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Ab~tra.r.t---A high-resolution raster-graphics display is usually

cOInbincd with processing power and a rnetJlory organization that

facilitates basic graphics operations. For nlany applications, in

cluding interactive text processing, the ability to quickly move or

copy small rer-tangles of pixels is essential. This paper proposes

a novel organization of raster-graphics memory that permits all

srnaU rectangles to be moved (~mciently. The memory organiza
tion is based on a doubly periodic assignment of pixels to M
tnenlory chips according to a "Fibonacci" lattice. The memory
organization guara.ntees that ir a rectilinearly oriented rectangle

contains fewer than M /';5 pixels, then all pixels will f(~e.idc in
different meulory (:hips, and thus can be accessed simultaneollsly.

We a]so define a continuous analogue of the problem which

can be posed as, tll'Vhat i.s the maxirn.um density of a att 0/ points
in the pLane such that ",0 two points are contained in the interior
of a rectilinearly oriented rectangle of area N." We give a lower

bound of 1/2N on the density of such a set, and show that
l/VSN can be achieved.

1. Introduetion

With the developm(~ntof high- resolution raster-graphics dis
plays, the length of one mcrnory ryclf~ introduces a bound on
how quickly the screen can b(~ updated, a bound that may be

unacceptable for rnany real-tinlC or interactive environm.~nts. A
fla1.u ral way 1.0 avoid this bound is to access nlore than a single

pixel (picture clement) at a tirne. Since the memory is typically

partitioned aOlong !v! rando1Tl-access Inemory chips, up to M .
pixels can be accessed with :t single Incmory cycle, provided that

no two pixels residE! in the saUle menlory chip.

Figure 1 illustrates a co Tnrnon organization of r~l.stcr-graphic8

memory. Each pixel on the screen is assigned to one of M
JnClTlory c;hips in row-lnajor order. Thus in every row, the pixels

in COlUlI1D m, ./\1 +m, 21yf +m, and so forth are stored in the

the saIne Ioemory chip m. This organization made a good deal
of f;cnse when raster-gra.phic displays 'were new and t.he interface

bet\vccn t.he raster JneolOry and the carr was considered cornpli

(:atcd. When the s(~reen is refreshed f~'oJn memory, the linc-by..
Jine horizontal scan accesses AI pixels in a ro\v and (~onvcrts them
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Figure 1. A common organization for raster-graphics memory
which ill efficient for raster scan operations) but poor for vertical
updates.

into an analog video signal. Hut although the nlemory syRtem
achieves Inaximal parallelism for the screen refresh operation, it
<:an be relnarkably ineffici(~nt for other operations. Updating a
vertical line of pixels, for cAanlple, requues a separate mClnory
access for each pixel.

For arbitrary patterns of access the-:-e is no hope of rnaximal
para.llelism. since wha.tever the prgani.zation, au adversary can

(~ltoose 1.0 ac(~ess all the bits in a sinl~le Inemory chip. The best

_we can hope for is to achieve high eoncurrency for a limited set

of operaiions, which should be large enough t.o include frequent

patterns of usage. And today, since hardware support for screen
refresh is relativdy weJI~undcrstood, attention focuses on those

()p{~rations which make the graphics system easier to program.

Most raster-graphics applications rely OIl the copying or mov

ing of a rectangle of pixels as a basic operation, ,,,hi(:h is deJDon..
strated by the fact that this operation is inlpJernented in the
rnicrocode of nl0st graphics processors. The ability to move

smail rectangles quickly is espe<:ially important in text-ori~nted

applica.tions.

llecently; a display was developed at Carnegic-'tv1(~llonUniver

sity [2,5J that is designed to rnove sInall squares quickly. Figure

2 shows hfl"~' pixels are ;Lssigncd to ulcmory chips in the case of

A1 =- 16 Inemory (~hips. The screen is tiled with ,/M-by-m
squares, each of which contains a pixel assigned to a different

nlemory. The attraction of this schenIc is that any VM-by-v'"M
rectilinearly oriented square, whether aligned on tile boundaries

or not, contains pixels assigned to different memories. Thus any

square of area M can be accessed in one meJnory cycle.

Unfortunately, the efficiency of the raster-scan operation is

red uccd in this schernc cornpared with the one of Figure 1.. The

line-by-line scan \\'ill only be able to access VM pixels in parallel



Around every point P drawn frorn a set 8 of N -compatible

points, there is an infinite-area forbidden region hounded by two

hyperbolae inside whit;h no other point of S rnay lie. p"'igure 3
shows t.he forbidden region for a point at the origin. The points
in that forbidden region satisfy Ixyl < N.

