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A new selection algorithm is presented which is 
shown to be very efficient on the average, both theo- 
retically and practically. The number of  comparisons 
used to select the ith smallest of  n numbers is 
n q- min(i,n--i) q- o(n). A lower bound within 9 percent 
of the above formula is also derived. 
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1. Introduction 

In this paper we present new bounds  (upper and 
lower) on the expected time required for selection. The 
selection problem can be succinctly stated as follows: 
given a set X of  n distinct numbers  and an integer i, 
1 < i < n, determine the ith smallest element of  X 
with as few compar isons  as possible. The ith smallest 
element, denoted by i0  X, is that  element which is 
larger than exactly i -- 1 other elements, so that  1 0 X 
is the smallest, and n 0 X the largest, element in X. 
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We use the notations O(n) and o(n) in the following way: 
f(n) < g(n) + O(n) means (3k > 0)(Vn)f(n) -- g(n) < kn, and 
f(n) < g(n) + o(n) means l i m ~  ((f(n) -- g(n))/n) = O. 

Let f(i ,n) denote  the expected number  of  com-  
parisons required to select i 0 X. (We assume through-  
out that  all possible input orderings of  the set X are 
equally likely.) Since a selection algori thm must  de- 
termine, for every t C X, t ~ i 0 X w h e t h e r  t < i 0 X  
or i 0 X  < t, we have a s a t r i v i a l l o w e r b o u n d  

f(i ,n) > n -  1, for 1 < i < n. (1) 

The best previously published selection algori thm is 
FIND, by C.A.R.  Hoare  [3]. Knu th  [4] has determined 
the average number  of  compar isons  used by FIND, 
thus proving that  

f(i,n) < 2((n Jr- 1)H~ -- (n -k- 3 -- i)H,~_i+l (2) 
-- (i -k- 2 )Hi  q- n -q- 3), 

where 

H,, = ~ j-1. (3) 
l < j < n  

This yields as special cases I 

f ( l , n )  < 2n -4- o(n), (4) 

and 

f (  [-n/2~ ,n) <_ 211(1 + ln(2)) -4- o(n) 
< 3.39/7 -k- o(n). (5) 

N o  bounds  better than (1) or (2) have previously been 
published. 

In Section 2 we present our new selection algorithm, 
SELECT,  and derive by an analysis of  its efficiency the 
upper bound  

f(i,n) < n + min(i,n -- i) + O(n '~ ln~'(n)). (6) 

A small modification to SELECT'is  then made,  yielding 
the slightly improved bound  

f(i,n). <_ n + min (i,n - i) + O(n½). (7) 

An implementat ion of  S E L E C T  is given in Section 3 
with t iming results for both  S E L E C T  and FIND. 

The authors  believe that  S E L E C T  is asymptot ical ly  
optimal in the sense that  the funct ion 

sup f (  L~(n -- 1)__1 + 1, 11) 
F ( ~ )  lim (~Tef . . . .  n ( 8 )  

0 < ~ < 1  

is bounded  below by the analogue of  the r ight-hand 
side of  (7), so that  

F(a)  >__ 1 -k min (¢,, 1 -- a), for 0_< ~_< l. (9) 

A lower bound  just a little better than 1 q- .75 min 
(a, I -- a) is derived in Section 4, within 9 percent of  
o u r  conjecture and the per formance  of  SELECT.  
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These expected time results should be compared 
with the worst-case result of Blum et al. [1], which is 
that i 0 X  can always be found with at most 5.4305 
comparisons. While this result is rather surprising, 
since it gives a time bound linear in n, the algorithm 
presented there is hardly practical. Thus the algorithm 
presented here is probably the best practical choice. 
Even for those applications for which only an ap- 
proximate quantile is desired, which can be obtained by 
sampling, applying S E L E C T  to the sample extracted is 
probably the most efficient procedure (unless the data 
has a small finite range). 

In what follows t 0 X  will denote the rank of an 
element tEX,  s o t h a t  ( t p X )  0 X  = t. E( ) will denote 
the expected value of its argument,  and P(  ) will denote 
the probabili ty of an event. 

An abstract of these results has previously appeared 
in [6]. 

2. The Algorithm S E L E C T  

We give an outline here of the algorithm S E L E C T ;  
an Algol definition is given in [2]. The algorithm utilizes 
sampling. 

Step 1. A small random sample S of size s = s(n) is 
drawn f rom X. 

Step 2. Two elements, u and v, (u < v), are selected 
f rom S, using S E L E C T  recursively, such that the set 
{x ~ X I  u <_ x <_ v} is expected to be of size o(n) and 
yet expected to contain i 0 X. Selecting u and v parti- 
tions S into those elements less than u (set A), those 
elements between u and v (set B), and those elements 
greater than v (set C). 

