
Defending Against the Unknown Enemy:
Applying FLIPIT to System Security

Kevin D. Bowers1, Marten van Dijk1, Robert Griffin2, Ari Juels1, Alina Oprea1,
Ronald L. Rivest3, and Nikos Triandopoulos1

1 RSA Laboratories, Cambridge, MA, USA
2 RSA, The Security Division of EMC, Zurich, Switzerland

3 MIT, Cambridge, MA, USA

Abstract. Most cryptographic systems carry the basic assumption that entities
are able to preserve the secrecy of their keys. With attacks today showing ever
increasing sophistication, however, this tenet is eroding. “Advanced Persistent
Threats” (APTs), for instance, leverage zero-day exploits and extensive system
knowledge to achieve full compromise of cryptographic keys and other secrets.
Such compromise is often silent, with defenders failing to detect the loss of pri-
vate keys critical to protection of their systems. The growing virulence of today’s
threats clearly calls for new models of defenders’ goals and abilities.
In this paper, we explore applications of FLIPIT, a novel game-theoretic model
of system defense introduced in [14]. In FLIPIT, an attacker periodically gains
complete control of a system, with the unique feature that system compromises
are stealthy, i.e., not immediately detected by the system owner, called the de-
fender. We distill out several lessons from our study of FLIPIT and demonstrate
their application to several real-world problems, including password reset poli-
cies, key rotation, VM refresh and cloud auditing.

1 Introduction
Targeted attacks against computing systems have recently become significantly more
sophisticated. One major consequence is erosion of the main principle on which most
cryptographic systems rely for security: That “secret” keys remain strictly secret. At-
tacks known as Advanced Persistent Threats (APTs), for instance, exploit deep, system-
specific knowledge and zero-day vulnerabilities to compromise a system completely,
revealing sensitive information that can include full cryptographic keys. Moreover, this
compromise is stealthy, meaning that it’s not immediately detected by the system owner
or defender. We have previously introduced a game-theoretic model for this volatile new
security world called FLIPIT [14], The Game of “Stealthy Takeover.”

FLIPIT is a game between two players, known as the attacker and defender. Play-
ers compete to control a shared sensitive resource (e.g., a secret key, a password, or an
entire infrastructure, depending on the setting being modeled). A player may take con-
trol of the resource at any time by executing a move; the player pays a certain (fixed)
cost to do so. The fact that moves are stealthy in FLIPIT distinguishes it from other
games in the literature. A player in FLIPIT doesn’t immediately know when her op-
ponent has made a move, but discovers it only when she subsequently moves herself.
Each player’s objective is to maximize the fraction of time she controls the resource,
while minimizing her cumulative move cost.

2 K. D. Bowers et al.

The goal of this paper is twofold: (1) To present some general principles of effective
play in FLIPIT and (2) To demonstrate application of these principles to defensive
strategy design in real-world cyberdefense settings. Thus our contributions are:

Principles of effective FLIPIT play: We introduce general principles for effective
FLIPIT play by a defender facing a more powerful attacker. These principles fit into
three categories: (A) Principles governing defender strategy selection based on knowl-
edge about the class of strategies employed by the attacker; (B) Principles regarding
game setup, specifically, effective cost-structure design choices for the defender; and
(C) Principles regarding gameplay feedback, namely how the defender can best maxi-
mize feedback via system design for effective gameplay. All principles have solid the-
oretical underpinnings in our analysis in [14].

Application of FLIPIT to real-world security problems: We explore the application
of FLIPIT to the problem of managing credentials used for user authentication. In
particular, we’re interested in enabling system owners (defenders) to schedule the expi-
ration or refresh of their credentials most effectively. We focus primarily on passwords
(namely, password-reset policies) and cryptographic keys (key refresh, also known as
key rotation). Specifically, we show the benefits of randomizing password reset intervals
(in sharp distinction to the widespread 90-day password reset policy). We also quantify
the importance of frequent rotation of keys protecting critical defender assets.