~

Let 5' be a set of points in R 2 • We formally define S a.s being

an N -compatible set of points if for a.ny pair of points (Xl, yt}
and (X2, Y2) in the set, we have

Figure 3. The forbidden region around the orig£n. Any set 01
N -cornpatible poirtts that contains the orig'in cannot contain any
other point in within the bounds of the hyperbolae.

We shall find it convenient to adopt sorne standard terminol

ogy (rool geornetry of nuulbers. A lattice is a set of points that

can be expressed as an integral) linear cornbination of linearly

independent (over I~) basis vt:ctors. If there are only two basis

vectors, we define the parallelogranl with the t,vo basis vectors

as sides the basic 'rl:gion of the lattice. The funda1nental lattice
is the lattice generated by the ba.sis vectors (0) 1) and (1,0), and

we call its points grid points. Sinlple properties of lattices can be
found in [3).

In the discrete n10del, the probleJn is to rninirnize the number

M of mernory chips f(~quired to allow siIlllIltaneous access of"
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Figure 2. The 4- bY-4 organizat!:on for raster-graphic.5 memory.
l!)vcry 4-bY-4 .r;quare contains pixels from dist£nct memory chips.

because every ~M+ I-by-one horizontal rectangle contains two

pixels in the same memory chip. A possible solution to this

problem is to stagger the tiles so that t~e second column of tiles

is shifted vertically by one raster, the third by two rasters, and so

on. This ad hoc solution allows simultaneous access of all pixels

in any M -by-one rectangle as well as sinlultaneous access of all
pixels in any y'M-by-y'M square, but it suffers from asyrnmetry

of horizontal and vertical dimensions and introduces a variety of

other complications.

This paper asks the question, llHow many memory chips M
are required to guarantee that all pixels can be accesses 3imu.l·
taneoul;ly in an arbitrary rectillinearly oriented rectangle 01 N
pixels?" A naIve organization requires M = N 2 memory chips,

but we can do much better.

This paper uses techniques from number theory to produce

novel melnory organization of M Rj Y!SN chips thai. allows all
pixels in any rectangle of area N to he simultaneously accessed.

The scheme is rcgular--a doubly periodic function in the plane

and the constant VS is approached frorn below, so that for some

values of N, the constant is less than two. Furthermore, for

the frequently-used operation of accessing a horizontal line, our

scheme allows simultaneous access of all M memory chips.

The rernainder of this extended abstract is organized as fol

lows. Section 2 introduces a continuous model of the problem

that prompted our (discrete) solution. Section 3 presents the
doubly periodic organization, and Sect'ion 4 provides the num

ber theoretic analysis necessary to prove that the scheme works.

Section 5 contains some coneluding remarks.

2. A continuous analogue
In this section we introduce a continuous analogue to the

discrete problem. What is the maximum density of a set 01 points
in the plane such that no two points are containe4 in the interior
of a rectilinearly oriented rectangle of area N f The set of points

ill this problem corresponds in the discrete problem to the set of
pixels which reside in the same memory chip, and the density of
points corresponds to the reciprocal of the nUJn ber of melnory

chips. The principal difference in fortllulation is that in the

continuous rnodel, we no longer require that the "pixels" fan on
grid points.

We shall prove that the density of a set of N -compatible
points (no two points arc eontained in the interior of a rectangle

of area N) is bounded from above by 1/2N, and we give a set

of N-cornpatible points that achieves a density of l/v.~N. This

solution rnotivates the solution to the discf(~te problcIn that is
gi ven in Section 3.
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any rectangle of N pixels. For an arbitrary schenle of assigning

pixels to Inemory chips, in a square region of A pixels, there will

be some mmnory chip with the largest numb(~r k of pixelsin the

area. Therefore, the number of rnernory chips A1 is at least AIk,
or lid where d is the maximum density of pixels from a single

merTIory chip in the square region.
The analogue to lnininlizing the nunlber of memory chips is,

in the continuous tHodel, to maximize the densit.y of points in a
set of .tv-colnpatible points. Formally, we define the density of

an arbitrary set of points S as

. I{ pES I p E B(r) }\
d(S) = hm sup ---------- ,

r-4OO Area(8(r))

where 8(r) is it hall centercd at t.he oril~in \'1ith radius 'r. The next

thcorenl shows that any set of N -compatible points has bounded

density, and in fact, that the density is bounded frorn above by
1/2N.

'rheorem 1. Any set S of N -co'mpatible points has density'
d( S) which is no more than 1/2N.

Proof. Consider the lattice that. is spanned by the basis vectors

(vN,VN) and (--vN,v'N) and shown in Figtlre 4. We first

show that in the interior of any square region of the lattice, there

cannot be two points of S.