Step 3. The partitioning of X into these three sets is 
then completed by comparing each element x in X -- S 
to u and v. If  i < [-n/27 , x is compared to v first, 
and then t o u o n l y i f x  < v. I f i >  [ - n / 2 " ] , t h e o r d e r  
of the comparisons is reversed. 

Step 4. With probabil i ty approaching 1 (as n --+ ~ ) ,  
i 0 X will lie in set B, and the algorithm is applied 
recursively to select i 0 X from B. (Otherwise S E L E C T  
is applied to A or C as appropriate.)  

If  s(n), u, and v can be chosen so that s(n) = o(n), 
E( I B I ) = o(n), and P(i  O X~. B) = o(n-1), then the 
total number of comparisons expected is: 

O(s(n)) to select u and v f rom S, 
-t- (n -- s(n))(1 + (min(i,n -- i) d- o(n)) /n)  

to compare  each element in X - S to 

+ O ( I B I )  to s e l e c t i 0 X f r o m B ,  
+ o(1) to select i 0 X  from A or C, 

= n -+- min(i,n -- i) + o(n) 
comparisons total. 

This can in fact be done; the low order term is O(n ~ 
ln~(n)). Note that for Step 3 the probability that two 
comparisons are made (against u and v) for an arbitrary 
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element in X -- S is just (min(i,n -- i) + o(n) ) /n  since 
E(I B I) = o(n). Figure 1 shows a geometric analogy of 
the procedure S E L E C T .  

2.1 Choice of u and v 
For  any t 6 S of fixed rank t p S in S we can calcu- 

late where t should fall in X; that is, t 's rank in X, 
t p X. Since S is a random sample of X we can calculate 
only the expected value E(t p X)  and its variance. 

E ( t p X )  - (n + 1) ( t p S ) ,  (10) 
(s + 1) 

,~( t p X )  
( t p S ) ( s  -- ( t p S )  + 1)(n q- 1)(n -- s)'~ ~, 

= (s -q- lfi(s 4- 2) /) ( 11 ) 

_ l ( ( n  4 - 1 ) ( n  -- s ) )  ~ < _ _ _ 1  n 
< 2 s -- 2 (s) ~" 

We wish to choose u and v so that E ( u p X )  < i < 
E(v p X) ,  E(l B J) = E(v p X)  -- E(u o X)  is o(n), and 
P(i  < u p X o r  i > v p X )  = o(n -1) (this latter condi- 
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t ion ensures tha t  expected work  will be o(1) for the 
cases we "miss" i 0 X and have O(n) work  yet to do).  
To do this we choose  u p S and v p S so that  

E(u o X) ,4- 2d~r(u o X) ~--- i _~ E(v o X) 
-- 2dcr(v p X), (12) 

where d = d(n) is a slowly growing unbounded  func- 
tion of  n. Wha t  is intended here is that  it will become 
extremely unlikely (as n --+ oo) that one has chosen a 
sample S such that  (u p X) > i or (v p X) < i. Thus as 
S varies, (u p X) may  vary as indicated in Figure 2, 
but  we almost  always have u p X < i < v p X. Since 

--d 2 

2 . fd  e r f ( x )  dx _< ce_e__d ' for some constant  (13) ¢,  

we will choose d = (In(n)) ~. This ensures that  P(i < 
u o X  or i > v o X )  = o(n-~). The above equations 
mean that  

u p S ' ~ ' ~ - ( i - - d (  (n4 -  l ) ( n - - s ) ) ~ )  \n  -4- 1:11~ 

> i(s ,4- 1) d(s)½, 
- ( n - q - l )  

and 

v p S ~ ( i =  + d (  (n 

<_ i(s ,4- 1) ,4- d(s)~. 
(n + l) 

(14) 

2.2 Analysis  of  the Basic Algorithm 
Let g(i,n) denote  the expected number  of  com- 

parisons made by SELECT.  It will be shown inductively 
that  

g(i,n) = n ,4- min(i,n - i) ,4- O(n~ In~(n)) (15) 

The above is true for all n less than some fixed N, so 
the basis for induction is clearly satisfied. We proceed 
with the inductive step by determining the cost of  
S E L E C T  as a function of  s(n) and n, and then optimiz- 
ing the choice of  s(n). 

