synthesized and the number of

sequences in the database. The probability that the

forward or reverse translation of a random 57-mer will

match any given database entry is 3.8*10
-25

. If we assume

a hazards database of 10
10

entries
19

and that 10
15

unique

(not total) oligonucleotides will be synthesized in 2030,

we expect fewer than one random false positive for the

entire world’s DNA synthesis in that year
20

.

To ensure that RAT search does not delay or interfere

with legitimate research on related genes and genomes,

database hits are checked to determine whether the exact

sequence is also present in a related gene that the

customer has permission to work with.

GenBank/EMBL/ENA accession numbers are extracted

from biosafety registration documents listing genes and

organisms to create an exemption list. Each entry in the

hazards database is associated with all accession

numbers encoding that peptide.

When an order matches a database entry, the associated

accession numbers are compared to the customer’s

exemption list and the order approved if one is present

(Supp. Fig. 2).

Database hits may also result from orders seeking to

generate variants of known sequences for experiments

such as deep mutational scanning. These cannot be

prevented through database curation because the variant

sequences are not present in databases. However, orders

for oligo pools supporting these types of experiments are

typically ordered separately and are algorithmically

recognizable, meaning that the wild-type sequence used

to generate a suitable oligo pool can be extracted and

checked against the hazard database and exemption list

as normal. As a last resort, an entire oligo order can be

Figure 2 | Predicted functional

variants are included in the

database to maximize the

adversarial threshold: the

probability that an adversary

with perfect knowledge of fitness

will be detected on choosing a

variant for each window. The

likelihood of detection rises with

the defender’s predictive

capacity.

added to the laboratory’s exemption list.

Together, these methods suggest that searching for exact

matches to functionally essential sequences from hazards

will be specific enough to achieve automated screening.

Later, we will measure the specificity of RAT search by

screening actual customer orders.

Theoretical security analysis

RAT search is only useful insofar as it can reliably detect

any given hazard. Including many wild-type sequence

windows across a gene or genome will unfailingly detect

any order seeking to synthesize that gene or genome
21

.

However, a human adversary might incorporate at least

one nonsynonymous change every 19 amino acids and

still generate a functional sequence. Detecting orders

generated by intelligent adversaries requires a careful

consideration of how best to include functional variants

in the hazard database.

Suppose an adversary seeks hazard W. For each window

wi, there are three possible outcomes:

1. wi is present in the database, causing the

synthesis order to be rejected

2. wi escapes detection, but imposes a fitness cost ci

that reduces the functionality of W

3. wi escapes detection without cost

Success requires the adversary to achieve the third

outcome for most wi to preserve function. We define the

random adversarial threshold R as the probability that

an adversary with perfect knowledge of the fitness of

each variant – but ignorant of which windows and

variants are defended – will be detected on attempting to

synthesize functional W.

In theory, defending all variants that do not completely

abolish the function of W at a single essential window wi

3
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can perfectly thwart the adversary, achieving R= 1. In

practice, we can only imperfectly predict the fitness of

variants.

We can maximize R while minimizing false alarms for a

given set of windows by selecting the window predicted

to be least tolerant of variation and adding variants with

the highest predicted function scores (Fig. 2). At some

point, our predictive accuracy will decline until it is

better to start defending the window with the

second-fewest predicted functional variants. As accuracy

declines at the second window, we will either return to

the first window or move on to the third.

Since real adversaries do not have perfect knowledge of

fitness, we will deviate from the deterministically optimal

strategy by stochastically screening for randomly chosen

variants from quasi-randomly chosen windows. This

forces the adversary to modify all windows throughout

the hazard to have a chance at avoiding detection,

reducing the odds of functional W.

Experimentally testing security

To experimentally measure the likelihood that an

adversary could evade screening for diverse library sizes

and window characteristics, we chose to treat the

harmless M13 virus that infects E. coli as a “hazard”. We

began by analyzing M13 peptide windows using funtrp, a

computational method that categorizes residues within

proteins as “neutral” in tolerating most any mutation,

“rheostat” in suffering reduced fitness from many but not

all mutations, or “toggle” in losing all function when

mutated (Supp. Fig. 3). From four different M13

proteins, we selected nine total windows with fairly low

to very low neutral values and a range of rheostat and

toggle scores.

