
Some Comments on the First Round

AES Evaluation of RC6

Scott Contini1, Ronald L. Rivest2, M.J.B. Robshaw1,
and Yiqun Lisa Yin1

1 RSA Laboratories, 2955 Campus Drive, San Mateo, CA 94403, USA
fscontini,matt,yiqung@rsa.com

2 M.I.T. Laboratory for Computer Science, 545 Technology Square, Cambridge,
MA 02139, USA

rivest@theory.lcs.mit.edu

1 Introduction

The �rst round of the AES process is coming to an end. Since August of 1998,
the cryptographic community has had the opportunity to consider each of the
�fteen proposed AES candidates. In this note, we take the opportunity to answer
some of the questions and to respond to some of the issues that have been raised
about the suitability of RC6 as an AES candidate.

2 Encryption/Decryption Performance of RC6

Since the publication of RC6 a variety of researchers and implementors have
examined RC6 and considered its performance in a wide range of environments.

2.1 32-bit architectures

RC6 is one of the fastest AES proposals on 32-bit architectures, particularly
so on the NIST reference platform of a 200 MHz Pentium Pro. It is argued by
many that the most reasonable way to assess the performance of an algorithm
is to consider its speed in an assembly language implementation. We agree that
this is the case. However it is also interesting to consider how the performance
of RC6 compares when using di�erent compilers. It is important to note that to
take advantage of compiler-speci�c optimizations the source code provided to the
compiler might need to be changed. When we do this a wide range of performance
speeds on the NIST reference platform become possible as is illustrated by the
following table.

Speed in Mbits/sec on 200 MHz Pentium Pro

Compiler Encrypt Decrypt

Borland (writing rotate as (i)) 41:5 45:2
MSVC (writing rotate as (i)) 53:4 57:0
MSVC (using rotl and rotr) 97:8 82:3
GCC (writing rotate as (i)) 61:2 41:5
GCC (writing rotate as (ii)) 69:2 65:3

Examples of suitable code are given for left rotate where | is used to denote
the bitwise inclusive-or. Right rotate requires a similar form.

(i): ((a) >> (32-(b))) | ((a) << (b)).
(ii): (((a) << (int)(b)) | ((a) >> (32 - (int)(b))).

The generally superior performance of RC6 on the NIST reference platform,
the Pentium Pro, is a very positive attribute of the algorithm. On other 32-
bit architectures however, such as the Pentium, it seems that the performance
advantage of RC6 is somewhat reduced [25]. Despite this RC6 still seems to be
consistently ranked among the better-performing algorithms.

2.2 8-bit architectures and smart cards

During the performance assessment in the �rst round, several researchers im-
plemented AES candidates in 8-bit environments. At this point it becomes ex-
ceedingly di�cult to compare the di�erent algorithms since few algorithms have
been implemented in the same environment in a consistent manner.

We have analyzed the number of cycles required to encrypt with RC6 using an
Intel MCS51 and our estimate is that encryption would require around 12; 700
cycles. This is a little faster than some other estimates given, such as those
provided by Hacez et al. [14] which quotes 14; 500 cycles for encryption.

The key scheduling with RC6 has been the subject of some discussion. This
revolves around the two issues of performance and RAM requirements.

The key-scheduling process is quite time-consuming requiring between 27; 000
cycles (RSA Laboratories estimate) and 43; 000 cycles [14]. This is equivalent
to the cost of encrypting three to four blocks of data. In addition, the key
schedule provided in the algorithm description of RC6 [24] does not allow the
subkeys to be computed on the y. At �rst sight it appears that the entire array
of subkeys has to be generated before encryption and/or decryption can start
requiring at least 176 bytes of RAM. At the Second AES Conference, however,
Keating [16] demonstrated how the RC6 key scheduling could be accomplished
with less RAM though in fairness, the performance hit when doing this would
likely be prohibitive.