The cost of  selecting u and v can be estimated as 
follows. First we apply S E L E C T  recursively to S to 
select u, then we extract v f rom those elements of  S 
which are greater than u. (Note that  selecting u means 
determining which elements of  S are greater than u as 
well.) These two operat ions cost 

g(uoS , s )  + g ( v p S - -  u p S , 4 .  1 , s - -  u p S )  
<_ 2s ,4- v o S -- u o S + O(s ~ ln~(s)) (16) 

< 2s q- 2d(s) ~ -4- O(s~ ln~(s)) 

comparisons.  
The cost of  compar ing  each element in X - S to u 

and v is easy to compute.  There are n -- s(n) elements 
to compare,  and the probabil i ty that  two compar isons  
will be made for an element is just  min(u p S,s ,4- 1 -- 
u p S) / (s  ,4- 1), so that  the total is 

(n - s(n))(1 ,4- min(i,n -- i)/n ,4- ds-~). (17) 

The cost of  finishing up, if i 0 X fails in B, is at most  
g(I B t/2, I B I). But 

E(I B l) = (v  p S - -  u p S ) n / s  = 2dns -½ (18) 

so that  

g(I B I/2, I B I) = 3dns-½ 4- 
O((dns-½)~(ln(dns-½))~). (19) 

On the other hand,  if i 0 X  falls in A or C, the ex- 
pected cost of  finishing up is at most  3n/2, and the 
probabil i ty that  i0  X E A or i 0 X ~ C is, f rom (13), 
less than c/(dn), so that  the total work  expected in this 
case is less than 3c/(2d), which goes to zero as n ~ m. 

The total expected cost of  S E L E C T  is thus 

g(i,n) ~ 2s ,4- 2d(s)t ,4- O(s ~ ln~(s)) 
,4- (n - s)(1 ,4- min(i,n - i)/n ,4- ds -~) 
,4- 2dns -~ ,4- 3c/(2d) 

< n + min(i,n - i) -4- s -4- ds~ 
-- min(i,n - i)s/n 
-4- 3dns -~ ,4- 3c/(2d) ,4- O(s ~ ln~s). (20) 

The principal increasing and decreasing terms in s 
in this expression are s and 3dns -~. Choosing s(n) to 
make them equal will approximately  minimize g(i,n). 
Thus we choose 

s(n) ~,  n ~ ln~(n) (21) 

which, together with (20), yields (15), which was to be 
proved. This completes the analysis of  SELECT.  

2.3 An Improved Version of SELECT 
We now introduce a small modification to S E L E C T  

in order to reduce the second-order  term to the promised 
O(n~). Let 5'1 c S, c • - • c Sk = X b e  a nested series 
of  r a n d o m  samples f rom X of  sizes sl, &, • • • , sk -- n. 
Fo r  each sample Sj, let uj and v: be chosen f rom S~ as 
in (14) so that  

uipXJ = ( i - - d ( ( n - t - 1 ) ( n - s j ) ) ' )  " \ n ~ - l J  

and (22) 

vjpSi = ( i  q- d (  .(n 4- 1)(n - s : ) ' ) " ~  (sj  4- 1~ 
si / / ' \ -~ql /"  

Thus it is very likely, for any j, that  uj p X < i < 
vi 0 X. Fur thermore ,  as j approaches  k (i.e. as sj gets 
large), ui and vj sur round i 0 X ever more  closely. In 
fact, uk = i 0 X  = vk. The cost of  finding u3 and vj 
directly f rom Si is of  course prohibitive for large values 
of  sj. However ,  since 

E(uj - lpS j )  = (uj-lpSj-1) • s~-4-1 < u joSj ,  (23) 
sj-l + 1 

and similarly E(vj_l o Si) >__ vj p Sj, we can use u:_l 
and vj_l to bound  the search for uj and vj. See Figure 
2 for  a graphical representat ion of  the modified SE- 
LECT. 
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The Improved Algorithm. The modified algorithm 
runs as follows. 

Step 1. Draw a random sample S~ of size s, f rom X, 
and select Ul and v~ using this algorithm recursively 
(and the ranks given in (22). 

Step 2. Determine the sets A.,., B.,, and C.,, a partition 
of $2, by comparing each element in &. - $1 to ut 

and vt (using the same order of  comparison strategy 
as the original S E L E C T ) .  

Step 3. Next, determine u2 and v~ by applying this 
algorithm recursively to B2 (in the most likely case; 
else A., or C2). 

Step 4. Extend the partition of S~ determined by u~ 
and v2 into a partition A~, B~, C~ of S~ by comparing 
each element of S~ -- S~ to u2 and v~ with the same 
comparison strategy. 

Step 5. Continue in this fashion until a partition Ak, 
B~, C~ of the set S~ = X has been created. 

Step 6. Then use the algorithm recursively once more 
to extract i 0 X from B~ (or A~ or C~, if necessary). 

