
Programming G. Manacher
Techniques Editor

Expected Time Bounds
for Selection
Robert W. Floyd and Ronald L. Rivest
Stanford University

A new selection algorithm is presented which is
shown to be very efficient on the average, both theo-
retically and practically. The number of comparisons
used to select the ith smallest of n numbers is
n q- min(i,n--i) q- o(n). A lower bound within 9 percent
of the above formula is also derived.

Key Words and Phrases: selection, computational
complexity, medians, tournaments, quantiles

CR Categories: 5.30, 5.39

1. Introduction

In this paper we present new bounds (upper and
lower) on the expected time required for selection. The
selection problem can be succinctly stated as follows:
given a set X of n distinct numbers and an integer i,
1 < i < n, determine the ith smallest element of X
with as few compar isons as possible. The ith smallest
element, denoted by i0 X, is that element which is
larger than exactly i -- 1 other elements, so that 1 0 X
is the smallest, and n 0 X the largest, element in X.

Copyright O 1975, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This paper gives the theoretical background of Algorithm 489,
"The Algorithm SELECT--for finding the ith smallest of n ele-
ments," appearing on p. 173 of this issue.

This work was supported by the National Science Foundation
under grants GJ-992 and GJ-33170X. Authors' addresses: R.W.
Floyd, Stanford Computer Science Department, Stanford Uni-
versity, Stanford, CA 94305; R.L. Rivest, NE 43-807, Project MAC,
545 Technology Square, Cambridge, MA 02139.

We use the notations O(n) and o(n) in the following way:
f(n) < g(n) + O(n) means (3k > 0)(Vn)f(n) -- g(n) < kn, and
f(n) < g(n) + o(n) means l i m ~ ((f(n) -- g(n))/n) = O.

Let f(i ,n) denote the expected number of com-
parisons required to select i 0 X. (We assume through-
out that all possible input orderings of the set X are
equally likely.) Since a selection algori thm must de-
termine, for every t C X, t ~ i 0 X w h e t h e r t < i 0 X
or i 0 X < t, we have a s a t r i v i a l l o w e r b o u n d

f(i ,n) > n - 1, for 1 < i < n. (1)

The best previously published selection algori thm is
FIND, by C.A.R. Hoare [3]. Knu th [4] has determined
the average number of compar isons used by FIND,
thus proving that

f(i,n) < 2((n Jr- 1)H~ -- (n -k- 3 -- i)H,~_i+l (2)
-- (i -k- 2)Hi q- n -q- 3),

where

H,, = ~ j-1. (3)
l < j < n

This yields as special cases I

f (l , n) < 2n -4- o(n), (4)

and

f ([-n/2~ ,n) <_ 211(1 + ln(2)) -4- o(n)
< 3.39/7 -k- o(n). (5)

N o bounds better than (1) or (2) have previously been
published.

In Section 2 we present our new selection algorithm,
SELECT, and derive by an analysis of its efficiency the
upper bound

f(i,n) < n + min(i,n -- i) + O(n '~ ln~'(n)). (6)

A small modification to SELECT'is then made, yielding
the slightly improved bound

f(i,n). <_ n + min (i,n - i) + O(n½). (7)

An implementat ion of S E L E C T is given in Section 3
with t iming results for both S E L E C T and FIND.

The authors believe that S E L E C T is asymptot ical ly
optimal in the sense that the funct ion

sup f (L~(n -- 1)__1 + 1, 11)
F (~) lim (~Tef n (8)

0 < ~ < 1

is bounded below by the analogue of the r ight-hand
side of (7), so that

F(a) >__ 1 -k min (¢,, 1 -- a), for 0_< ~_< l. (9)

A lower bound just a little better than 1 q- .75 min
(a, I -- a) is derived in Section 4, within 9 percent of
o u r conjecture and the per formance of SELECT.

165 Communications March 1975
of Volume 18
the ACM Number 3

These expected time results should be compared
with the worst-case result of Blum et al. [1], which is
that i 0 X can always be found with at most 5.4305
comparisons. While this result is rather surprising,
since it gives a time bound linear in n, the algorithm
presented there is hardly practical. Thus the algorithm
presented here is probably the best practical choice.
Even for those applications for which only an ap-
proximate quantile is desired, which can be obtained by
sampling, applying S E L E C T to the sample extracted is
probably the most efficient procedure (unless the data
has a small finite range).

In what follows t 0 X will denote the rank of an
element tEX, s o t h a t (t p X) 0 X = t. E() will denote
the expected value of its argument, and P() will denote
the probabili ty of an event.

An abstract of these results has previously appeared
in [6].