It is really unclear at the moment how important the performance of the
AES algorithm is going to be on such severely memory-restricted 8-bit proces-
sors. We are unconvinced that performance on 8-bit processors is likely to be
a pressing issue in the near future, much less so when we look even ten years
on. Given the trend towards system-on-chip solutions and hybrid architectures
using coprocessors, perhaps a more useful measure of the performance of RC6 in
a constrained environment is given by Hachez et al. [14] in their implementation
of four di�erent AES candidates on the ARM processor. In Section 6.2 of [14]
it can be seen that RC6 performs very well in this environment. With regards
to the amount of RAM available, many predictions suggest that even on the
cheapest smartcards there will routinely be more than enough for our purposes.

It is interesting to note that the key schedule of RC6 is a separate component
from the encryption routine and is, in principle, replaceable. We show in the

Appendix a possible alternative way of providing the key scheduling for RC6
that might be of some independent interest.

2.3 Future architectures

An important consideration for the AES, given its intended lifetime of 20 to 30
years, is the suitability of the chosen algorithm on future architectures. While it
is di�cult to make predictions on how di�erent algorithms will perform, there
has been some initial assessment. In this section we will consider the performance
of RC6 in 64-bit environments and also the impact of future levels of parallelism.

Chief among current estimates is the work by Baudron et al. [1] where RC6
is timed on existing 64-bit platforms such as the DEC Alpha. Since the design
of RC6 is oriented to 32-bit platforms there are no substantial problems in im-
plementing RC6 in such environments. However, it may be the case that any
performance gains that other algorithms attain, most notably those of the DFC
algorithm [12], are not mimicked by similar gains for RC6. Much of this is due
to the instruction set supported on these 64-bit architectures. Despite this, we
would expect that some improvements could be made by adopting some simple
programming tricks. For instance, left-rotating a 32-bit word x by some value y
can be accomplished as follows. First de�ne a 64-bit quantity z as z = (x <<

32) | x where | is used to denote the bitwise inclusive-or. Then the least 32
bits of z >> (32 - y) is equal to x left-rotated by y bit positions. This could
be useful in certain sitations. We also note that if an operation to perform the
64-bit rotate of a by b bit positions were available, say ROTL(a,b), then we could
derive x <<< y by taking the least 32 bits of ROTL(z, y) where z is also formed
as above.

However, it is clear that such tricks can give only a partial improvement.
Nevertheless without any additional attempts at optimization, the relative drop
in performance of RC6 as measured and estimated by Baudron et al. is not as
signi�cant as it might �rst appear. The estimated encryption speed for DFC on
the Alpha 21164a (the fastest of the AES submissions in this environment) is
304 cycles per block, whereas RC6 is estimated at 467 cycles per block. This
is around 50% slower. Note however that this is a crude estimate that may or
may not take account of assembly hand-optimization and appears to be using
platforms that could themselves be just as obsolete in a few years as current
32-bit platforms are expected to be among the 64-bit enthusiasts. As a result it
does not necessarily give a good indication of future performance.

Instead it would be better to look to future 64-bit designs to consider how
the di�erent algorithms will fare. As a �rst step, during the rump session at the
Second AES Conference Doug Whiting presented some preliminary results on
the implementation of four AES candidate algorithms on sample Merced and
McKinley chips. These are 64-bit architectures, and might appear to o�er some
indication of the expected performance gains of di�erent algorithms.

Cycles on Factor change Factor change
Algorithm Pentium Pro with Merced with McKinley

RC6 250 2:5 2:1
Rijndael 283 0:6 0:5
Serpent 900 0:8 0:8
Two�sh 258 0:8 0:7

The fact that it appears that RC6 will require so many more cycles on a
new-generation 64-bit Intel chip than on an existing 32-bit chip is surprising to
say the least! Unfortunately the results obtained were obtained under conditions
of non-disclosure and there is no way of looking at the code or examining the
details of the implementation. We suspect that the �gures given are for a pre-
liminary version of the chip, perhaps using microcoded routines instead of single
instructions. We would be very surprised if such a situation were to remain the
case in future generations of full production chips. However this will clearly be
an important issue in any future comparison between the AES candidates.

Finally we discuss the issue of parallelism and cite the work of Craig Clapp [6].
In this paper, the e�ect of increasing levels of parallelism is investigated for seven
of the AES submissions, including RC6. There it is shown that for a limited
increase in the amount of parallelism available in the processor, RC6 would pro-
vide suitably increased performance speed. With very high degrees of parallelism
available, some other submissions have the potential for a greater improvement
in performance than RC6 and accomplish an encryption rate comparable to,
and even surpassing, that of RC6. However the advantage in performance over
RC6 for even the fastest algorithm when such extensive parallelism is available
(Rijndael) is estimated to be by a factor of around 30%.