This "boots t rapping"  algorithm has the advantage 
that the expense of computing a good bounding interval 
[uj,v~J for i O X  is reduced by first computing at a 
fraction of the cost the less tight bounding interval 
[u~_~, v~-_~]. We keep d(n) = ln½(n) as before, to ensure 
that the probabil i ty that i0 X is not in [us, v~] is of 
order o(n- ' ) .  The probabil i ty that u~ or vi is not in the 
interval [u~_~, vj_a] is also negligible, since 

~(uj-~pS~) < s~ and (24) 
2(s~_~)~ 

E(u ioS~  - -  t l i - l p S j )  --~ d" (s~ -- (s~) ~) (25) 
(S~-l)~ 

2.4 Analysis of the Improved Algorithm 
To compute the cost of the algorithm, we assume 

inductively, as before, that 

g(j ,m) = m q- min(j,m - - j )  + O(m½), (26) 
for r e < n ,  1 < j < rn. 

The expected size of Bj is easily estimated: 

E(Ieil) = ( p j - l p S j - 1  - U j - l p S j - 1 )  • ~ (27)  

< 2dsH(s¢_l) ~. 

The cost of selecting u.2,v.,, . . . .  , uk-1, V~_l f rom the sets 
B~, . . . , Bk-1 is just 

~., (g(us p Bj, I Bs I) + g(vj  p By -- us p Bs 
2<1 <k--I 

q- 1, I B~ I --uj  p Bi)) (28) 
<_ ~_, (4dsi/(sj-~) ~ q- 2d(s~)t), 

2<i<k--1 

whereas the cost of  selecting u, and vx f rom & is less 
than 

2sl + 2d(sl) ~, (29) 

while the cost of selecting u~ = vk = i 0 X f r o m B k i s  

at most 

3dn / ( s~._l) ½. (30) 

The cost of partitioning S., - $1, Sz~ - S~, . . . ,  Sk -- 
&.-1 about  ui and vi, u2 and v , , . . .  , uk-i and v~._, is just 

(sj - s~_l)(1 + min(i,n - i ) /n  + d/(Si_l)~). (31) 
2<j<k 

Adding these all together, we have 

g(i,n) < n q- min(i,n -- i) -q- 

(5dsH(si_i)½ + d(si)~) (32) 
2 < j < k  

-+- sl(1 -- min(i,n -- i) /n) + d(sl) t 

-- dn/(sk_l) ~. 

This sum can be approximately minimized if we let 
si, s2 , . . . , sh-  increase geometrically with ratio r ~, so 

2j --2 that s¢ = r s~, and 

g ( i , n )  < n + min ( i , n  -- i) 

~k (S1) 2 ( / 5 d  F ( ) ½ )  + + @ • ~ r~ 
2<j<k 

< n + m i n ( i , n - - i )  
( 5d ( )~) ( r  k - l -  1) 2 (33) 

+ \ ~ +  '~ \ ; - - - i  .r  

n +  min ( i ,  n - -  i )  

!) 
This is approximately minimized when s~ = lntn, and 
r = 4.32, yielding 

g(i,n) < n + min(i,n -- i) + O(n~), (34) 

which was to be shown. 

3. Implementation and Timing Results 

In this section we present an Algol implementation of 
S E L E C T  and give timing results that demonstrate that 
our theoretical results yield fruit in practice. While this 
is a revised form of the simpler version of S E L E C T  given 
in Section 2, it again uses the optimal or near optimal 
number  of comparisons i1 + min(i,n -- i) + o(n). 
The total work is also seen to be a small constant times 
the number  of comparisons made, showing that the 
number  of comparisons made is indeed a valid ef- 
ficiency measure in practice as well as theory. The 
purpose of this section is to show that S E L E C T  is very 
efficient for practical values of n, as well as asymp- 
totically as n --~ ~ .  

We assume that it is desired to have the same input- 
output relationships as FIND.  That  is, we are given an 
array segment X[L :R] and an integer K such that 
L < K < R; we wish to rearrange the values in X[L : R] 
so that X[K] contains the (K -- L -k- 1)-th smallest 
value of X [ L : R ] ,  L < I _< Kimpl i e s  X[I] <_ X[K], 
and K < I < R implies X[I] > X[K]. An implementa- 
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Timing results were then obtained for FIND [3] 
(exactly as published) and S E L E C T  [2]. The testing was 
done in SAm (an ALGOL dialect) on the POP-10 at Stan- 
ford's  Artificial Intelligence Laboratory.  These results 
are given in the description of the algorithm on page 173. 

S E L E C T  clearly outperforms FIND. This results 
f rom a slightly faster partitioning scheme combined with 
a large reduction in the partitioning required due to the 
effective use of sampling. 

4. Lower Bounds for F(a) 

tion of the complicated version of S E L E C T  given in 
Section 2 will not be given, since no advantage is ob- 
tained over the simpler version except for unrealistically 
large values of n. 