2. The Algorithm S E L E C T

We give an outline here of the algorithm S E L E C T ;
an Algol definition is given in [2]. The algorithm utilizes
sampling.

Step 1. A small random sample S of size s = s(n) is
drawn f rom X.

Step 2. Two elements, u and v, (u < v), are selected
f rom S, using S E L E C T recursively, such that the set
{x ~ X I u <_ x <_ v} is expected to be of size o(n) and
yet expected to contain i 0 X. Selecting u and v parti-
tions S into those elements less than u (set A), those
elements between u and v (set B), and those elements
greater than v (set C).

Step 3. The partitioning of X into these three sets is
then completed by comparing each element x in X -- S
to u and v. If i < [-n/27 , x is compared to v first,
and then t o u o n l y i f x < v. I f i > [- n / 2 "] , t h e o r d e r
of the comparisons is reversed.

Step 4. With probabil i ty approaching 1 (as n --+ ~) ,
i 0 X will lie in set B, and the algorithm is applied
recursively to select i 0 X from B. (Otherwise S E L E C T
is applied to A or C as appropriate.)

If s(n), u, and v can be chosen so that s(n) = o(n),
E(I B I) = o(n), and P(i O X~. B) = o(n-1), then the
total number of comparisons expected is:

O(s(n)) to select u and v f rom S,
-t- (n -- s(n))(1 + (min(i,n -- i) d- o(n)) /n)

to compare each element in X - S to

+ O (I B I) to s e l e c t i 0 X f r o m B ,
+ o(1) to select i 0 X from A or C,

= n -+- min(i,n -- i) + o(n)
comparisons total.

This can in fact be done; the low order term is O(n ~
ln~(n)). Note that for Step 3 the probability that two
comparisons are made (against u and v) for an arbitrary

Fig. I.

s # // "~•

J i I ~,•
c •

/ , " ~ 0 S / u i v ",~

s S I I • •
i S •

s S i I ~,•

i I i I
i S i I ~ %%•

/ " i ' ,
Is i ~ I •

• A ~ "~,

IOX u iOx V nO

Fig. 2.
s •

s •

s

,i S l) I el 1~ $1
/ / / / I ~, * * *

• u j_ I vj-1 ",,
l " ~ k ~ Sj_ 1

i i I I I % •

• ' " A. l / ~ l X

/ = - ~ I- ~ " ," ,,,.j !vj ~,7-sJ.

,, Uk_ 1 Vk_ 1 , , | ~ S k _ 1

i s I
s

I I •
/ ~ I BL, i C k •,,

fOX ioX X : S k nOX

element in X -- S is just (min(i,n -- i) + o(n)) /n since
E(I B I) = o(n). Figure 1 shows a geometric analogy of
the procedure S E L E C T .

2.1 Choice of u and v
For any t 6 S of fixed rank t p S in S we can calcu-

late where t should fall in X; that is, t 's rank in X,
t p X. Since S is a random sample of X we can calculate
only the expected value E(t p X) and its variance.

E (t p X) - (n + 1) (t p S) , (10)
(s + 1)

,~(t p X)
(t p S) (s -- (t p S) + 1)(n q- 1)(n -- s)'~ ~,

= (s -q- lfi(s 4- 2) /) (11)

_ l ((n 4 - 1) (n -- s)) ~ < _ _ _ 1 n
< 2 s -- 2 (s) ~"

We wish to choose u and v so that E (u p X) < i <
E(v p X) , E(l B J) = E(v p X) -- E(u o X) is o(n), and
P(i < u p X o r i > v p X) = o(n -1) (this latter condi-

166 Communications March 1975
of Volume 18
the ACM Number 3

t ion ensures tha t expected work will be o(1) for the
cases we "miss" i 0 X and have O(n) work yet to do).
To do this we choose u p S and v p S so that

E(u o X) ,4- 2d~r(u o X) ~--- i _~ E(v o X)
-- 2dcr(v p X), (12)

where d = d(n) is a slowly growing unbounded func-
tion of n. Wha t is intended here is that it will become
extremely unlikely (as n --+ oo) that one has chosen a
sample S such that (u p X) > i or (v p X) < i. Thus as
S varies, (u p X) may vary as indicated in Figure 2,
but we almost always have u p X < i < v p X. Since

--d 2

2 . fd e r f (x) dx _< ce_e__d ' for some constant (13) ¢,

we will choose d = (In(n)) ~. This ensures that P(i <
u o X or i > v o X) = o(n-~). The above equations
mean that

u p S ' ~ ' ~ - (i - - d ((n4 - l) (n - - s)) ~) \n -4- 1:11~

> i(s ,4- 1) d(s)½,
- (n - q - l)

and

v p S ~ (i = + d ((n

<_ i(s ,4- 1) ,4- d(s)~.
(n + l)