2.4 Java performance

At the second AES conference, NIST provided information on the performance of
the di�erent AES algorithms in Java [22]. There were several interesting aspects
to this chart including the surprisingly poor reported performance of RC6.

This is completely at odds with our own measurements. NIST estimates
the performance of RC6 using the JIT compiler to be around 1.4 Mbits/sec.
However internal measurements at RSA Laboratories give a speed of around 25.2
Mbits/sec. Indeed, the timing given by NIST is roughly equal to the timing we
obtain without the use of the JIT compiler. Currently we have no explanation for
why this might be the case. Our early thoughts on a known bug in JDK 1.1.6 with
JIT (see bugParade ID 4171185 at http://developer.java.sun.com) which
causes some, but not all, programs to drop out of JIT compilation might, or
might not, be relevant.

However we can point to several third party timings of RC6 and other AES
algorithms in Java. These are provided by Alan Folmsbee of Sun Microsystems
[11], NTT Laboratories [21], and Baudron et al. [1] and all three sources show
that from among the AES submissions, RC6 o�ers the fastest encryption and

decryption performance in Java. When we also consider the memory require-
ments for the di�erent algorithms as measured by NIST [22] then the suitability
of RC6 for Java applications becomes clear.

3 Minimal-Rounds Performance

Biham [2] made a very interesting presentation at the Second AES Conference
and descibed a fairer way to compare the performance of algorithms. There
Biham made the case that performance should only be measured when the al-
gorithms are considered to be o�ering similar resistance to cryptanalytic attack.

This is certainly the best way to compare algorithms, but unfortunately,
establishing the appropriate number of rounds for each algorithm to give com-
parable security is rather subjective. There hasn't been su�cient time to assess
the security of the di�erent ciphers to make such a comparison any more mean-
ingful than trusting the designers intuition and measuring the performance of
the ciphers on a standard platform. We would agree with Adi Shamir's sugges-
tion made during the subsequent discussion that such a comparison might be
better suited to the second round assessment of algorithms.

Nevertheless it is interesting to see how the di�erent algorithms compare
using Biham's current estimates of the number of rounds required to give com-
parable security. In the table that follows, we do just this, using two sources
of �gures for the performance of the algorithm. One source [2] is that given by
Biham for the Pentium with MMX and the second source [22] are the �gures
for an assembly implementation of the di�erent algorithms provided by Schneier
and quoted in [22].

Pentium Pro [22] Pentium (MMX) [2] Pentium Pro [22]
proposed rounds minimal rounds minimal rounds

algorithm rounds cycles algorithm rounds cycles algorithm rounds cycles

RC6 20 260 Serpent 17 956 Mars 20 244
Mars 32 390 Mars 20 1000 RC6 21 273
Two�sh 16 400 Rijndael 8 1021 Rijndael 8 293
Rijndael 10 440 Two�sh 14 1097 Two�sh 14 350
Crypton 12 476 Crypton 11 1175 Crypton 11 436
CAST-256 48 660 E2 10 1507 Serpent 17 547
E2 12 720 RC6 21 1508 CAST-256 40 550
Serpent 32 1030 CAST-256 40 1740 E2 10 600

It seems that by making a preliminary adjustment for the minimal number of
rounds, the performance di�erence between the top and the bottom algorithms
from among the eight highlighted is reduced. (These eight were chosen as the
top eight performers according to [2].) However when we look at the third col-
umn we see that the same algorithms appear in pretty much the same groupings
as they did in the �rst column. For the most part the designers recommended
number of rounds isn't too distant from the minimal number of rounds and it

doesn't appear that a minimal-round assessment really changes things dramati-
cally. Certainly, however, it is clear that Serpent in particular has been designed
with a considerable margin for safety.

4 Secure Implementation

At the Second AES Conference a number of papers discussed the relevance of
timing attacks [17] and simple and di�erential power analysis [18] when applied
to either the encryption routine or the key scheduling routine of the di�erent
AES submissions [3, 5, 10].