Next, two “blue team” members constructed databases of

10
6

predicted functional variants for each window using a

Metropolis-Hastings algorithm that combined the funtrp

scores of each residue with the BLOSUM62 matrix of

observed substitutions across proteins (Extended Data

Fig. 4). While many variant effector predictors are

markedly superior to BLOSUM62
17

, our method serves as

a baseline for the efficacy of defense that can certainly be

improved upon.

“Red team” members experimentally tested the security

of RAT search by launching up to 21,000 attacks at each

of the nine windows (Fig. 3a). We ordered

oligonucleotide pools with all possible combinations of

the four most common substitutions at the six positions

with the highest neutral scores, pairwise substitutions of

all amino acids at those six positions, and all possible

single substitutions, plus some predicted deleterious

mutations as controls, generated libraries of variants,

and measured their individual effects on phagemid

replicative fitness (Supp. Fig. 4). Together, our libraries

were equivalent to ~10
36

combinatorial attacks on the

databases.

We defined “functional” variants as those with a

measured fitness of at least 0.05 relative to wild-type,

which is the level at which the most infectious virus

known can just barely spread in an unprotected

population
22

. Of the functional attacks on the most

defensible window, fully 92% were blocked (Fig. 3b).

That is, even an adversary with perfect knowledge of

fitness who already possesses the other 99% of the

wild-type M13 genome sequence was likely to be detected

and thwarted just at this one window. While the other

windows were less easily defended (Fig. 3c), most

windows could still block ~40-50% of attacks (Fig. 3d-e).

Importantly, we observed that the average “toggle” score

generated by funtrp for each of the nine windows was

predictive of R at that window (Fig. 3e). Analyzing false

positive and false negative rates for prediction at each

window allowed us to estimate the optimal number of

database entries to devote to each window, underscoring

differences in ease of defense (Supp. Fig. 5).

Together, these tools allow us to adopt deterministically

optimal strategies for defense for adversaries lacking

knowledge of window selection: we can pick a desired

number of windows to defend, allocate a total number of

database entries, set a target value of R, then distribute

entries so as to meet R and leave the remainder to be

allocated per game theoretical considerations.

Collectively, our 10
6

database entries per window blocked

99.96% of functional attacks on this virus by an

adversary with perfect knowledge of fitness. Since real

adversaries lacking such knowledge are forced to include

at least one nonsynonymous mutation for every nineteen

amino acids throughout the genome, and we can afford

to allocate 10
9

total entries per hazard, these results

underscore the security of RAT search.

4
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Figure 3 | Incorporating mutations into the genomic blueprint of a virus cannot escape screening. a) Two team

members built defensive databases by predicting functional variants for nine different windows in the genome of M13

bacteriophage. Two others launched ~21,000 attacks at each window by synthesizing variants and using a phagemid assay to

measure the fitness of each variant, which we defined as enrichment relative to the wild-type sequence. b) At the most

defensible window, located within the M13 pII endonuclease, 92% of attacks yielding variants with fitness above 0.05 were

thwarted by screening. c) At a moderately defensible window located within the M13 pIII receptor-binding protein, 49% of such

attacks were thwarted, underscoring the importance of window choice. d) Potential pandemic pathogens can tolerate only so

many mutations impairing fitness before they are no longer capable of sustained transmission. The corresponding fitness lines

depict these fitness values for 1918 influenza (R0~2.5), SARS-CoV-2 (R0~4), mumps (R0~10), and measles (R0~18), which is the

most infectious virus known. e) The fraction of attacks detected, which corresponds to the random adversarial threshold, as a

function of the average funtrp toggle score for each of the nine windows given a database with 10
6

entries and a fitness cutoff of

0.05 (sufficient to prevent the sustained spread of measles).

Defending against known hazards

Having established a reasonably efficient strategy for

randomized defense, we next applied it to the set of

well-known hazards considered most important for

screening. We analyzed the genomes of all viruses,

microbial pathogens, and known genes encoding toxins

or pathogenicity islands from the Australia group list for

toggle scores using funtrp. Notably, all of the viruses save

for swine vesicular disease virus harbored multiple

windows with scores above 0.5, for which allocating 10
6

entries blocked over half of attacks (Fig. 3e). Since there

are fewer than 100 Australia Group pathogens with

publicly available genes or genomes, we can afford to

compute and include variants for over a hundred

windows per hazard. This will also effectively block the

synthesis of related agents.