(
(Xl - X2) -+ 2/.iV - (Xl - X2))2< ------------------------ 2

=lV,

since the gcoluetric lucan is less than the arithmetic mean.

Because no two N -colnpatiblc points can occupy the same

square region of this lattice, and since the a.rea of a square region

if; 2N, the density d(S) of a set of N-c(Hnpatible points cannot

be lnorc than 1/2N, which was to be proved.•

Whether density as high as 1/2N can be aehievcd is an open

question for arbitrary N-colnpatible sets. We can come close,

however, as the following theorem shows.

'fheorem 2. The lattice that is generated by the basis vec
tors (Vf[/4J, VN~) and (-.;N¢J, vN7<t~) form an N
C07npatible set whose density is l/yI,N, where ep = ·!(l +
V5) is the golden ratio.

Proof, F'or siInplicity, denote '(vN7~,vN"f») by (a, b). The

lat.tice points are N-compatiblc iff for all integers u and v, the

lattice point v(u, b)-1-u(-b, a) = (av-bu, bv+au) is outside the

forbidden region around the origin (since the lattice is invariant
under translations by its basis vectors). Equivalently, for all pairs

(tt, v) i= (0,0), we must have

I(av - bu)(bv + au)/ ~ N .

We (~an rewrite the product as

(av - bu)(bv + au) == abv2 -~ (a 2
- b2)uv - abu2

= N(v2
- (4J -l/4»uv -- u2

)

== N(v2
- uv - u2

).

(. {tIJ ~

Since the Diophantine equation v2 -1lV- 11,2 =-= 0 has no solution

except u ::= V :=: 0, it follows that

I(av -- bu)(bv -1- au)1 = Nlv2
- uv - u21 ~ N ,

(~I ~ x.)

}'igure 4. Any two points in the tilted square region are contained
in a rectangle of area at most N.

Without loss of generality, we look at the basic region defi.ned

by the hasis vcr-Lors (VJV~ ';-;"1) and (-VN, v'lV). It is enough to

show that any t\VO points on the boundary of this square region

are contained in a rectilinearly oriente'd rectangle of area f\l.
Since any two points on adjacent edges of the square region are

contained in a rectangle whose corners are on opposite edges,

\ve rnay aSSUlne. the two points are on opposite edges. Suppose

the two points are on the edges \vith positive slope, and are at

coordinates (Xl, Xl) and (X2' X2 -t- 2VN). The area is

(Xl - X2)(X2 + 2VN --,Xl)

~ (Xl - x2)(2V7'1 - (Xl -- X2))
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and thus the lattke points are indcedN~compatible.

The area of the basic region of the la.ttice is a2 + b2

N(4) t· l/rf», which is VSN. Since there is a one-to-one cor
respondenc:c between lattice points and lattice squareR, the den

sity is l/v'5N.I
Although we have not yet been able to close the gap between

the bound of Theorem 1. and that of Thc~orem 2, we can shov;

that a density of 1/y!5N is the best possible for any lattice of
N -compatible points, no nlat.ter how Inany basis vectors define

it.

Theorem 3. Any lattice of N -compatible points has density
at most l/VSN.

Proof, VVe shall prove the bound on density after we prove that

a lattice of N-compatible points ean always b(~ generated by two

basis vectors. Any three basis vectors in n2 are linearly depen

dent over t.he reals. We Rhow that if the, vectors are independent

over Z thtm the set of points they span \vill have the origin as

an accumulation point, and if they are line:trly dependent over

Z then one vector can essentially be oln.itted.



Suppose three basis vectors a~e linearly independent over the

integers. By a slight variation on Kronecker's Theorem [3, page

382J it can be shown that there is a point in the lattice generated

by the three vectors which is arbitrarily clos(~ to the origin.

But VN is the lllinimum distance possible between a pair of

points in an N -cornpatible set, so the set of points eannot be

N -com.patible. Thus we tan assurne the three basis vectors are

linearly dependent over the integers.
If we have three vectors in R2 that are linearly dependent

over Z, then we can find a integer linear transformation with

determinant one [1, Lemma 279, p. 3.11] that maps the three

vectors into another three, one of which is the zero vector. The

tV10 nonzero vectors span exactly the saIne set of points because

th e inverse of an integer linear transformation with determinant

one has integer components. By induction, an arbitrary set of

basis vectors can be reduced to a set of two.