The �rst lesson to be learnt was that it is very di�cult to implement any
of the AES submissions so that they are absolutely resistant to such system
attacks. Certainly though one might be able to take some precautions in the
way di�erent algorithms are implemented. Usually, however, such algorithmic
�xes are at the expense of performance.

4.1 Timing attacks

The two operations in RC6 that seem to o�er the most exposure to timing attacks
are the data-dependent rotation and the multiplication. Several commentators
[15, 17] have previously mentioned that RC5 could in theory be vulnerable to
timing attacks if we make certain assumptions about how the data-dependent
rotation unit is implemented in practice. The most typical assumption for such
an attack to succeed is that the time required to rotate a w-bit word by t bit
positions is directly proportional to t. Certainly, if this rather strong assumption
holds then information about the subkeys used during encryption can be readily
derived. Indeed, Handschuh [13] gives a thorough analysis of such a timing attack
on RC5 under exactly this assumption.

Clearly, such considerations also extend to RC6 since it too depends heav-
ily on data-dependent rotations. However, for most modern processors data-
dependent rotation seems to be implemented as a constant time operation and
as a consequence for both RC5 and RC6, any concerns about timing attacks
involving the data-dependent rotation itself are immediately nulli�ed.

Other processors, however, may have a rotation or shift time that depends
linearly with the amount of rotation. This might apply particularly to processors
found in smart cards and other computationally limited environments. In such
situations, it is typically easy to arrange the work so that the total computation
time is independent of the data, even though the rotate and/or shift time might
not be. As an example, we compute a rotation by t bits using a left-shift of t
bits and a right-shift of w � t bits (for a wordsize of w bits). The sum total of
the number of shifts is w bit positions irrespective of the value of t provided.

Whether or not the data-dependent rotation is constant time or not, the
encryption and decryption time for both RC5 and RC6 can be considered to be
data-independent, thereby causing any potential timing attacks that attempt to
exploit the presence of the data-dependent rotation to fail.

The introduction of the integer multiplication might cause some observers
to think about timing attacks on RC6 because of what might be termed an
\early-out" strategy. To optimize performance, it is conceivable that a multipli-
cation operation A � B might be implemented with a look ahead strategy. In
particular, a processor might examine the bits of B (say) and if the high-order
bits of B are not set, then the multiplication might be aborted early since the
product has already been computed without the need to consider the role of the
upper bits of B. In such situations the time required to perform a multiplication
would be dependent on the data being multiplied and we believe that in such
circumstances a timing attack on RC6 would be successful.

Our own tests on Pentium, Pentium II and Pentium Pro processors show that
there is no such e�ect and this is consistent with the view that modern processors
do not have an \early-out" strategy. With earlier bit serial multipliers it would be
possible to skip over zeros in the multiplier (and, if done the right way, strings of
ones as well). However, modern array multipliers take the same time regardless
of the form of the inputs [19].

As with the operation of data-dependent rotations, however, we can also
illustrate an implementation �x if this is thought to be an issue. One possible
remedy is to use a blinding technique. Suppose we wish to compute x2 for some
x. Using an integer r picked at random we compute s = x � r. Then x2 can be
computed as r2 +2rs+ s2 the computation of which is independent of the form
of x. This however is a moderately costly alternative.

A more e�cient alternative is the following. Suppose we wish to compute x2

for some x. Let y = x j 0x80000000 where j denotes the operation of bitwise
inclusive-or. We thus have that y is equal to x with the top bit set. We then
compute y2 which will thwart any \early-out" strategy since the top bit is always
set. We also have that x2 = y2 mod 232 which is clear if x = y since immediately
we have that x2 = y2. Note also that if y = x+231 then y2 = x2+x232+262 which
is congruent to x2 modulo 232. The rest of the computation of f(x) = 2x2 + x

can be completed in constant time.

4.2 Power analysis

Protection against power analysis is a much more di�cult proposition. It seems
that advanced analysis of nearly any primitive operation [10] can be used to
deduce key-dependent information!

In this section we restrict ourselves to a consideration of Simple Power Anal-
ysis which might allow the constituent operations in the cipher to be identi�ed,
thereby potentially leaking key-dependent information. Protection against the
more advanced Di�erential Power Analysis will be the subject of ongoing re-
search.