After optimizing our Metropolis-Hastings algorithm, we

chose to create an initial public hazards database

5



comprising 10
7

variants for each of 10 different windows,

10
6

variants for another 40 windows, and 4*10
5

for a

further 150 windows. We subsequently added smaller

DNA sequences for many wild-type sequence windows

and synonymous codon substitutions, as well as to a

fraction of predicted functional variants, to preclude the

assembly of hazards from smaller sequences. We can

screen against the entire database at once, or optionally

use only a fraction of entries until a likely attack is

detected, at which point additional entries can be added

(Supp. Fig. 6).

Experimentally testing specificity

Now that we have a functional RAT search database

capable of screening against all Australia Group

pathogens, we are currently working with DNA synthesis

providers to empirically measure the false positive rate

using real customer order data.

Discussion

Protocols enabling the generation of functional viruses

from synthetic DNA have given an increasing number of

actors the capacity to build potential pandemic

pathogens. As our knowledge of how to build such agents

improves, so will the risk of misuse.

Well-resourced state actors cannot be prevented from

making DNA, but they are vastly outnumbered by

individuals and small groups who possess the necessary

technical skills in biology. Screening all commercial DNA

synthesis would substantially increase the difficulty of

obtaining exponential agents for these non-state actors.

A future in which fewer than a hundred groups can build

pandemic-class agents is considerably safer than one in

which such constructs are accessible to tens of

thousands.

Our results suggest that predicting functional variants of

randomly chosen windows from hazards, curating them

to remove any that match unrelated sequences from

repositories, and searching DNA synthesis orders for

exact matches would be superior to current methods and

could automate screening for public and emerging

hazards (Table 1). Implementation could eventually

become universal given appropriate incentives favoring

incorporation into benchtop DNA synthesizers and

assemblers, and eventually into next-generation

enzymatic DNA synthesis machines intended for

large-scale providers. Once the implementation has

proven secure, cryptographic methods similar to those

we employ to protect customer data might be used to

screen for emerging hazards without inadvertently

increasing the likelihood of misuse
18

.

By offering a way to fully automate and secure DNA

synthesis screening, random adversarial threshold search

could substantially mitigate the global catastrophic risks

posed by increasingly widespread access to

pandemic-class biological agents.

6
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Table 1 | Characteristics of RAT search versus similarity search for DNA synthesis screening

RAT search Current similarity search screening

Speed O(1); very fast O(database size); slow

Minimum window size 19 amino acids >= 200 base pairs

False alarm rate Checking database vs repositories

->  no nonrandom false alarms

Many matches to unrelated genes;

needs human curation

Fully automatable Yes No, requires human curation

Compatible with benchtop

synthesizers/assemblers

Yes, given Internet connection No, requires human curation

Can screen for emerging hazards

without disclosure

Yes
18

No, requires disclosure; too

inefficient to encrypt at scale
23

Methods

Window selection: peptides

The proteins of bacteriophage M13 (Accession NC_003287.2) were analyzed using funtrp
16

to identify peptide windows

with few predicted neutral positions and varying numbers of toggle and rheostat positions across and within proteins

(Supplementary Table 1, Extended Data Figure 4).

From PI:

- High toggle: MAVYFVTGKLGSGKTLVSV (PI:1)

- High rheostat: YSYLTPYLSHGRYFKPLNL (PI:219)

From PII:

- High toggle: VEIKASPAKVLQGHNVFGT (PII:89)

- Higher neutral, mostly toggle: NFYPCVEIKASPAKVLQGH (PII:84)

- Low neutral overall with several mid-neutral: LLDVNATTISRIDAAFSAR (PII:131)

From PIII:

- High toggle: PQSVECRPFVFGAGKPYEF (PIII:367)

- High toggle:  FRGVFAFLLYVATFMYVFS (PIII: 395)

- High rheostat: YANYEGCLWNATGVVVCTG (PIII:48)

From PIV:

- High rheostat: IATTVNLRDGQTLLLGGLT (PVI:360)

Specifically, windows were chosen to enable the following comparisons:

7
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Given few neutrals, how important is the number of toggle vs rheostat positions between proteins?