(14)

2.2 Analysis of the Basic Algorithm
Let g(i,n) denote the expected number of com-

parisons made by SELECT. It will be shown inductively
that

g(i,n) = n ,4- min(i,n - i) ,4- O(n~ In~(n)) (15)

The above is true for all n less than some fixed N, so
the basis for induction is clearly satisfied. We proceed
with the inductive step by determining the cost of
S E L E C T as a function of s(n) and n, and then optimiz-
ing the choice of s(n).

The cost of selecting u and v can be estimated as
follows. First we apply S E L E C T recursively to S to
select u, then we extract v f rom those elements of S
which are greater than u. (Note that selecting u means
determining which elements of S are greater than u as
well.) These two operat ions cost

g(uoS , s) + g (v p S - - u p S , 4 . 1 , s - - u p S)
<_ 2s ,4- v o S -- u o S + O(s ~ ln~(s)) (16)

< 2s q- 2d(s) ~ -4- O(s~ ln~(s))

comparisons.
The cost of compar ing each element in X - S to u

and v is easy to compute. There are n -- s(n) elements
to compare, and the probabil i ty that two compar isons
will be made for an element is just min(u p S,s ,4- 1 --
u p S) / (s ,4- 1), so that the total is

(n - s(n))(1 ,4- min(i,n -- i)/n ,4- ds-~). (17)

The cost of finishing up, if i 0 X fails in B, is at most
g(I B t/2, I B I). But

E(I B l) = (v p S - - u p S) n / s = 2dns -½ (18)

so that

g(I B I/2, I B I) = 3dns-½ 4-
O((dns-½)~(ln(dns-½))~). (19)

On the other hand, if i 0 X falls in A or C, the ex-
pected cost of finishing up is at most 3n/2, and the
probabil i ty that i0 X E A or i 0 X ~ C is, f rom (13),
less than c/(dn), so that the total work expected in this
case is less than 3c/(2d), which goes to zero as n ~ m.

The total expected cost of S E L E C T is thus

g(i,n) ~ 2s ,4- 2d(s)t ,4- O(s ~ ln~(s))
,4- (n - s)(1 ,4- min(i,n - i)/n ,4- ds -~)
,4- 2dns -~ ,4- 3c/(2d)

< n + min(i,n - i) -4- s -4- ds~
-- min(i,n - i)s/n
-4- 3dns -~ ,4- 3c/(2d) ,4- O(s ~ ln~s). (20)

The principal increasing and decreasing terms in s
in this expression are s and 3dns -~. Choosing s(n) to
make them equal will approximately minimize g(i,n).
Thus we choose

s(n) ~, n ~ ln~(n) (21)

which, together with (20), yields (15), which was to be
proved. This completes the analysis of SELECT.

2.3 An Improved Version of SELECT
We now introduce a small modification to S E L E C T

in order to reduce the second-order term to the promised
O(n~). Let 5'1 c S, c • - • c Sk = X b e a nested series
of r a n d o m samples f rom X of sizes sl, &, • • • , sk -- n.
Fo r each sample Sj, let uj and v: be chosen f rom S~ as
in (14) so that

uipXJ = (i - - d ((n - t - 1) (n - s j)) ') " \ n ~ - l J

and (22)

vjpSi = (i q- d (.(n 4- 1)(n - s :) ') " ~ (sj 4- 1~
si / / ' \ -~ql /"

Thus it is very likely, for any j, that uj p X < i <
vi 0 X. Fur thermore , as j approaches k (i.e. as sj gets
large), ui and vj sur round i 0 X ever more closely. In
fact, uk = i 0 X = vk. The cost of finding u3 and vj
directly f rom Si is of course prohibitive for large values
of sj. However , since

E(uj - lpS j) = (uj-lpSj-1) • s~-4-1 < u joSj , (23)
sj-l + 1

and similarly E(vj_l o Si) >__ vj p Sj, we can use u:_l
and vj_l to bound the search for uj and vj. See Figure
2 for a graphical representat ion of the modified SE-
LECT.

167 Communications March 1975
of Volume 18
the ACM Number 3

The Improved Algorithm. The modified algorithm
runs as follows.

Step 1. Draw a random sample S~ of size s, f rom X,
and select Ul and v~ using this algorithm recursively
(and the ranks given in (22).