We filay now suppose that we have a set S of lattice points

generated by two basis vectors (a, b) and (e, d). The density d(S)
is just 1/~, where ~ = lad - bel is the area of the basic region of

the lattice. By a theormll from Minkowski's geoInetry of numbers

[3, Theorem 454, p. 401], there (~xist two integers x and y,
not both zero, such that the reetilinearly oriented 'rectangle with
corners at the origin and the lattice point x(a, b)+y(e, d) has area

not exceeding Do/0. Since the lattice points are N-compatible,
the area of this rectangle is at least N, frorn which we conclude

that N ~ ~/J5, or d(S) = lid :s; l/VSN.I
The lattice of Theorcrn 2 achieves this bound, but it is not

unique. In fact, Torn Leighton has observed that there are an

infinite nUInber of lattices that achieve the bound. For any t the

lattice generated by the basis vectors

( 1) (3 + J5 3- V5)-IN t - and -IN --t ---
, ~ 2 ' 2t

also achieves the bound. The lattice of Theorem 2 is a member

of this family of lattices (choose t = V17~), although the basis

vectors given in the t.heorern are different. The advantage of the

basis vectors dellned in the theorelTI is that they define a basic

region which is square, and as we shall see in Section 4, this

sinlplifies somev,rhat the analysis of the discrete solution.

3. A nove) organization of raster-graphics memory
This section describes an organization of raster-graphics mem

ory which is based on an approxiInatioIl of the lattice scheme

from TheoreIn 2. This organization has the property that the

pixels in any rectilinearly oriented rectangle that contains no

more than N pixels can be accessed sinlultaneously. The num

ber .J.\tf of IneJnory c.hips required is at most VSN, but for many

practical values it is less than 2N.
The discrete, real-world problem differs froID the continuous

problern in that the locations of pixels must be grid points, and

this constraint introduces subtle cornplications. For example,

in the continuous problenl, a rectangle of area N could be ar

bitrarily narr()\v, but in the discrete problclll, one- by-JV is as far

a.s we can go.

Theorern 2 suggests that we use two basis vectors to generate

the locations of all pixels within the sanlC chip of the raster-
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graphics memory. We assign pixels to chips using the following

general scheme. Let a and b be two relatively prime, nonnegative

integers. {]se the two orthogonal vectors (a, b) and (---h, a) to

generate a lattice in the plane, consistinl~ of all points of the
fonn

v(a J b) +u(-b, a),

where u and v arc integers. gxc:ept fo.r the corners, no other

grid point lies on the boundary of the basic region. Extend the

interior of the basic region to· include eKac.tly one of the four

corner points. Since the re:~ion can he' used to tile the entire

plane, the nurnber of grid points in the basic region is therefore

exactly its area, that is, a2 + b2 • The grid points in the basic

region are TIlapped into M == a2 -t- b2 distinct Ineinory chips.

Since each grid point. in the plane has a unique "parent" in the

basic region (namely the one in the hasic region that differs from

it by a unique lattice vector), we assign each grid point to the
same chip as its parent.

Tn the next section, we will show that the choice of succes

sive Fibonacci nurnbers a = Fr and b == Fr+1 , which yields

the nUlnber of :memories M ==F2r.+-l, guara.ntees that every
rectilinea.rly oriented rectangle containing no Inore than M Iv'S
pixels (~an be accessed simultaneously. ]i'jgure 5 illustrates the

organization for thirteen rnemory chips (a == 2, b == 3). Here, the

situation is even better than we pronlised---any rectangle with at
most eleven pixels contains no two pixels from the same menlory

chip. In particular) horizontal and vertieal Jines of no nlore than

thirteen pixels have no conflicts. This is not tHere luck.

Lemma 4: A doubly periodic mernory organization based on
a lattice generated by basis vectors (ll, b) and (-b, a)} where a
and b are positive and relatively prime., has the property that
any one-by-M or M -by-one rectilinearly oriented rectangle
contains no two pixels from the same chip.

j)rooj. Sinc.e the organization is uoubly periodic, we can consid~r

a horizontal or vertical line tha.t. starts at the origin and deter

Inine the next lattiee point that falls on the line. If the line is

vertical, all pixels on it have x-coordinate zero. The general form
of lattic.e points is v(a, b) -~ u(-b, a) :=: (av - bu, bv + au), and

thus alliattiee points on the line will have av-b'tL = O. It follows

that a divides btL, but since a and b are relatively prhne, we can

conclude that a divides 'U, and sinlilarly, b divides v. Further

more, u and v neeessarily have the same sign, which In(~anS tha~

the magnitude Ibv .+ auJ of the v-coordiJlate is Ibvl-t laul. Since

a divides u, we have lui ~ a, and by the saIne reasoning, Ivl 2 b.
Therefore, Ibvl + laul 2 b2 + a2

:= M, and the Inagnitude of

any lattice point on the vertical line is at least M. Thus any

one-by-.iV/ rectangle cannot contain two pixels from the same

chip. :Horizontal lines are treated the same way.'

