	L．D．Fosdick and
Algorithms	A．K．Cline，Editors

Algorithms A．K．Cline，Editors
Submittal of an algorithm for consideration for publica－ tion in Communications of the ACM implies unrestricted use of the algorithm within a computer is permissible．

Copyright（C）1975，Association for Computing Machinery，Inc． General permission to republish，but not for profit，all or part of this material is granted，provided that ACM＇s copyright notice is given and that reference is made to the publication，to its date of issue，and to the fact that reprinting privileges were granted by permission of the Association for Computing Machinery．

Algorithm 489

The Algorithm SELECT—for Finding the i th Smallest of n Elements［M1］

Robert W．Floyd［Recd 26 Sept．1974］
Computer Science Department，Stanford University， Stanford，CA 94305
and
Ronald L．Rivest，M．I．T．Project MAC， 545 Technology Square，Cambridge，MA 02139

Key Words and Phrases：selection，medians，quantiles CR Categories：5．30， 5.39

Language：Algol（not strictly Algol 60）

Description

SELECT will rearrange the values of array segment $X[L: R]$ so that $X[K]$（for some given $K ; L \leq K \leq R$ ）will contain the （ $K-L+1$ ）－th smallest value，$L \leq I \leq K$ will imply $X[I] \leq X[K]$ ， and $K \leq I \leq R$ will imply $X[I] \geq X[K]$ ．While SELECT is thus functionally equivalent to Hoare＇s algorithm FIND［1］，it is sig－ nificantly faster on the average due to the effective use of sampling to determine the element T about which to partition X ．The average time over 25 trials required by SELECT and FIND to determine the median of n elements was found experimentally to be：

| n | $\left.\begin{array}{llll}500 & 1000 & 5000 & 10000 \\ \hline \text { SELECT } & 89 \mathrm{~ms} . & 141 \mathrm{~ms} . & 493 \mathrm{~ms} . \\ \text { FIND } & 104 \mathrm{~ms} . & 197 \mathrm{~ms} . & 1029 \mathrm{~ms} .\end{array}\right] 1964 \mathrm{~ms}$. |
| :--- | :--- | :---: | :---: | :---: |

The arbitrary constants $600, .5$ ，and .5 appearing in the algorithm minimize execution time on the particular machine used．SELECT has been shown to run in time asymptotically proportional to $N+\min (I, N-I)$ ，where $N=L-R+1$ and $I=K-L+1$ ． A lower bound on the running time within 9 percent of this value has also been proved［2］．Sites［3］has proved SELECT terminates．

The neater Algol 68 construct：
while 〈boolean expression＞do 〈statement＞
is used here instead of the Algol 60 equivalent：
for dummy $:=1$ while 〈boolean expression〉 do 〈statement）

References

1．Hoare，C．A．R．Algorithm 63 （PARTITION）and Algorithm 65 （FIND），Comm．ACM 4 （July 1961）， 321.
2．Floyd，Robert W．，and Ronald L．Rivest．Expected time
bounds for selection．Stanford CSD Rep．No．349，Apr．，1973）．
3．Sites，Richard．Some thoughts on proving clean termination of programs．Stanford CSD Rep．417，May 1974.

```
Algorithm
procedure \(\operatorname{SELECT}\) ( \(X, L, R, K\) );
    value \(L, R, K\); integer \(L, R, K\); array \(X\);
begin
    integer \(N, I, J, S, S D, L L, R R\); real \(Z, T\);
    while \(R>L\) do
    begin
        if \(R-L>600\) then
        begin
            comment Use SELECT recursively on a sample of size \(S\)
                to get an estimate for the \((K-L+1)\)-th smallest element
                    into \(X[K]\), biased slightly so that the \((K-L+1)\)-th
                        element is expected to lie in the smaller set after partition-
                    ing;
            \(N:=R-L+1\);
            \(1:=K-L+1\);
            \(Z:=\ln (N)\);
            \(S:=.5 \times \exp (2 \times Z / 3)\);
            \(S D:=.5 \times \operatorname{sqrt}(Z \times S \times(N-S) / N) \times \operatorname{sign}(I-N / 2) ;\)
            \(L L:=\max (L, K-I \times S / N+S D)\);
            \(R R:=\min (R, K+(N-I) \times S / N+S D) ;\)
            \(\operatorname{SELECT}(X, L L, R R, K)\)
        end;
        \(T:=X[K]\);
        comment The following code partitions \(X[L: R]\) about \(T\). It
            is similar to PARTITION but will run faster on most ma-
            chines since subscript range checking on \(I\) and \(J\) has been
            eliminated.;
        \(I:=L\);
        \(J:=R\);
        exchange \((X[L], X[K])\);
        if \(X \mid R]>T\) then exchange \((X[R], X[L])\);
        while \(I<J\) do
        begin
            exchange \((X[I], X[J])\);
            \(I:=I+1 ; J:=J-1\);
            while \(X[I]<T\) do \(I:=I+1\);
            while \(X[J]>T\) do \(J:=J-1\);
        end;
        if \(X[L]=T\) then exchange \((X[L], X[J])\)
            else begin \(J:=J+1\); exchange \((X[J], X[R])\) end;
            comment Now adjust \(L, R\) so they surround the subset con-
            taining the ( \(K-L+1\) )-th smallest element;
        if \(J \leq K\) then \(L:=J+1\);
        if \(K \leq J\) then \(R:=J-1\);
        end
    end SELECT
```