Step 2. Determine the sets A.,., B.,, and C.,, a partition
of $2, by comparing each element in &. - $1 to ut

and vt (using the same order of comparison strategy
as the original S E L E C T) .

Step 3. Next, determine u2 and v~ by applying this
algorithm recursively to B2 (in the most likely case;
else A., or C2).

Step 4. Extend the partition of S~ determined by u~
and v2 into a partition A~, B~, C~ of S~ by comparing
each element of S~ -- S~ to u2 and v~ with the same
comparison strategy.

Step 5. Continue in this fashion until a partition Ak,
B~, C~ of the set S~ = X has been created.

Step 6. Then use the algorithm recursively once more
to extract i 0 X from B~ (or A~ or C~, if necessary).

This "boots t rapping" algorithm has the advantage
that the expense of computing a good bounding interval
[uj,v~J for i O X is reduced by first computing at a
fraction of the cost the less tight bounding interval
[u~_~, v~-_~]. We keep d(n) = ln½(n) as before, to ensure
that the probabil i ty that i0 X is not in [us, v~] is of
order o(n- ') . The probabil i ty that u~ or vi is not in the
interval [u~_~, vj_a] is also negligible, since

~(uj-~pS~) < s~ and (24)
2(s~_~)~

E(u ioS~ - - t l i - l p S j) --~ d" (s~ -- (s~) ~) (25)
(S~-l)~

2.4 Analysis of the Improved Algorithm
To compute the cost of the algorithm, we assume

inductively, as before, that

g(j ,m) = m q- min(j,m - - j) + O(m½), (26)
for r e < n , 1 < j < rn.

The expected size of Bj is easily estimated:

E(Ieil) = (p j - l p S j - 1 - U j - l p S j - 1) • ~ (27)

< 2dsH(s¢_l) ~.

The cost of selecting u.2,v.,, , uk-1, V~_l f rom the sets
B~, . . . , Bk-1 is just

~., (g(us p Bj, I Bs I) + g(vj p By -- us p Bs
2<1 <k--I

q- 1, I B~ I --uj p Bi)) (28)
<_ ~_, (4dsi/(sj-~) ~ q- 2d(s~)t),

2<i<k--1

whereas the cost of selecting u, and vx f rom & is less
than

2sl + 2d(sl) ~, (29)

while the cost of selecting u~ = vk = i 0 X f r o m B k i s

at most

3dn / (s~._l) ½. (30)

The cost of partitioning S., - $1, Sz~ - S~, . . . , Sk --
&.-1 about ui and vi, u2 and v , , . . . , uk-i and v~._, is just

(sj - s~_l)(1 + min(i,n - i) /n + d/(Si_l)~). (31)
2<j<k

Adding these all together, we have

g(i,n) < n q- min(i,n -- i) -q-

(5dsH(si_i)½ + d(si)~) (32)
2 < j < k

-+- sl(1 -- min(i,n -- i) /n) + d(sl) t

-- dn/(sk_l) ~.

This sum can be approximately minimized if we let
si, s2 , . . . , sh- increase geometrically with ratio r ~, so

2j --2 that s¢ = r s~, and

g (i , n) < n + min (i , n -- i)

~k (S1) 2 (/ 5 d F () ½) + + @ • ~ r~
2<j<k

< n + m i n (i , n - - i)
(5d ()~) (r k - l - 1) 2 (33)

+ \ ~ + '~ \ ; - - - i .r

n + min (i , n - - i)

!)
This is approximately minimized when s~ = lntn, and
r = 4.32, yielding

g(i,n) < n + min(i,n -- i) + O(n~), (34)

which was to be shown.

3. Implementation and Timing Results

In this section we present an Algol implementation of
S E L E C T and give timing results that demonstrate that
our theoretical results yield fruit in practice. While this
is a revised form of the simpler version of S E L E C T given
in Section 2, it again uses the optimal or near optimal
number of comparisons i1 + min(i,n -- i) + o(n).
The total work is also seen to be a small constant times
the number of comparisons made, showing that the
number of comparisons made is indeed a valid ef-
ficiency measure in practice as well as theory. The
purpose of this section is to show that S E L E C T is very
efficient for practical values of n, as well as asymp-
totically as n --~ ~ .

We assume that it is desired to have the same input-
output relationships as FIND. That is, we are given an
array segment X[L :R] and an integer K such that
L < K < R; we wish to rearrange the values in X[L : R]
so that X[K] contains the (K -- L -k- 1)-th smallest
value of X [L : R] , L < I _< Kimpl i e s X[I] <_ X[K],
and K < I < R implies X[I] > X[K]. An implementa-

168 Communications March 1975
of Volume 18
the ACM Number 3

Fig. 3.