The following table describes the actual values we get for

M, N correspondingly for values of Ai up to 1000.

M 5 13 34 89 233 610

N 5 11 23 53 125 307

Notice that for a.ll these values, the size N of recta.ngles that

are guaranteed to have no conflicts is, in faet, larger than !vi12.
Thus for pra.<:ti<:al values of Af, the overhead in allowi ng fast

access to arbitrarily shapcd rectangles of pixels is small.
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Figure 5. The lattice-based organization for M = 13 memory
chips. Every rectangle that contains no more than N = 1.1 pixels
has all pixels from distinct memory chips..

4. Mathematiul analysis
In this S(~ction, we analyze the prop.erties of the lattice or

ganization described in Section 3 and show that in the organiza
tion, the number of memory chips M is approximately J5 tinlCS
the sizf: lV of the Inaxirnurn size rectangle that i~ guarantt}ed

to have no conflicts. Our approach is to answer the question,
"What is the minimal size MIN of any rectilinearly oriented rec
tangle containing two distinct lattice point.fJ?" This value MIN
deternlines N because no rectilinearly oriented rect.angle of size
lt~ss than MIN contains two lattice points, so all its pixels are
necessarily in different memory chips, apd thus J.V = MIN -1.

We now focus our attention on finding the minimum size

MIN over aU rectangles containing two lattice points. The
basis vectors for the raster-graphics Inelnory organization are

(Fr,Fr+1) and (-F~+l,Fr),where Fr is the rih Fibonacci num
ber. We shall find it convenient, when we do not rely on the

Fibonacci properties basis-vector cOInponents, to denote the basis
vectors by (a, b) and (-b, a). Since the lattice is invariant under
translations by its basis vectors, we lose no generality if, instead

of discussing all pairs of lattice points, we rest.rict ourselves to

those pairs one of whose elements is the origin. }4'urthermore,

since we are interested in the Illinimal siz(~, it suffices to consider
rectangles that have the two lattice points at opposite corners.

The second lattice point has the rOrIn v{a, b) + u(-h, a), and

the size of the rectangle, denoted by S(u, v), is its area plus half
its perirneter plus one, i.e. 1

8(u, v) := (/au -t bvl-t- l)(/--bu + avJ + 1) .

Notice that the size is CX:lCt.ly the number of pix(~18 contained in

the closed rectangle. The value MIN is the minimuln of S(u, v)
over all integers u and v not both o. In order to find MIN, we
first translate S(v, v) into a sirnpler form.

LeJl)nla 5. Let

8(u,v) == (iFru + Fr-t-tvl + l)(l-P"-l-lu + Fr'ul + 1),

and let S('l1" v) = (Ip2r1l -1i2r+l vi + l)(lul + 1). Then

96

M1Nd:J loin S(u,v)
(u,v)~(O,O)

= min S('ll, v) .
(1L,tJ)~(O,O)

Proof. V{e shall sho\v that the range of S is the same as the

range of S by using an intermediate formB. For sinlplicity, we

shall use the notation a = Ft and b = Fr+1 introduced above.
Define the int(~rrnediate form

B(u, v) = S(ku - bv, -Iv. + av),

where k and I are integers such that ak - bl = 1. (The integers
k ~uld 1 exist be(~au8e t.he greatest common divisor ora aJl<1 b is
one.) The linear transformation given by

is a bijection since the determinant of the matrix is one. Thus as
(u, v) ranges over Z2, the ordered pair (ku - bv, -lu + au) also

takes on all values in Z2 ,and hence the range of S is the same

as the range of B. Since the linear transformation is a biject.ion

which maps (0, 0) to (0, O), we have

min S(u, v) = min B(u, v).
(u,v)~(O,O) (u,v)~(O,O)

If we expand B(tL, v), we get

B(u, v) = S(ku - bv, -Iv. + au)

= (Ia(ku - bv) -t- b(-lu + av)J +1)
· (/-b{ku - bv) -t a(-lu + a1JH + 1)
= (lul-t- 1)(l(u2 +b2)v - (bk + al)ul +1) ,

which has the form (lui + l)(lMv -- Cui + 1). (Note that M =
a2 + b2 is the number of mcrnory chips.)

In order to obtain S(u, v), we first deterlnillc the explicit

coefficients M and C in B(u, v) when the components of tlH~ basis

vectors are the Fibonacci nurnbers a = 11~ and b = 1~+1. We
use thf~ following two Fibbonaci identities:

Fi +i = Fi Fi +1 + Fj "7'-lF, ,

F.+ 1F,-1 - J4"~ = (-1)' .