The innermost loop of the algorithm is obviously 
the partitioning operation. Any reduction in the com- 
plexity of partitioning will show up as a significant 
increase in the efficiency of the whole algorithm. The 
basic algorithm, however, requires partitioning X about 
both u and v simultaneously into the three sets A, B, 
and C, an inherently inefficient operation. On the other 
hand, partitioning X completely about  one of u or v 
before beginning the partition about  the other can be 
done very fast. We therefore use an improved version 
of Hoare 's  P A R T I T I O N  algorithm [3] to do the basic 
partitioning. A further (minor) difference is that after 
partitioning has been completed about  one element 
another  sample is drawn to determine the next element 
about  which to partition. This permits a very compact  
control structure at little extra cost. 

The procedure as written in ALGOL 60 appears in 
this issue [2]. The algorithm first determines the element 
T about which to partition. It was found experimentally 
that sampling was worthwhile only for values of N (the 
size of input set) greater than 600. This is due to the 
expense of computing square-roots, logarithms, etc., 
which cost more than they are worth for small N. If 
sampling is performed, the recursive call to S E L E C T  
leaves the desired element T in X[K]; if sampling is not 
done, the algorithm partitions about  whatever was in 
X[K] initially (this is good if X was already sorted). 
The partitioning phase is initialized to obviate sub- 
script range checking. Note that there is really no good 
way to avoid re-partitioning the sample or at least mov- 
ing most of it later, but having it located around X[K] 
probably minimizes the number  of exchanges necessary. 
Since either L or R changes at each iteration, the num- 
ber of elements remaining always decreases by at least 
one, thus ensuring termination. 

In this section we present new lower bounds for the 
expected number  of comparisons required for selection, 
again, assuming all input orderings are equally likely. 
Although we believe S E L E C T  to be (first-order) asymp- 
totically optimal, we have been.unable to derive a lower 
bound for F(a) equal to the upper bound of 1 + min(a, 
1 - a) produced by our analysis of SELECT.  The 
bounds derived here are within 9 percent of that value, 
for all ~, though, and the strength of these results rela- 
tive to the weakness of our methods lends support  to 
our conjecture. 

We will define a sequence Fi(a),  for 0 < j _< oo, of 
lower bounds for F(a) such that Fj(a) <_ Fj+I(a), for all 
j >__ 0 a n d  a, 0 < a < 1. The functions F0(~), Fl(a), 
F..,(a), and F3(a) have been computed- - the  function 
F3(a) thus being our best lower bound for F(~). These 
bounds have been plotted against a in Figure 3. The 
value of F~(a) at a = .5 is 1.375, which tapers off as 
approaches 0 or 1, essentially becoming identical with 
1 q- min(c~, 1 - ~ ) n e a r  the extremes. 

We first prove a basic result. 
THEOREM 1. Any selection algorithm that has deter- 

mined i 0 X to be some element y q X must also have 
determined, for  any x ~ X, x ~ y, whether x < y or 
y < x .  

PROOF. Assume that there exists an x incomparable 
with y in the partial order determined by the algorithm. 
Then there exists a linear ordering of X, consistent with 
the partial order determined, in which x and y are ad- 
jacent (since any element required to lie between x and 
y would imply a relationship between x and y in the 
partial order). But then x and y may be interchanged 
in the linear order without contradicting the partial 
order- -demonst ra t ing  an uncertainty of at least one in 
y p X, so that y is not necessarily i 0 X. [] 

The following definition provides the basis for the 
lower bound computations. We use notation "x  " y"  
to denote a comparison between elements x and y. 

Definition 1. The key comparison for an element 
x C X, x ¢ i 0 X, is defined to be the first comparison 
x : y such that 

y =  i O X o r x < y <  i O X o r i O X < y < x .  (35) 

Note that determining which comparison is the key 
comparison for x can in general only be done after all 
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the comparisons have been made and i 0 X has been 
selected. Each element x,  x ~ i 0 X,  must have a key 
comparison;  otherwise x would be incomparable with 
i 0 X, a contradiction by Theorem 1. This proves 

LEMMA 1. A selection algorithm must  make  exact ly  

n -- 1 key  comparisons to select i 0 X ,  where I X I = n. 
We now define two more essential concepts. 
Definition 2. A f r a g m e n t  of a partial ordering (X, < )  

is a maximal connected component  of the partial order- 
ing, that is, a maximal subset S ___ X such that the 
Hasse diagram of " < "  restricted to S is a connected 
graph. In other words, elements x and y are in the same 
fragment  of the partial ordering if there is a sequence 
of elements x = zl, z.~, • • • , z~ = y such that the com- 
parison zi : z;+l has been made for 1 < i < k (with no 
restrictions on the results of these comparisons).  These 
comparisons need not have been performed in the indi- 
cated order; any order will do. The Hasse diagram of a 
partial order is a directed graph with vertices corre- 
sponding to each element of the partial order and an arc 
x---* y indicated whenever (x < y) A -n (=lz)(x < z < 
y). We adopt  the usual convention of omitting arrow- 
heads and requiring y to be higher on the page than x 
if x ---+ y is an arc of the Hasse diagram. 