1.50- 14.mln(a, 1 ~) F3(a)

MO-

F2la)

1.30-

FI(~O

1.20.

1.10'

1.00_

0.00 .10 .20 .30 .40 .50 ,60 .'/0 .80 .90 1 .CO

Timing results were then obtained for FIND [3]
(exactly as published) and S E L E C T [2]. The testing was
done in SAm (an ALGOL dialect) on the POP-10 at Stan-
ford's Artificial Intelligence Laboratory. These results
are given in the description of the algorithm on page 173.

S E L E C T clearly outperforms FIND. This results
f rom a slightly faster partitioning scheme combined with
a large reduction in the partitioning required due to the
effective use of sampling.

4. Lower Bounds for F(a)

tion of the complicated version of S E L E C T given in
Section 2 will not be given, since no advantage is ob-
tained over the simpler version except for unrealistically
large values of n.

The innermost loop of the algorithm is obviously
the partitioning operation. Any reduction in the com-
plexity of partitioning will show up as a significant
increase in the efficiency of the whole algorithm. The
basic algorithm, however, requires partitioning X about
both u and v simultaneously into the three sets A, B,
and C, an inherently inefficient operation. On the other
hand, partitioning X completely about one of u or v
before beginning the partition about the other can be
done very fast. We therefore use an improved version
of Hoare 's P A R T I T I O N algorithm [3] to do the basic
partitioning. A further (minor) difference is that after
partitioning has been completed about one element
another sample is drawn to determine the next element
about which to partition. This permits a very compact
control structure at little extra cost.

The procedure as written in ALGOL 60 appears in
this issue [2]. The algorithm first determines the element
T about which to partition. It was found experimentally
that sampling was worthwhile only for values of N (the
size of input set) greater than 600. This is due to the
expense of computing square-roots, logarithms, etc.,
which cost more than they are worth for small N. If
sampling is performed, the recursive call to S E L E C T
leaves the desired element T in X[K]; if sampling is not
done, the algorithm partitions about whatever was in
X[K] initially (this is good if X was already sorted).
The partitioning phase is initialized to obviate sub-
script range checking. Note that there is really no good
way to avoid re-partitioning the sample or at least mov-
ing most of it later, but having it located around X[K]
probably minimizes the number of exchanges necessary.
Since either L or R changes at each iteration, the num-
ber of elements remaining always decreases by at least
one, thus ensuring termination.

In this section we present new lower bounds for the
expected number of comparisons required for selection,
again, assuming all input orderings are equally likely.
Although we believe S E L E C T to be (first-order) asymp-
totically optimal, we have been.unable to derive a lower
bound for F(a) equal to the upper bound of 1 + min(a,
1 - a) produced by our analysis of SELECT. The
bounds derived here are within 9 percent of that value,
for all ~, though, and the strength of these results rela-
tive to the weakness of our methods lends support to
our conjecture.

We will define a sequence Fi(a), for 0 < j _< oo, of
lower bounds for F(a) such that Fj(a) <_ Fj+I(a), for all
j >__ 0 a n d a, 0 < a < 1. The functions F0(~), Fl(a),
F..,(a), and F3(a) have been computed- - the function
F3(a) thus being our best lower bound for F(~). These
bounds have been plotted against a in Figure 3. The
value of F~(a) at a = .5 is 1.375, which tapers off as
approaches 0 or 1, essentially becoming identical with
1 q- min(c~, 1 - ~) n e a r the extremes.

We first prove a basic result.
THEOREM 1. Any selection algorithm that has deter-

mined i 0 X to be some element y q X must also have
determined, for any x ~ X, x ~ y, whether x < y or
y < x .

PROOF. Assume that there exists an x incomparable
with y in the partial order determined by the algorithm.
Then there exists a linear ordering of X, consistent with
the partial order determined, in which x and y are ad-
jacent (since any element required to lie between x and
y would imply a relationship between x and y in the
partial order). But then x and y may be interchanged
in the linear order without contradicting the partial
order- -demonst ra t ing an uncertainty of at least one in
y p X, so that y is not necessarily i 0 X. []

The following definition provides the basis for the
lower bound computations. We use notation "x " y"
to denote a comparison between elements x and y.