From the first identity, we get that the number of Inemories M
is

M = a2 +b2

=F~ + F~+l

= F2r-t-l ·
'fo find G", observe that the k and 1 such that ak - bl = 1 are
k = (__-1.),,+1 Fr and l = (_ly-t- 1Fr- 1. IIcnce, by using the
second identity, we have that

c= bk+al

= (_.1)r+l(}~-f_lFr + FrFr- J )

= {_...:1)'+1Fr-t-r

= (-1)r-t- 1F 2,..

Thus for a = Fr and b = Fr-t- t , \\"e have



B(u, v) = (lui + 1)(1(-1)"F2r u + F2r-t.1 vi + 1) ·

The forrn l; was defined in the statement of the leInnla as

S(u, v) = (lui + 1)(IJ4"2"u -- F2r+1vl + 1).

If r is odd, then (-1)" = -1, and therefore B(u, v) = 8(1.1,,1)).
If r is ev(~n, on the other hand, then B(u, -v) = S(1.l, v). Since

we have alrea.dy shown that

min S(u,v)= loin B(u, v) ,
(u,tI);i~(O,O) (u,v)~(O,O)

we get

min S(u,v)= Inin S(u,v) ,
(u,v)~(O,O) (u,v)~(O,O)

which was to be proved.•
The next lemma gives the exact solution for MIN, which by'

LernlIla 5 is the Inininllun value of S{u, v).

Lemma 6. Let $(u,v) = (lui + 1)(IF2r ?L - F2r +. 1vl + 1).
Then mjn(u,v)~(O,O) S('U, v) = (l?r + 1)(1~+1 + 1).

Proof. vVe first show that

MIN = loin S(u,v)
(u,v)~(O,o)

= Inin (Iul-J- 1)(IF2ru - F2r -f-l vi + 1)
(u,V);6(O,O)

= min (l~ + 1)(F2r -_.n +1 + 1) ,
O~n~2r+l

and th(~n show that the latter minimum is (J4-" + 1)(Fr +1 + 1).
It suffices to consider nonnegative values of u sinee 8(1.£, v) =:

S(-u, -v). The value MIlv cannot exceed 8(0, 1) =-= F2r+1 +
1., but because S(u, v) 2 1,1, + 1 (the right factor is at least one),
we need only seek a better value for MIN in the interval 0 <
u < F2r+ 1 •

The key idea. is to divide the half-open interval [1, F 2r+d into

subintervals [Fn , F'n~-l), for n = 2) 3, ... , 2r. (Notice that [4'J =
F2 = 1, and thus n starts fforn 2.) The integer 1.J, lies inside one

of thes(~ in tervals. Con sider the fraetion F'2r /F2,. _~ l' The conver..

gents of its continued fril.ctioll expansion are F 1 / F2 , F 2 / F3 , ••• ,

112,. /F'2r-+ l' By the continued-fraction approxirnation thcoreln

(3, Theorem 181, p. 151), if F~ ~ u < .F~+1J Uwn for every
integer v we have

Multiplying through on both sides yields

I
~LF2r -- VF2~+11 > IF2rF" :- F,,-,l F2r+ll·

uF2r -t- t - }12r+l Fn

Using the Fibonacci identity IFiFj -1'i-t-1Fj-ll = Fi - j +b we
get

luF2r - v.1'"2r+ll ;::: ~1F2rF" - F,,--l F2r+ll

2:: IP"2rFn - Fn-lF2r+ll

= F2r-ft+l.

To sumrnarize, if u falls in the interval [Fn , Fn+d, then

Iu.F2r - vli2r+ll 2 F2r ---n+ 1. Therefore,

(Iul-f- 1)(IF2~u - }t2r+l vi + 1) 2 (Fn 1- 1)(l?2r-n+1 + 1),
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and equality is achieved when u = Fn and v = P~-l' As a
result, we have

min (Iul-t- l)(IJ4"2ru- F2r+ t vl-+ 1)
(u,v)rf(O,O)

\vhich conlpletes the first part of the proof.

The second part of the proof is to show that indeed

ruin (Fn -1- 1)(F2r - n+1 + 1) = (F, + l)(F~-t.l + 1).
O~n~2r+l

If we define

de!
E(n, r) = (Fn + 1)(F2r- n +1 + 1) ,

then what we want to show is

min E(n,r) = E{r,r).
O~n~2r-t-1

Sinc(~ E(n, r) is invariant when n is replaced by 2r + 1 - n, it
sunke's t.o consid(~r values of n in the interval [0, r).