Any partial ordering can be uniquely described up 
to isomorphism as the union of distinct fragments. A 
selection algorithm thus begins with a partial ordering 
consisting of n fragments of size 1. To illustrate, let 5% 
be the set of all fragments having at most k elements: 

~ , =  { . 1 ,  

a3 = { ' ,  : , A , V , | } ,  and so on. 

Definition 5. A joining comparison is any comparison 
between elements belonging to distinct fragments. 

Note that each joining comparison reduces the total 
number  of fragments by one, implying the following. 

LEMMA 2. A selection algorithm must  make  exact ly  
n - 1 joining comparisons to select i 0 X,  where I X I = n. 

PROOF. As long as more than one fragment exists, 
there must be some element incomparable with i 0 X, 
since elements in distinct fragments are incomparable.  
The lemma then follows f rom Theorem 1. 

Our lower bounds will be derived f rom the con- 
flicting requirements of lemmas 1 and 2 - - a  selection 
algorithm can not in general have all of its joining com- 
parisons be key comparisons, or vice versa. In fact, the 
authors make the following conjecture: 

CONJECTURE. Asymptot ica l ly  (as n --~ ~ ), the aver- 
age probabil i ty that a joining comparison will turn out 
to be a key  comparison is at most  

max(a,1 -- a).  (36) 

We must use the asymptotic average probability, 
since near the end of an algorithm, the probabili ty of a 
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particular joining comparison being a key comparison 
may easily exceed (36). This happens because near the 
end of the computation there are often elements with a 
significant probabili ty of actually being i 0 X, and a 
comparison with one of these elements can have a 
somewhat larger probability of turning out to be key. 
As an example, consider the comparisons of a previ- 
ously uncompared element x with an element y which is 
known to be the ith smallest of the remaining n - 1 
elements. Then 

P ( x  : y is key)  = P ( y  = i O X < x)  

-q- P ( x  = i O X < y)  (37) 
= ( n -  i q- 1)In, 

which, for a < 1/2, is a little larger than max(a,  1 -- 
c0 = 1 -- a = ( n - -  i - t -  1)/(n q- 1). 

Unfortunately,  we could not find a proof  of  our 
conjecture, which would imply the optimality of 
S E L E C T  for all values of a. Our results stem therefore 
f rom an analysis of only those joining comparisons in 
which at least one of the fragments being joined is 
small. We are left with just a small finite number  of 
cases (i.e. possible types of joining comparisons) to 
consider, since we will not distinguish between the 
various kinds of large fragments that might participate 
in a joining comparison. We want to estimate, for each 
type of joining comparison, the probabil i ty that it will 
turn out to be a key comparison. These probabilities 
will then be used in an interesting way to derive a lower 
bound for F(a).  

As noted above, the probabili ty that a joining com- 
parison will turn out to be a key comparison is certainly 
affected by the probabili ty that one of the elements 
being compared is actually i 0 X. The following argu- 
ment shows that we may treat this latter probabil i ty as 
being negligible, for large n. Given some e, 0 < e < 1, 
it is easy to see that there exists an integer m such that 
the maximum probabil i ty that any element x C X is 
actually i 0 X is at most e if the largest fragment has 
size at most n -- m. For  if x is incomparable with m 
elements f rom other fragments, then it has a chance of 
being i 0 X of at most 

P ( x  = i 0 X)  < (27rma(1 -- a)) -½ 

~ ( m m )  ( 1 - -  
= . , ~  . )  . . . . . .  (38) 

which is less than e for m > (2rra(1 - a)ez) -1. So except 
for a finite number  of comparisons near the end, the 
probabili ty that any element is i 0 X is at most e. As 
n ~ ~ ,  these latter comparisons form a negligible 
proportion of the total number  of comparisons made, 
and their effect on the probability that an average 
joining comparison will be a key comparison becomes 
insignificant. We will therefore assume from now on 
that the probabili ty that either element being compared 
is i 0 X is zero. 

To derive Fk(a) we need to compute the probabil i ty 
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that  each joining compar ison in which the smaller frag- 
ment  has at most  k elements will turn out  to be a key 
comparison.  These compar isons  can be divided into 
two types: those for  which both  fragments belong to 
~k, and those for  which only one f ragment  has k or 
fewer elements. The first type is somewhat  simpler to 
handle so we shall treat it first, by means of  an example. 