Sequence (protein:amino acid start) Neutral Rheostat Toggle

VEIKASPAKVLQGHNVFGT (PII:89) 1.12 3.48 14.4

MAVYFVTGKLGSGKTLVSV (PI:1) 1.46 7.11 10.43

FRGVFAFLLYVATFMYVFS (PIII: 395) 1.6 8.37 9.03

Given few neutrals, how important is the number of toggle vs rheostat positions within proteins?

MAVYFVTGKLGSGKTLVSV (PI:1) 1.46 7.11 10.43

YSYLTPYLSHGRYFKPLNL (PI:219) 1.23 13.62 4.15

PQSVECRPFVFGAGKPYEF (PIII:367) 2.6 5.76 10.64

YANYEGCLWNATGVVVCTG (PIII:48) 3.03 12.17 3.8

Given more neutral positions, is it better to choose windows with more toggle or rheostat positions?

NFYPCVEIKASPAKVLQGH (PII:84) 3.47 4.39 11.14

YANYEGCLWNATGVVVCTG (PIII:48) 3.03 12.17 3.8

IATTVNLRDGQTLLLGGLT (PIV:360) 3.08 10.42 5.5

For windows with comparable mean neutral scores, is it better if they are concentrated or spread out?

NFYPCVEIKASPAKVLQGH (PII:84) 3.47 4.39 11.14

LLDVNATTISRIDAAFSAR (PII:131) 3.48 7.43 8.09

PII:84 neutrals:  0 0 0 0 0.01 0.02 0.03 0.03 0.03 0.04 0.07 0.10 0.11 0.13 0.13 0.44 0.58 0.83 0.92

PII:131 neutrals: 0 0 0 0 0.01 0.02 0.02 0.03 0.03 0.06 0.08 0.11 0.16 0.31 0.38 0.38 0.48 0.54 0.87

Procedurally generating variants for each 19aa peptide window

1. We included the wild-type sequence (1)

2. We included all one-mutants at each position (19*19 = 361)

3. At the six positions predicted to be most neutral, we added all combinations of the four predicted least

pathological substitutions according to BLOSUM62 (5^6 = 15625) (overlaps with one-muts and WT at

4*6+1=25)

4. As negative controls, we included up-to-six mutants of neutral positions using the two most pathological

substitutions according to BLOSUM62 (3^6 = 729) (overlaps with one-muts and WT at 2*6+1=13)

5. We added all pairwise combinations of all possible substitutions at the six most neutral positions (19^2 * 15

pairwise combinations = 5415) (overlaps with 4 most tolerated at 4^2 * 15=240) (overlaps with 2 most

pathological at 2^2*15=60)

Total: 1 + 361 - 13 + 15625 - 25 + 5415 - 240 - 60= 21,793 peptide variants at each window

Procedurally generating nucleic acid variants for each 42-mer window

1. We analyzed the region of DNA along with 60bp of flanking sequence in NUPACK in order to assess the likely

secondary structure in a knowledge-agnostic manner.

2. For each probably-unpaired, we included all 1-mutants.

3. For each probably-paired, we included all 2-mutants.

4. We included all 2-combinations of the top 10 highest probability single and paired bases.

5. We included all up-to-three mutants of the three highest probability stem pairs and the three highest

probability unpaired bases.

8



However, when we ordered oligos and constructed libraries of variants at these positions, we found that they could not

be reliably sequenced, presumably due to secondary structures. We consequently chose to concentrate RAT screening

evaluation on peptide windows, but will include 42-mers comprising many synonymous mutants of the wild-type

sequence and many predicted functional variants to block the assembly of hazards from short fragments by the small

number of non-state actors who are capable of doing so.

Construction of phagemid libraries

Oligo libraries comprising variants for each 19aa peptide window were synthesized as a pool by Twist Bioscience.

Individual libraries were amplified by PCR and ligated into a phagemid backbone—encoding an ampicillin resistance

gene, containing an M13 phage origin of replication, and designed for library variant expression upon induction by

IPTG—using NEBuilder Hifi DNA Assembly Master Mix (NEB, E2621L). Nucleic acid libraries within the origin of

replication were ligated into phagemid backbones expressing wild-type pIII. All libraries were then precipitated with

isopropanol, transformed into electrocompetent DH5α cells (NEB, C2989K), and plated on 2XYT-carbenicillin-1%

glucose; after overnight growth at 37 °C, colonies were counted to ensure >50-fold library coverage. Colonies were

scraped with 2XYT and plasmid DNA extracted with the ZymoPURE II Plasmid Maxiprep Kit (Zymo Research,

D4203); the extracted plasmid DNA was then precipitated with isopropanol. These plasmid libraries constitute the

“pre-selection libraries.”