Vie now show that E(n, r) is no larf~er than E(n + 1, r) for
n = 1, ... , r - 1, after which we shall complete the proof by

demoIlstrating that E(O, r) 2 E(r, r). We "lake use of the ex
plicit formula

ifJr _ ~r

F,.=---
Y5

for a Fibonacci number in terms of the golden ratio if> and its

conjugate ~ = ~ (1 - VS) in order to obtain an alternative
expression for the high-order term of E(n, r):

wh(~re Ct is a constant depending on r alone. Taking advantage

of the fact that I~I is less than 1 and using the basic recurrence

for Fibonacci nurnbers,we have

E(n, r) - E(n + 1, r)

(_1)'11,+1 ( 2~2r-2n-t-1)
= F2r+1-" +F" + -V's- F2r-2n+l + --0' -

(-1 )n-t-2 ( 2~2,--2n-l)
- F2r- n - F"+l - ./5- F2r- 2,,-1 + ..;s

> C'I F2,.-2n
.r2r-ft-1 - Fn - 1 - --- - 1- V5

2 F2r - ft - 1 - Fn - 1 - F2r --2n

~ 0,



and hence E(n, r) is at least as large a~ E(r, r) for n = 1, ... ,
r -1.

As for the remaining inequality E(O, r) ~ E{r, r), it is merely

F~Fr +t -f- Fr -t-2 + 1 S F2r -t- t + 1, and its truth may be verified

by using the identity }'~ + F";+l = F2r -l-1 .1

Lemma 7. The rninimurn size of a rectilinearly oriented
rectangle that contains two points 0/ the lattice generated by
the basis vectors (FJ-,l""+d and (-Fr-t-bFr) is

MIN = (1~r -f-- l)(F;'-+-l + 1).

Proof. The proof follows directly from Lemmas 5 and 6.1.

Theorem 8. Let M' = F2r -i-lJ and let N = FrFr-t t +Fr+2 •

Then there is an organization for raster-graphics m.emory
with M memory chips s'Uch that eVfry rectilinearly oriented
rectangle of size at rnost N contain.'; l)ixels frorn distinct mem
ory ch£ps. Furthermore, N is greater than M / V5.

Proof. FrOIn Lernrna 7, we have that Itt/IN = (l?r + l)(F,.+t +
1), and since N = MIN - 1, we get N = I?,.P-"'+l -t- .J4-"'+2.
All that is left to be proved is that N > M / VS. Using the the

explicit formula for Fibonacci. nUInbcrs, it can be verified that
the sequence

{
!,rFr+-!-+ Fr-t~}OO

F2r -l- 1 "=1

converges to 1/VS. We now show that this sequence is monotoni

cally decr(~asillg, so each of its el{~mcnts is at least as large as the
1/v'5 limit, which will complete the proof.

It is enough to show that the difl'erence of consecutive tenns in

the sequence is positive, or equivalently, by lllultiplying through
that

Using the explicit formula for Fibona(:ci nunlbcrs, we obtain the

identity

and the identity

[nay be derived by induction.

Multiplying both sides of the first identity by F""+l and add

ing it to the second yields

F2r-/-3(FrF,.+1 + F,.+2) - F2r -l--l(Jt-"'-t-t F,,-t-2 -t- Fr-l-3)

= ;"'2r-t-tF,. +P"2"li'r.+2 + (-1r-t-tF~+l .

The right hand side is positive because F,.+ 1 is less tha.n both

.F2r and F,,+2.1
The next theorern is the discrete analogue of Theorem 1.

Theorem 9. For any orgt111,1:zation of raster-gra.phics mem.ory
with M memory chips ,,;uch that every rectilinearly oriented
rectangle of size N contains no two pixels in the same memory
chip, the relation M ~ 2N - 4VN + 2 holds.
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Proof. The proof parallels that of Theorem 1. The principal

difference is that the size of a rectangle includes not only its

area, but also half its perimet.er plus 1. We tile the plane with
tilted squares generated by the two ve(~tors (VN - 1,.J"N - 1)

and (-\IN+ 1,.J"N -1). (The lattice points do not necessarily

fall on grid points.) Consider two points within a tile. By the

s::une argument as in the proof of Theorenl 1, the area of the

f(~ctilillearly oriented rectangle whose opposite corners are the

two points is at most (VN - 1)2. lIalf the perimeter is at nlost

the diagonal of the squar(~ tile, that is, at Illost 2VN - 2. Hence

the size of the rectangle is at most· ('./fi - 1)2 +(z.J"N - 2) + 1,
which equals N, and the t,vo points must be from different chips.