Definition 1. The key comparison for an element
x C X, x ¢ i 0 X, is defined to be the first comparison
x : y such that

y = i O X o r x < y < i O X o r i O X < y < x . (35)

Note that determining which comparison is the key
comparison for x can in general only be done after all

169 Communications March 1975
of Volume 18
the ACM Number 3

the comparisons have been made and i 0 X has been
selected. Each element x, x ~ i 0 X, must have a key
comparison; otherwise x would be incomparable with
i 0 X, a contradiction by Theorem 1. This proves

LEMMA 1. A selection algorithm must make exact ly

n -- 1 key comparisons to select i 0 X , where I X I = n.
We now define two more essential concepts.
Definition 2. A f r a g m e n t of a partial ordering (X, <)

is a maximal connected component of the partial order-
ing, that is, a maximal subset S ___ X such that the
Hasse diagram of " < " restricted to S is a connected
graph. In other words, elements x and y are in the same
fragment of the partial ordering if there is a sequence
of elements x = zl, z.~, • • • , z~ = y such that the com-
parison zi : z;+l has been made for 1 < i < k (with no
restrictions on the results of these comparisons). These
comparisons need not have been performed in the indi-
cated order; any order will do. The Hasse diagram of a
partial order is a directed graph with vertices corre-
sponding to each element of the partial order and an arc
x---* y indicated whenever (x < y) A -n (=lz)(x < z <
y). We adopt the usual convention of omitting arrow-
heads and requiring y to be higher on the page than x
if x ---+ y is an arc of the Hasse diagram.

Any partial ordering can be uniquely described up
to isomorphism as the union of distinct fragments. A
selection algorithm thus begins with a partial ordering
consisting of n fragments of size 1. To illustrate, let 5%
be the set of all fragments having at most k elements:

~ , = { . 1 ,

a3 = { ' , : , A , V , | } , and so on.

Definition 5. A joining comparison is any comparison
between elements belonging to distinct fragments.

Note that each joining comparison reduces the total
number of fragments by one, implying the following.

LEMMA 2. A selection algorithm must make exact ly
n - 1 joining comparisons to select i 0 X, where I X I = n.

PROOF. As long as more than one fragment exists,
there must be some element incomparable with i 0 X,
since elements in distinct fragments are incomparable.
The lemma then follows f rom Theorem 1.

Our lower bounds will be derived f rom the con-
flicting requirements of lemmas 1 and 2 - - a selection
algorithm can not in general have all of its joining com-
parisons be key comparisons, or vice versa. In fact, the
authors make the following conjecture:

CONJECTURE. Asymptot ica l ly (as n --~ ~), the aver-
age probabil i ty that a joining comparison will turn out
to be a key comparison is at most

max(a,1 -- a). (36)

We must use the asymptotic average probability,
since near the end of an algorithm, the probabili ty of a

170

particular joining comparison being a key comparison
may easily exceed (36). This happens because near the
end of the computation there are often elements with a
significant probabili ty of actually being i 0 X, and a
comparison with one of these elements can have a
somewhat larger probability of turning out to be key.
As an example, consider the comparisons of a previ-
ously uncompared element x with an element y which is
known to be the ith smallest of the remaining n - 1
elements. Then

P (x : y is key) = P (y = i O X < x)

-q- P (x = i O X < y) (37)
= (n - i q- 1)In,

which, for a < 1/2, is a little larger than max(a, 1 --
c0 = 1 -- a = (n - - i - t - 1)/(n q- 1).

Unfortunately, we could not find a proof of our
conjecture, which would imply the optimality of
S E L E C T for all values of a. Our results stem therefore
f rom an analysis of only those joining comparisons in
which at least one of the fragments being joined is
small. We are left with just a small finite number of
cases (i.e. possible types of joining comparisons) to
consider, since we will not distinguish between the
various kinds of large fragments that might participate
in a joining comparison. We want to estimate, for each
type of joining comparison, the probabil i ty that it will
turn out to be a key comparison. These probabilities
will then be used in an interesting way to derive a lower
bound for F(a).

As noted above, the probabili ty that a joining com-
parison will turn out to be a key comparison is certainly
affected by the probabili ty that one of the elements
being compared is actually i 0 X. The following argu-
ment shows that we may treat this latter probabil i ty as
being negligible, for large n. Given some e, 0 < e < 1,
it is easy to see that there exists an integer m such that
the maximum probabil i ty that any element x C X is
actually i 0 X is at most e if the largest fragment has
size at most n -- m. For if x is incomparable with m
elements f rom other fragments, then it has a chance of
being i 0 X of at most

P (x = i 0 X) < (27rma(1 -- a)) -½

~ (m m) (1 - -
= . , ~ .) (38)

which is less than e for m > (2rra(1 - a)ez) -1. So except
for a finite number of comparisons near the end, the
probabili ty that any element is i 0 X is at most e. As
n ~ ~ , these latter comparisons form a negligible
proportion of the total number of comparisons made,
and their effect on the probability that an average
joining comparison will be a key comparison becomes
insignificant. We will therefore assume from now on
that the probabili ty that either element being compared
is i 0 X is zero.