For the data-dependent rotation there appears to be the following solution
that provides resistance to both timing attacks and simple power analysis. This
solution can be tweaked for di�erent data block sizes of two bits, four bits or
more, giving di�erent trade-o�s in terms of speed and memory requirements.
The example given here is for an 8-bit implementation.

First we store two arrays

shiftedbit[0][i] = 0 for 0 � i � 7 and

shiftedbit[1][i] = 1<<i for 0 � i � 7:

The following pseudocode shows how to provide a timing and simple power
analysis resistant implementation of a left rotation of x by y bit positions. A
right rotation can be implemented in a similar manner. Let z = x<<<y and let
x[0], : : :, x[3] be the constituent bytes of x with x[0] being the least signi�cant.
Similar notation is adopted for the constituent bytes of z while y is a single byte
value.

z[0] = z[1] = z[2] = z[3] = 0

for i = 0 to 31 do
bit = (x[i>>3]>>(i&7));
byte = shiftedbit[bit][(i+ y)&7];
z[((i+ y)>>3)&3] j = byte;

While providing algorithmic protection against Simple Power Analysis might
not be prohibitive, it's worth remembering that protection against the more ad-
vanced types of power analysis is particularly di�cult for all of the AES submis-
sions to achieve. This is certain to become an important area of future research.

5 Cryptanalysis of RC6

Over the months since RC6 was �rst presented to the public there has been
substantial interest from the cryptographic community. We suggest that some of
this interest has translated into an initial investigation into the security o�ered
by RC6. Yet there have been few observations that cast doubt on the security
o�ered. The most comprehensive and thorough investigation into the security of
RC6 remains that given in [8].

Indeed most of the work that has taken place since the publication of RC6
has been on investigating the di�erences between RC5 and RC6 and some of
the simpli�ed variants of RC6 [4, 7, 9]. This body of work all seems to provide
evidence that the changes made in moving from RC5 to RC6 were well-founded.
In particular the use of integer multiplication to provide good di�usive properties
and the �xed rotation have been highlighted several times as being particularly
important to the security of the cipher.

The only potentially negative observations that we are aware of were pre-
sented in Baudron et al. [1]. They are the following. The �rst observation is that
for the quadratic function f(x) = 2x2 + x there are many �xed points. Such
�xed points arise when x = 0 mod 216 so that f(x) = x. The most interesting
way we think that something like this might be useful to the cryptanalyst is
in observing a similar e�ect when forming truncated di�erentials [20] across the
quadratic function that hold with probability one. As an example, if we de�ne

some exclusive-or di�erence � to have the form � = xy00 where x and y are
arbitrary byte values, then given some input pair a and b such that b = a ��

we have that f(b) = f(a)��0 where �0 = x0y000. The output di�erence has the
same general form as the input di�erence though the values of the top two bytes
in the output di�erence may well be di�erent. Unfortunately for the attacker it
appears to be di�cult to use these in an attack because of the presence of the
�xed rotation by �ve bit positions hinders the construction of good truncated
di�erentials over su�ciently many rounds.

The second observation considers when each of the data-dependent rotations
in every round of RC6 takes the value zero. In such a situation the exclusive-or
of the least signi�cant �ve bits of two of the plaintext input words and the least
signi�cant �ve bits of two of the ciphertext inputs is a constant that depends on
the values of the subkeys. This might potentially allow for the recovery of some
key material. However because of the probabilities involved this seems to be
restricted to attacks on at most ten rounds of RC6, and indeed existing attacks
using linear cryptanalysis [8] appear to o�er better avenues for the attacker.
Interestingly, even though the amount of data available to the analyst is constant
since the block size is �xed, it could be that a theoretical attack could be mounted
with work-load less than that expected for a particular key length. It could be
that for 192- and 256-bit keys more than 20 rounds might be more appropriate
to prevent such theoretical attacks. However this issue will become clearer as
more detailed analysis of RC6 takes place.

6 RSA DSI's Position on Intellectual Property

The position of RSA Data Security on its policy with regards to any possible
intellectual property coverage of the �nal AES algorithm is clear and unambigu-
ous.