Consider the compar ison of  the smaller o f  a pair of  
elements x < z, to an isolated element y :  

Z 

X / "  

(39) 

As a result of  this comparison,  we will end up with 
either 

t z o r  x 

Y 

(40) 

The probabili t ies of  these two outcomes are not  e qua l - -  
the first occurs with probabil i ty 2/3 while the second 
occurs with probabil i ty 1/3. This happens because the 
first ou tcome is consistent with the two permutat ions  
x < y < z and x < z < y, whereas the second outcome 
is only consistent with y < x < z. Since each permuta-  
tion consistent with the input fragments  is equally 
likely, the probabil i ty of  each outcome is propor t ional  
to the number  of  permutat ions  consistent with that  
outcome.  

We must now consider each permutat ion consistent 
with the input  fragments  separately, since to determine 
whether x : y is a key compar ison requires knowing 
the relative order of  x, y, i 0 X, and all elements previ- 
ously compared  to either x or y. Let us consider the 
permutat ion x < y < z first, consistent with the first 
outcome.  With respect to i 0 X, these t h r e e e l e m e n t s  
may be in one of  four positions. That  is, i 0 X may be 
greater than f rom zero to three of  these three elements. 
In only two of  these cases will x : y turn out  to be a 
key compar ison : 
(i) i O X < x < y < z 

this will be a key compar ison for y, 
( i i )  x < i 0 X <  y < z 

this will no t  be a key compar ison,  
(iii) x < y < i 0 X <  z 

this will be a key compar ison  for x, 
(iv) x < y < z < i 0 X  

this will not  be a key compar ison,  since x has 
already been compared  to z. 

The probabil i ty of  each of  these four  cases occurring, 
given that  x < y < z, follows the binomial  distribution 
with p = c~, so that  case (i) occurs with probabil i ty 
(1 - -  c~) 3 and case (iii) occurs with probabi l i ty  3c~2(1 -- 
c~). The analysis of  all three permutat ions  consistent 
with (39) can be represented graphically, using hori- 

zontal  lines to indicate the relative posit ions o f  i 0 X 
that  make x " y a key compar i son :  

X X 

Z 

X 

Y 

(41) 

The total probabil i ty that  x : y turns out  to be a 
key compar ison is thus the average probabil i ty that  
x : y is a key compar i son  in each of  these three cases. 
This is just  (finally!): 

3 
c~. (42) P(x:y is key) = (1 - ~)3 + 2c2(1 _ c~) + ~- 

Whenever  both  fragments  are small, the probabil i ty of  
a compar ison joining them turning out  to be key can 
be computed  in the above fashion. This completes our  
description of  the analysis of  a compar ison  joining two 
small fragments.  

When an element x belonging to a small f ragment  
is compared  to an element y f rom an arbi t rary f ragment  
having more than k elements, the analysis can not  be 
done in t h e . a b o v e  fashion since we essentially know 
nothing about  y; its probabil i ty distribution and proba-  
bility of  already having had a key compar ison  must  
remain totally unspecified. It is still possible, however,  
to derive an upper  bound  on the probabil i ty that  the 
compar ison x : y will turn out to he a key comparison,  
since if x and y fall on different sides of  i 0 X the com- 
parison can not  be a key comparison.  It is thus easy to 
see that  

P(x : y is key) 
_< m a x ( P ( x  < iOX), P(x > iOY)). (43) 

For  example, to compare  x of  the f ragment :  

~ x (44) 

against an arbi t rary y, the case analysis can be repre- 
sented graphically as before, using a horizontal  line to 
indicate the relative position of  i 0 X making a key 
compar ison possible: 

~ x  ~ X ° r ~ x  _ ~  x 

for x < iOX for x > iOX 

We have then directly f rom (43) and (45) 

P(x : y is key) 
_< max(a  3 + 3c~2(1 -- c~)/2, (I -- c~) 3 

q- 3a(1 -- c~) 2 q- 3c~2(1 -- c~)/2). 

(45) 

(46) 

This kind of  analysis is simple to carry out  for an x 
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belonging to any small fragment, so that we now have 
ways of computing (an upper bound for) the proba- 
bility that any comparison joining a small fragment to 
another fragment will turn out to be a key comparison. 