Since the two points were chosen arbitrarily from within a
square tile, all grid points within the tile must be from distinct

chips. Although the number of grid points nlay vary from tile to

tile, there is a tile that contains at least as many grid points as
its area 2(1N - 1)2, which cornpletes the proof.•

5. Addressing scheme

The organization for ra.ster-graphics nH~mory proposed in Sec

tion 3 guarantees that sInall rectangles contain pixels from dis

tinct nlcrnory chips. In order for the entire systeJll pcrfofJnance

to beneHt from this organization, however, the address calcula
tions rnust be easily irnplernented. We do not try to solve an

the engineering prohlems associated with making this mCJnory

organization S(~hClne work, but in this section we give indications

of how the address calculations can be efficiently cornputed.

The addressing mechanism must be able to take' the x- and y
coordinates of a pixel and generate the chip number and address

within the chip. Suppose the lattice organization is deternlined

by two basis vectors (a, b) and (-b, a). Two pixels at locations

(:ro, Yo) and (x, y) which differ by an integral linear cornbin:l.tion

of the the basis vectors lie in the saIne menlory chip. That

is, they have the same Ulcnlory number if there exist (unique)
integers U and V such that

(x, y) - (xo, Yo) == U(a, b) + V(-b, a).

One natura), but inefficient, addressing mechanisnl is based

on the faet that each of the Jv! = a2 -t b2 menlory chips contains

exa.c.tly one representative in the basic region with corners (0,0),

(a, b), (--b, a) a.nd (a - b, a + b). The chip nuulbcr of a pixel

(:2:, y) can he deterrnined by tomputing \vhich pixel (xo, Yo) in the

basic region is fronl the RaIne chip, and then using the ordered

pair (xo, Yo) as the chip nunlber. By letting

the chip nUlnber (xo, Yo) of a pixel (x, y) is then (xo, Yo) = (x, y)
U{a, b) -- V(-b, a). Furthcrnlore, the ordered pair (U, V) forrns

an a.ppropriate address for the pixel (x, y) within the chip.

The addressing mechanisln can be simplified substantially if
we notice that any arbitrary set of M pixels, no two of which

are from the sarrie chip, can be used as a set of representatives.

In particular.. any pixel differs by an integral linear combination

of the basis vectors from a unique pixel in the horizontal line

extending front (0,0) to (0, M - 1). Thisscherne corresponds to



tiling the plane with one-by-M bricks instead of tilted squares.

(Jlolladay [4] uses a similar tiling scheme for halftone generation.)

To derive an appropriate addressing scheme, we choose an
alternative pair of basis vectors that span the saIne lattice. Since
a and b Rre relatively priIne, there exist integers k and I such that

ak-bl = 1. The t\VO vectors (bk-t-al, 1) and (a.2+b2 , 0) generate

th.e same lattice as the original basis vectors (a, b), (-b, a). Thus

any pixel (x, y) can be mapped to a pixel (xo, Yo) where Yo =--= 0

and Xo E [0, M), which means Xo alone can serve as the chip

nlunber for the pixel. If we denote C ::= bk + al, and recalling

that M == a2 + b2 , the chip nlunber for an arbitrary pixel (x, y)
is x - Cll (mod M). The address of the pixel the ordered pair

(lxlMJ, y), which is also easy to compute.

An advantage of any doubly periodic organization that should

be mentioned concerns the cOlnmunication among the memory

chips. Typically, each chip has a single connection to an M
pixel buffer. To move a rectangle of pixels, three steps are

required. The rectangle of pixels is read into the buffer, the pixels

in the buffer are pcrnHlted, and the pixels are written back to

the rnenlory chips at different iocations~ The advantage of the

periodic organization is that the set of perrnutations cnCOlllpasses

only drcular shifts of the bun'cr. Thus a standard barrel shifter

can be used for all permutations.

One issue that we have not faced is the problem of generating

addresses for each of the M chi ps given sorne standard specifica

tion of the rectangle to be accessed. BuL the strong regularity of

any lattice-based organization should rnake the address calcula

tions pos:;ible at reasonable cost.

6. Comments

There is still a discrepancy between the lower bound of 1/2N
and upper bound of 1/VS'N on the density of an N-cornpatible

set. It seelns more likely that the lower bound can be improved

because in the proof of th~ bound, V2N-by-V2P:j" regions that

tile the plane account only for interactions between pairs of

points.

Another open question is how to extend our results to diJnen

sions higher than two, and whether the linear relation between

M and 1'1 (or N and the density in the eontinuous case) still

remains true.

There is a practical merIlory organization 'which is based on

the lattice generated by the basis vectors (1, s) and (--8,1). This

Echerne allows three types of rectangles--s-by-s, one-by- s2 + 1,

and s2 + l~by-one--to be accessed efficiently. The number of

memories required by this scheme is M = s2 + 1.

The Fibonac.ci lattice organization can also he used to speed

up the aceess rate in machines with interleaved IneJDOries. Matrix
and ilnage processing applications could find the organization

particularly useful.
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