To derive Fk(a) we need to compute the probabil i ty

Communications March 1975
of Volume 18
the ACM Number 3

that each joining compar ison in which the smaller frag-
ment has at most k elements will turn out to be a key
comparison. These compar isons can be divided into
two types: those for which both fragments belong to
~k, and those for which only one f ragment has k or
fewer elements. The first type is somewhat simpler to
handle so we shall treat it first, by means of an example.

Consider the compar ison of the smaller o f a pair of
elements x < z, to an isolated element y :

Z

X / "

(39)

As a result of this comparison, we will end up with
either

t z o r x

Y

(40)

The probabili t ies of these two outcomes are not e qua l - -
the first occurs with probabil i ty 2/3 while the second
occurs with probabil i ty 1/3. This happens because the
first ou tcome is consistent with the two permutat ions
x < y < z and x < z < y, whereas the second outcome
is only consistent with y < x < z. Since each permuta-
tion consistent with the input fragments is equally
likely, the probabil i ty of each outcome is propor t ional
to the number of permutat ions consistent with that
outcome.

We must now consider each permutat ion consistent
with the input fragments separately, since to determine
whether x : y is a key compar ison requires knowing
the relative order of x, y, i 0 X, and all elements previ-
ously compared to either x or y. Let us consider the
permutat ion x < y < z first, consistent with the first
outcome. With respect to i 0 X, these t h r e e e l e m e n t s
may be in one of four positions. That is, i 0 X may be
greater than f rom zero to three of these three elements.
In only two of these cases will x : y turn out to be a
key compar ison :
(i) i O X < x < y < z

this will be a key compar ison for y,
(i i) x < i 0 X < y < z

this will no t be a key compar ison,
(iii) x < y < i 0 X < z

this will be a key compar ison for x,
(iv) x < y < z < i 0 X

this will not be a key compar ison, since x has
already been compared to z.

The probabil i ty of each of these four cases occurring,
given that x < y < z, follows the binomial distribution
with p = c~, so that case (i) occurs with probabil i ty
(1 - - c~) 3 and case (iii) occurs with probabi l i ty 3c~2(1 --
c~). The analysis of all three permutat ions consistent
with (39) can be represented graphically, using hori-

zontal lines to indicate the relative posit ions o f i 0 X
that make x " y a key compar i son :

X X

Z

X

Y

(41)

The total probabil i ty that x : y turns out to be a
key compar ison is thus the average probabil i ty that
x : y is a key compar i son in each of these three cases.
This is just (finally!):

3
c~. (42) P(x:y is key) = (1 - ~)3 + 2c2(1 _ c~) + ~-

Whenever both fragments are small, the probabil i ty of
a compar ison joining them turning out to be key can
be computed in the above fashion. This completes our
description of the analysis of a compar ison joining two
small fragments.

When an element x belonging to a small f ragment
is compared to an element y f rom an arbi t rary f ragment
having more than k elements, the analysis can not be
done in t h e . a b o v e fashion since we essentially know
nothing about y; its probabil i ty distribution and proba-
bility of already having had a key compar ison must
remain totally unspecified. It is still possible, however,
to derive an upper bound on the probabil i ty that the
compar ison x : y will turn out to he a key comparison,
since if x and y fall on different sides of i 0 X the com-
parison can not be a key comparison. It is thus easy to
see that

P(x : y is key)
_< m a x (P (x < iOX), P(x > iOY)). (43)

For example, to compare x of the f ragment :

~ x (44)

against an arbi t rary y, the case analysis can be repre-
sented graphically as before, using a horizontal line to
indicate the relative position of i 0 X making a key
compar ison possible:

~ x ~ X ° r ~ x _ ~ x

for x < iOX for x > iOX

We have then directly f rom (43) and (45)

P(x : y is key)
_< max(a 3 + 3c~2(1 -- c~)/2, (I -- c~) 3

q- 3a(1 -- c~) 2 q- 3c~2(1 -- c~)/2).

(45)

(46)

This kind of analysis is simple to carry out for an x

171 Communications March 1975
of Volume 18
the ACM Number 3

belonging to any small fragment, so that we now have
ways of computing (an upper bound for) the proba-
bility that any comparison joining a small fragment to
another fragment will turn out to be a key comparison.