We will now describe how specific results such as 
(46) and (42) above can be combined to derive Fk(a). 
We will assign a weight to a partial ordering which is a 
lower bound on the expected number of non-key joining 
comparisons yet to be made in selecting i 0 X. The total 
number  of comparisons made on the average is thus 
bounded below by n -- 1 (for the joining comparisons) 
plus the weight of the partial ordering (to ensure that 
n -- 1 key comparisons are made as well). The weight 
of a partial ordering is defined to be the sum of the 
weights of its constituent fragments. The weight of  a 
fragment is a number  assigned to that fragment which 
will be computed f rom the specific probabili ty results 
already calculated by means of a linear programming 
technique. A fragment weight is an invariant number  
associated with that fragment type. The weight of a 
partial order varies only as its composition as a set of 
fragment  types varies. 

What  we want to ensure is that as a result of a join- 
ing comparison the expected weight of a partial ordering 
does not decrease by more than the probabili ty that 
that joining comparison was non-key. This guarantees 
that the weight of the initial partial ordering is a valid 
lower bound for the expected number  of non-key 
joining comparisons made. Since we only have data 
for those fragments with k or fewer elements, only 
those fragments will be assigned positive weights--all  
larger fragments will have weight zero. (In particular, 
the weight of  the final partial ordering, in which i 0 X 
has been determined, must be zero.) 

Let us consider the computation of F._,(a) as an ex- 
ample. Let Wl be the weight of the fragment • and let 
w2 be the weight of Z. The weight of the initial partial 
ordering is therefore just nw~. We want to maximize wx 
subject to the constraints imposed by our previous com- 
putations about  specific kinds of  comparisons. For  
example, a comparison between two isolated elements 
is non-key with probabili ty 2c~(1 -- c~), yielding the in- 
equality: 

2w~ - w~ _< 2c~(1 -- ~). (47) 

Comparing an isolated element against an arbitrary 
element f rom a fragment with more than two elements 
yields the inequality 

wl _< min(~,l  -- o 0. (48) 

A computer  program was written to generate all the 
relevant inequalities like (47) and (48) for a given k. 
Note  that when two fragments are being joined such 
that two different outcomes are possible, both in ffk, 
the probabil i ty of each outcome must be considered 
when computing the expected weight of the resultant 
fragment  after the comparison has been made. The 
linear programming algorithm M I N I T  of Salazar and 

Sen [7] was used to determine the maximum weight wl 
possible for the isolated element. The value 1 q- wl is 
then our lower bound for F(c~) (that is, Fk(c~) = 1 + wl). 

When k = 1 the solution takes a particularly simple 
form: 

r ( a )  >_ FI(~) = 1 +c~(1 -- a). (49) 

The functions F.2(c~) and F3(c~) are too complicated to 
give here, but are as plotted in Figure 3. For  the case 
of computing medians they reduce to 

( 1 )  49 
F2 = )-~ n and (50) 

F~ = ~-  n, (51) 

which is within 9 percent of 1.5n (the performance of 
S E L E C T ) .  It is clear f rom the figure that Fk(a) probably  
converges rather slowly to 1 -k- min(a,1 -- a), if our 
conjecture is correct. 

This completes the description of" our lower bound 
derivations. The results show that S E L E C T  is at least 
near-optimal with respect to the number  of  comparisons 
used, and we suspect that a more powerful combina-  
torial analysis would demonstrate optimality. The 
weakness in our method lies in the restricted nature of  
the inequalities derivable for the case of a comparison 
between a small fragment and an arbitrary element 
belon'ging to a large fragment. In any ease these lower 
bounds are the first nontrivial lower bounds published 
for this problem. 

Received October 1973; revised July 1974 

References 
1. Blum, M., Floyd, R.W., Pratt, V., Rivest, R., and Tarjan, 
R. Time bounds for selection. JCSS 7 (Aug. 1973), 448-461. 
2. Floyd, Robert W., and Rivest, Ronald W. Algorithm 489, 
The algorithm SELECT for finding the ith smallest of n elements. 
Comm ACM this issue. 
3. Hoare, C.A.R. Algorithm 63 (PARTITION) and Algorithm 
65 (FIND). Comm. ACM 4, 7 (July 1961), 321. 
4. Knuth, Donald E. Mathematical analysis of algorithms. 
Computer Sei. Dept. Rep. STAN-CS-71-206. Stantbrd U., Mar. 
1971.27 pp. 
5. Lindgren, B.W. Statistical Theory. The MacMillan Co., New 
York, 1962. 
6. Rivest, Ronald L., and Floyd, Robert W. Bounds on the 
expected time for median computations (extended abstract). 
Courant CompLter Science Symposium 9, Randall Rustin [Ed.] 
Algorithmics Press, New York, 1973, pp. 69-76. 
7. Salazar, Rodolfo C., and Sen, Subrata K. Algorithm 333 
( MINIT algorithm for linear programming. Comm. ACM 11, 
6 (June 1968), 437-440. 

172 Communications March 1975 
of Volume 18 
the ACM Number 3 