RSA will not require licensing or royalty payments for the manufacture,
use, or sale of products utilizing the algorithm selected as the AES, which
conform with the AES, on the basis of any patents that RSA may hold
that could be deemed to cover the selected algorithm. However, RSA
may require appropriate notices acknowledging RSA's ownership of such
patents.

This position is intended to promote our belief that the community is best
served by having an advanced encryption standard that is chosen on purely
technical grounds.

7 Conclusions

In view of the performance, security and exceptional simplicity of RC6, we believe
that it should be considered for inclusion in the second round of AES evaluation.

Acknowledgements

We would like to thank David Young for his thoughts on the suitability of RC6
for 8-bit and 64-bit environments.

References

1. O. Baudron, H. Gilbert, L. Granboulan, H. Handschuh, A. Joux, P. Nguyen,
F. Noilhan, D. Pointcheval, T. Pornin, G. Poupard, J. Stern and S. Vaudenay. Re-
port on the AES candidates. In Proceedings of The Second AES Candidate Con-

ference, pages 53{67. March 22-23, 1999.

2. E. Biham. A note on comparing the AES candidates. In Proceedings of The Second
AES Candidate Conference, pages 85{94. March 22-23, 1999.

3. E. Biham and A. Shamir. Power analysis of the key scheduling of the AES candi-
dates. In Proceedings of The Second AES Candidate Conference, pages 115{121.
March 22-23, 1999.

4. J. Borst, B. Preneel and J. Vandewalle. Linear cryptanalysis of RC5. In
L. Knudsen, editor, Fast Software Encryption, Lecture Notes in Computer Science,
to appear. Springer Verlag.

5. S. Chari, C. Jutla, J. Rao, and P. Rohatgi. A cautionary note regarding the eval-
uation of AES candidates on smart-cards. In Proceedings of The Second AES

Candidate Conference, pages 133{150. March 22-23, 1999.

6. C. Clapp. Instruction-level parallelism in AES candidates. In Proceedings of The
Second AES Candidate Conference, pages 68{84. March 22-23, 1999.

7. S. Contini and Y.L. Yin. On di�erential properties of data-dependent rotations
and their use in MARS and RC6. In Proceedings of The Second AES Candidate

Conference, pages 230{239. March 22-23, 1999.

8. S. Contini, R.L. Rivest, M.J.B. Robshaw and Y.L. Yin. The Security of the RC6
Block Cipher. v1.0, August 20, 1998. Available at www.rsa.com/rsalabs/aes/.

9. S. Contini, R.L. Rivest, M.J.B. Robshaw and Y.L. Yin. Improved analysis of some
simpli�ed variants of RC6. In L. Knudsen, editor, Fast Software Encryption, Lec-
ture Notes in Computer Science, to appear. Springer Verlag.

10. J. Daemen and V. Rijmen. Resistance against implementation attacks: A compar-
ative study of the AES proposals. In Proceedings of The Second AES Candidate

Conference, pages 122{132. March 22-23, 1999.

11. A. Folmsbee. AES JavaTM technology comparison. In Proceedings of The Second

AES Candidate Conference, pages 35{52. March 22-23, 1999.

12. H. Gilbert, M. Girault, P. Hoogborst, F. Noilhan, T. Pornin, G. Poupard, J. Stern
and S. Vaudenay. Decorrelated fast cipher: an AES candidate. Submitted to the
Advanced Encryption Standard process. In AES CD-1: Documentation, National
Institute of Standards and Technology (NIST), August 1998.

13. H. Handschuh and H. Heys. A timing attack on RC5. In pre-proceedings of
SAC'98 - Fifth Annual Workshop on Selected Areas in Cryptography, pages 318-
343, 1998.

14. G. Hachez, F. Koeune, and J.J. Quisquater. cAESar results: Implementation of
four AES candidates on two smart cards. In Proceedings of The Second AES Can-

didate Conference, pages 95{108. March 22-23, 1999.

15. B.S. Kaliski and Y.L. Yin. On the Security of the RC5 Encryption Algorithm.
RSA Laboratories Technical Report TR-602. Available at
www.rsa.com/rsalabs/aes/.