We will now describe how specific results such as
(46) and (42) above can be combined to derive Fk(a).
We will assign a weight to a partial ordering which is a
lower bound on the expected number of non-key joining
comparisons yet to be made in selecting i 0 X. The total
number of comparisons made on the average is thus
bounded below by n -- 1 (for the joining comparisons)
plus the weight of the partial ordering (to ensure that
n -- 1 key comparisons are made as well). The weight
of a partial ordering is defined to be the sum of the
weights of its constituent fragments. The weight of a
fragment is a number assigned to that fragment which
will be computed f rom the specific probabili ty results
already calculated by means of a linear programming
technique. A fragment weight is an invariant number
associated with that fragment type. The weight of a
partial order varies only as its composition as a set of
fragment types varies.

What we want to ensure is that as a result of a join-
ing comparison the expected weight of a partial ordering
does not decrease by more than the probabili ty that
that joining comparison was non-key. This guarantees
that the weight of the initial partial ordering is a valid
lower bound for the expected number of non-key
joining comparisons made. Since we only have data
for those fragments with k or fewer elements, only
those fragments will be assigned positive weights--all
larger fragments will have weight zero. (In particular,
the weight of the final partial ordering, in which i 0 X
has been determined, must be zero.)

Let us consider the computation of F._,(a) as an ex-
ample. Let Wl be the weight of the fragment • and let
w2 be the weight of Z. The weight of the initial partial
ordering is therefore just nw~. We want to maximize wx
subject to the constraints imposed by our previous com-
putations about specific kinds of comparisons. For
example, a comparison between two isolated elements
is non-key with probabili ty 2c~(1 -- c~), yielding the in-
equality:

2w~ - w~ _< 2c~(1 -- ~). (47)

Comparing an isolated element against an arbitrary
element f rom a fragment with more than two elements
yields the inequality

wl _< min(~,l -- o 0. (48)

A computer program was written to generate all the
relevant inequalities like (47) and (48) for a given k.
Note that when two fragments are being joined such
that two different outcomes are possible, both in ffk,
the probabil i ty of each outcome must be considered
when computing the expected weight of the resultant
fragment after the comparison has been made. The
linear programming algorithm M I N I T of Salazar and

Sen [7] was used to determine the maximum weight wl
possible for the isolated element. The value 1 q- wl is
then our lower bound for F(c~) (that is, Fk(c~) = 1 + wl).

When k = 1 the solution takes a particularly simple
form:

r (a) >_ FI(~) = 1 +c~(1 -- a). (49)

The functions F.2(c~) and F3(c~) are too complicated to
give here, but are as plotted in Figure 3. For the case
of computing medians they reduce to

(1) 49
F2 =)-~ n and (50)

F~ = ~- n, (51)

which is within 9 percent of 1.5n (the performance of
S E L E C T) . It is clear f rom the figure that Fk(a) probably
converges rather slowly to 1 -k- min(a,1 -- a), if our
conjecture is correct.

This completes the description of" our lower bound
derivations. The results show that S E L E C T is at least
near-optimal with respect to the number of comparisons
used, and we suspect that a more powerful combina-
torial analysis would demonstrate optimality. The
weakness in our method lies in the restricted nature of
the inequalities derivable for the case of a comparison
between a small fragment and an arbitrary element
belon'ging to a large fragment. In any ease these lower
bounds are the first nontrivial lower bounds published
for this problem.

Received October 1973; revised July 1974

References
1. Blum, M., Floyd, R.W., Pratt, V., Rivest, R., and Tarjan,
R. Time bounds for selection. JCSS 7 (Aug. 1973), 448-461.
2. Floyd, Robert W., and Rivest, Ronald W. Algorithm 489,
The algorithm SELECT for finding the ith smallest of n elements.
Comm ACM this issue.
3. Hoare, C.A.R. Algorithm 63 (PARTITION) and Algorithm
65 (FIND). Comm. ACM 4, 7 (July 1961), 321.
4. Knuth, Donald E. Mathematical analysis of algorithms.
Computer Sei. Dept. Rep. STAN-CS-71-206. Stantbrd U., Mar.
1971.27 pp.
5. Lindgren, B.W. Statistical Theory. The MacMillan Co., New
York, 1962.
6. Rivest, Ronald L., and Floyd, Robert W. Bounds on the
expected time for median computations (extended abstract).
Courant CompLter Science Symposium 9, Randall Rustin [Ed.]
Algorithmics Press, New York, 1973, pp. 69-76.
7. Salazar, Rodolfo C., and Sen, Subrata K. Algorithm 333
(MINIT algorithm for linear programming. Comm. ACM 11,
6 (June 1968), 437-440.

172 Communications March 1975
of Volume 18
the ACM Number 3