Construction of helper cells

M13cp
24

, a plasmid containing all M13 phage genes but with a p15a origin and a chloramphenicol resistance gene

replacing the phage origin of replication, was used to construct helper plasmids. Primer pairs were designed for the

precise deletion of genes I, II, III, and IV from M13cp following PCR amplification and ligation using the In-Fusion

Snap Assembly Master Mix (Takara Bio, 638944). The resulting helper plasmids were transformed into DH5α

competent cells (NEB, C2987H), yielding four individual helper cell lines (M13cp-dg1, M13cp-dg2, M13cp-dg3, and

M13cp-dg4). The helper cells were made electrocompetent for subsequent same-day transformations. Helper cells are

capable of extruding phagemid particles when transformed with a phagemid library variant with a functional gene

(complementing the missing phage gene in the helper plasmid) and origin of replication (Supplementary Figure 1).

Phagemid growth

Phagemid libraries were transformed into their corresponding helper cells (nucleic acid variant libraries were

transformed into M13cp-dg3) by electroporation and plated on 2XYT-carbenicillin-chloramphenicol-1% glucose. After

overnight growth at 37 °C, colonies were counted to ensure >15-fold library coverage. Colonies were scraped with 50

mL 2XYT, the bacterial pellet washed sequentially 3x with 50 mL 2XYT, then a 1:1000 dilution used to inoculate a 50

mL phagemid growth culture in 2XYT with maintenance antibiotics and 1% glucose. The culture was grown to OD600 =

0.5 with shaking at 37 °C and 250 rpm, at which point the culture was centrifuged and the media replaced with 2XYT

containing maintenance antibiotics and 1 mM IPTG. The culture was grown for 16 h at 37 °C and 250 rpm, after which

phagemid-containing supernatants were collected by culture centrifugation and filtration through a 0.22 μm filter.

Phagemid infection

Phagemid-containing supernatants were added to 2.5 mL S2060 cells (streptomycin-resistant, Addgene #105064)

grown to OD600 = 0.5 and allowed to infect at 37 °C and 250 rpm for 1 h. The resulting infected cultures were plated on

2XYT-carbenicillin-streptomycin-1% glucose to select for phagemid-containing cells. After overnight growth at 37 °C,

colonies were scraped with 50 mL 2XYT and plasmid DNA extracted with the ZymoPURE II Plasmid Maxiprep Kit

(Zymo Research, D4203). These plasmid libraries constitute the “post-selection libraries.”

9
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Illumina NGS sequencing

Pre- and post-selection libraries were prepared for illumina NGS sequencing by sequential PCR amplification. PCR

amplification was first performed with PrimeSTAR GXL Premix (Takara Bio, R051A) to attach Nextera-style adapter

sequences, followed by a second PCR amplification to attach library-specific barcodes and the p5 and p7 indices.

Following PCR purification, library concentrations were quantified with qPCR using the NEBNext Library Quant Kit

for Illumina (NEB, E7630S), and pre- and post-selection libraries were combined as two pools. Libraries were pooled

such that libraries were present in equimolar quantities corrected for library size. Libraries were submitted to the MIT

BioMicro Center for MiSeq Illumina sequencing (v3, 2 x 300 bp paired-end).
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Supplementary Figure 1 | The hazard database includes wild-type sequences and predicted functional variants of

randomly chosen windows comprising 19-amino acid peptides from hazardous proteins or 42-base pair DNA/RNA

sequences from the noncoding regions of hazardous genomes. a) Examples of variant peptide sequences. Variants

matching unrelated sequences in GenBank are removed. b) The random adversarial threshold increases as variants

are added to the database. The exact method used to predict the function of variants in order to generate the list will

be randomized across several prediction methods to prevent adversaries from predicting the contents of the hazard

database.
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Supplementary Figure 2 | Exemption lists permit automated screening without impeding research. Each

laboratory’s approved biosafety committee registration is processed to identify gene and organism names, which are

used to identify and construct an exemption list of corresponding GenBank accession numbers. Each sequence in the

database is associated with one or more GenBank accession numbers to which it corresponds. When an order from a

customer associated with an exemption list matches a database entry, the system checks to see whether any of the

associated accession numbers match an entry on the exemption list. If so, that particular match is ignored.