16. G. Keating. Performance analysis of AES candidates on the 6805 CPU core. In
Proceedings of The Second AES Candidate Conference, pages 109{114. March 22-
23, 1999.

17. P.C. Kocher. Timing attacks on implementations of Di�e-Hellman, RSA, DSS,
and other systems. In N. Koblitz, editor, Advances in Cryptology | Crypto '96,
volume 1109 of Lecture Notes in Computer Science, pages 104{113, 1996. Springer
Verlag.

18. P.C. Kocher. Power analysis. Manuscript in preparation.

19. T. Knight. Personal communication. September 3, 1998

20. L.R. Knudsen. Applications of higher order di�erentials and partial di�erentials.
In B. Preneel, editor, Fast Software Encryption, volume 1008 of Lecture Notes in

Computer Science, pages 196{211, 1995. Springer Verlag.

21. NTT Laboratories. Java performance of the AES candidates. March 18, 1999.
Available at info.isl.ntt.co.jp/e2/

22. National Institute of Standards and Technology. NIST's E�ciency testing for round
1 AES candidates. Available at www.nist.gov/aes/

23. R.L. Rivest. The RC5 encryption algorithm. In B. Preneel, editor, Fast Software
Encryption, volume 1008 of Lecture Notes in Computer Science, pages 86{96, 1995.
Springer Verlag.

24. R.L. Rivest, M.J.B. Robshaw, R. Sidney and Y.L. Yin. The RC6 Block Cipher.
v1.1, August 20, 1998. Available at www.rsa.com/rsalabs/aes/

25. B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall and N. Ferguson. Perfor-
mance comparion of the AES submissions. In Proceedings of The Second AES

Candidate Conference, pages 15{34. March 22-23, 1999.

Appendix - An Alternative Key Schedule

The RC6 key schedule algorithm is well studied and believed to be highly secure.
Why bother to make a revised proposal?

First, it could be possible to signi�cantly improve the running time of the key
schedule algorithm, while preserving the desired level of security. This might be
particularly important when the block cipher is used for hashing and it could be
desirable to have a key setup algorithm that takes around the same time to run
as it takes to encrypt a single block of data. While such \key agility" is useful in
some applications, it is not so clear that key setup time is a signi�cant feature for
typical applications. For example, if a typical Internet packet contains 512 bytes
(that is, 32 AES blocks), and if the key setup overhead is the same as encrypting
three blocks, then the overhead for doing a key setup before encrypting the packet
is under ten percent. In addition, if an application can cache the results of a key
setup for later use, the key setup overhead can be amortized over the encryption
of many packets. So, the key setup performance is not likely to be a signi�cant
issue for most applications. On the other hand, if this aspect of RC6 can be
further optimized, why not explore such optimizations?

Second, the key setup algorithmRC6 may be di�cult to implement on devices
that are extremely memory (RAM) limited. Devices with under 128 bytes of
RAM, for example, may not be able to use RC6 e�ciently if they need to do
key setup on the device (as opposed to doing the key setup o�-device). Given
Moore's Law, we feel that running AES on a device with such severely limited
memory is unlikely to be a real concern. Nonetheless, it is interesting to explore
what one might do to adapt RC6 to run on such limited devices.

We will outline a potential new key schedule for RC6, and for ease of reference
let us refer to this new proposal as RC6a. The RC6a algorithm is identical to
RC6 for encryption and decryption, but has a new key schedule. The RC6a key
schedule is an \on the y" round key generation algorithm and is capable of
generating the round keys needed for RC6 using an amount of working storage
that is essentially no larger than the encryption key itself (that is, no larger than
the 16, 24, or 32-byte supplied key).

Since RC6 utilizes integer multiplication as a new primitive in the encryption
algorithm it might be nice to exploit the strong cryptographic properties of
multiplication in the key schedule algorithm. The RC6a key schedule algorithm
does this, utilizing some of RC6's computational elements, such as the f(x) =
x(2x+ 1) operation.

Description of RC6a

Let c denote the number of words in the supplied encryption key, let w denote
the word-size in bits and let r denote the number of rounds. For AES we have
r = 20, w = 32, and c = 4, 6, or 8 32-bit words3. We require that c be at least
two but less than 32. If fewer than two words of key are supplied, we pad with
zeros out to two words, just as RC6 now pads out to four bytes (one word).

The RC6a key schedule is de�ned in terms of the array S[0], : : :, S[2r+c+3].
For AES, (2r+4) = 44, so the array contains 44+ c 32-bit words. Each of the 20
rounds of RC6 uses two round key words, and the pre- and post-whitening use
two words of round key each. These are taken in order from the last 44 entries
in the array starting with S[c].

The �rst step is to pack the given c words of key into the �rst c words
of the array S, so the given key occupies positions S[0], : : :, S[c � 1]. Given
any consecutive c words of round key, the RC6a key schedule uses a nonlinear
recurrence to de�ne successive words of the round key array. More precisely,
given c consecutive round keys, one can determine the next round key in the
sequence. Thus, one can implement RC6a with only slightly more than c words
of memory; one only needs to keep the latest c round keys at any time. The
recurrence can also be run in the reverse direction, which allows decryption to
be performed in a memory-compact manner as well.

The RC6a key schedule uses an order-c nonlinear recurrence of the following

3 Note that the key schedule algorithm is well de�ned (as is RC6) for other word sizes,
and for other values of c.

form. (It is now clear why we need c to be equal to at least two.)

S[j] = ((S[j � c]� Fj)<<<Fj)�Rj

where
Fj = (Xj � (2Xj + 1))<<<lgw

and
Xj = S[j � c+ 1]� S[j � c+ 2]� : : :� S[j � 1]

We set Rj = Pw + (j � c)Qw + r where r is the number of rounds (for the AES
submission r = 20) as a sequence of magic constants similar to those used in the
RC6 key setup.

We note that as a result of this generation process the �rst c words of round
key are only a mildly-mixed version of the c words of the supplied encryption key.
One could potentially be concerned about this choice: the user might conceivably
choose a \weak" key when used in this way, or this might give an avenue for
attack against related keys. The �rst concern is not really relevant, since the RC6
key schedule could itself generate any conceivable pattern for the �rst c words of
round key, however the issue of related key attacks against RC6a deserves further
exploration4. Our analysis of this alternative key schedule is at a very preliminary
stage and so additional research will likely highlight whether additional \mixing"
is required before extracting the subkeys used during the encryption/decryption
process.

S[0] S[1] S[2] � � � S[c� 1] S[c]

-

-
?
�

��
��
+

?

��
��
f

?

��
��
<<< lgw�

?

q
?

��
��
+ -

��
��
<<< -

��
��
+ Rj
�

6

Depending on the environment and the amount of optimization taking place
the RC6a key schedule is around two to three times faster than the current key
schedule for RC6. The timings given below are for a 128-bit key and the RAM
requirements for the implementation on the Intel MCS51 were 25 bytes.

4 One could reasonably argue that protection against related-key attacks should best
be left to a pre-processing step, such as is commonly used for RC4.

Cycles on Pentium Pro Cycles on Intel MCS51
Borland MSVC++ 4.0 Assembly

RC6 key setup 4710 2400 1100 27000
RC6a key setup 1260 840 540 13600

We note that the computation of Xj is simple in practice, since it is a \run-
ning XOR". For e�ciency we can use the recurrence Xj = X(j�1) � S[j � 1]�
S[j � c] once we have computed Xc to get started. Furthermore, the memory
requirements are quite modest; one only needs c consecutive values S[j� c], : : :,
S[j�1] in order to compute S[j] (plus a small amount of working storage). Even
for c = 8 (a 32-byte supplied key), we probably need less than 60 bytes of RAM
to work in.

Note that the recurrence is invertible. Thus, for very tight memory situations,
one can run the generation backwards to restore the original key S[0], : : : ,
S[c � 1]. Separate storage to hold the initial key isn't required. Similarly, for
decryption, the recurrence can be run backwards from the �nal state S[44], : : :,
S[43+c] during decryption. Thus for encryption or decryption, you can compute
the round keys \on the y" though to do this for decryption, you have to compute
the �nal state �rst. With a little extra memory (that is with c extra words of
memory) the �nal state can be saved too in preparation for either encryption or
decryption.

This article was processed using the LATEX macro package with LLNCS style