Supplementary Figure 3 | Graphical representations of funtrp window analyses for six M13 bacteriophage

proteins. The probability of each residue being neutral for all 19 positions is plotted in ascending order. Windows

represented by lines that follow the x-axis for most of their length should be less tolerant of mutations and therefore

easier to defend according to funtrp. Larger proteins with more windows appear easier to defend, but there are

noteworthy differences between the comparably sized proteins pI-pIV, with the lone enzyme pII predicted to harbor

the most windows that are intolerant of mutation.
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Supplementary Figure 4 | Evaluation of the fitness of phagemids encoding filamentous phage genes I-IV when

generated from cells carrying helper plasmids deleted for the gene in question. In all cases, cells extruded phagemid

particles when induced with 1 mM IPTG, as measured by infection of recipient cells with 3 independent biological

replicates. Data from helper cells transformed with phagemids lacking the wild-type phage genes/origin of

replication are provided for comparison. Phagemid titers below the limit of detection (100 cfu/mL) are plotted as

zero. The difference in maximum titers suggests that the optimal level of each protein differs from the level produced

upon induction, which may affect the relative fitness of variants. For example, overproduction may artificially

increase the measured fitness of variants with reduced activity.
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Supplementary Figure 5 | Top of each pair: Receiver-classifier-operator curves for funtrp+BLOSUM62

prediction for nine 19-amino acid windows across the genome of M13 bacteriophage. Curves measure distinct fitness

cutoffs for prediction. Bottom of each pair: Plots of measured sequence function vs predicted function for each

window.
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Supplementary Figure 6 | Graphical representation of adaptive defense against a hazard. a) In this example,

variants from five windows are included in the hazard database, mostly from relatively conserved regions of the

gene. Most of the variants predicted to be highly functional by a variety of different algorithms at each window are

included in the database, so a naive attacker who simply introduces a moderate number of mutations at a constant

rate is both highly likely to be detected and risks generating a nonfunctional hazard due to the accumulated fitness

cost. A sophisticated attacker may try to tune the number of mutations to the likelihood of obtaining a functional

sequence across regions, thereby maximizing the chance of evading screening while preserving function. Their

chances improve with the superiority of their variant prediction capabilities relative to the defender, but they still

must trade off the risk of generating a nonfunctional hazard against being randomly detected upon picking a

database variant at one of the five protected windows. b) If multiple attacks on a particular hazard are detected, the

system can adaptively add more fragments and variants, precluding informed attacks based on probing or database

interrogation. Windows may also rotate in and out periodically.
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Implementation Plan

Public hazards

We have predicted and curated variants of sequences from each gene or genome listed on the Australia

Group List or the U.S. Department of Health and Human Services Select Agent List. Providers may use this

database to test the efficacy and false alarm rate of random adversarial threshold screening. Having

contacted numerous DNA synthesis providers, we hope to see the system in widespread use by 2022,

including its incorporation into benchtop synthesis and assembler machines.

Emerging hazards

RAT search is compatible with cryptographic approaches capable of obscuring the identities of entries in an

emerging hazards database. Such a system would enable a researcher concerned about an emerging

potential biological weapon to safely take action to restrict global access without creating information

hazards
25,26

by securely conveying their concern to one of the biologists responsible for emerging hazards.

Should a minimal number of these experts concur that the threat is serious, they could use their unique keys

to add sequences from the hazard to the encrypted emerging hazards database without requiring further

disclosure. Many times as many genes or genomes would be chosen as ‘decoys’:  related genes or agents that

might seem to pose a threat, but are not actually of concern. Decoys can ensure that anyone who finds a

match to the database will learn only that it corresponds to a plausible-seeming threat, not that it is a

credible weapon. This would ensure that adversaries cannot learn whether a virus can be used to build a

weapon of mass destruction by attempting to synthesize it. A detailed explanation of the cryptographic

approaches required is available elsewhere
18

. Emerging hazards would only be added to the database after at

least two years of testing and bug counties to verify that the implementation is secure.
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