We briefly touch on other applications of the FLIPIT framework, including virtual
machine refresh and cloud auditing for service-level-agreement (SLA) enforcement.
Our FLIPIT design principles bring to light defensive strategies that improve on cur-
rent practices in these settings. Study of these applications also introduces new and in-
teresting variants of the basic FLIPIT game whose analysis provides interesting open
questions for the community.

Organization. In Section 2, we present the FLIPIT framework and detail on the
lessons learned from [14] in the form of set of principles. In Section 3, we apply these
principles to password reset and key management, and in Section 4 to virtualization and
cloud auditing. We review related work in Section 5 and conclude in Section 6.

2 Framework and Principles
We start this section by introducing the FLIPIT framework. We then introduce sev-
eral principles for designing defensive strategies in various computer security scenarios
derived from our theoretical analysis presented in [14]. In the following sections, we
present several applications of the framework and show how the principles introduced
here result in effective defensive strategies.

2.1 FLIPIT Framework
We present FLIPIT by the example of “host takeover” where the target resource is a
computing device. The goal of the attacker is to compromise the device by exploiting
a software vulnerability or credential compromise. The goal of the defender is to keep
the device clean through software reinstallation, patching, or other defensive steps.

An action/move by either side carries a cost. For the attacker, the cost of host com-
promise may be that of, e.g., mounting a social-engineering attack that causes a user to

Applications of FLIPIT to System Security 3

open an infected attachment. For the defender, cleaning a host may carry labor and lost-
productivity costs. The resource can be controlled (or “owned”) by either of two players
(attacker / defender). When a player moves he takes control of the resource; ownership
will change back and forth as the players make moves. A distinctive feature of FLIPIT
is its stealthy aspect, that is the players don’t know when the other player has taken over.
Nor do they know the current ownership of the resource unless they perform a move.
For instance, the defender does not find out about the machine compromise immedi-
ately, but potentially only after he moves himself; or, the attacker might find out about
the host cleanup at a later time, not immediately when the defender moves.

The goal of each player is to maximize the time that he or she controls the resource,
while minimizing their move costs; players thus have a disincentive against moving too
frequently. A move results in a “takeover” when ownership of the resource changes
hands. If the player who moves already had ownership of the resource, then the move
was wasted (since it did not result in a takeover). The only way a player can determine
the state of the game is to move. Thus a move by either player has two consequences: it
acquires control of the resource (if not already controlled by the mover), but at the same
time, it reveals information about the state of the resource prior to the player taking
control. This knowledge may be used to determine information about the opponent’s
moves and assist in scheduling future moves.

FLIPIT provides guidance to both players on how to implement a cost-effective
move schedule. For instance, it helps the defender answer the question: “How regularly
should I clean my system?” and the attacker: “When should I launch my next attack?”.

We show a graphical representation of the game in Figure 1. The control of the
resource is graphically depicted through shaded rectangles, a blue rectangle (dark gray
in grayscale) representing a period of defender control, a red rectangle (light gray in
grayscale) one of attacker control. Players’ moves are graphically depicted with shaded
circles. A vertical arrow denotes a takeover, when a player (re)takes control of the
resource upon moving. In this example, a move costs the equivalent of one second of
ownership. Thus, at any time t, each player’s net score is the number of seconds he has
had ownership of the resource, minus his number of moves up to time t.

Attacker

Defender
t

Fig. 1. The FLIPIT game. Blue and red circles represent defender and attacker moves, respec-
tively. Takeovers are represented by arrows. Shaded rectangles show the control of the resource—
blue (dark gray in grayscale) for the defender and red (light gray in grayscale) for the attacker.
We assume that upon initialization at time 0, the defender has control.

The most interesting aspect of this game is that the players do not automatically
find out when the other player has moved in the past; moves are stealthy. A player
must move himself to find out (and reassert control). We distinguish various types of
feedback that a player may obtain upon moving:

4 K. D. Bowers et al.

– Nonadaptive [NA]. No feedback is given to the player upon moving.
– Last move [LM]. The player moving at time t > 0 finds out the exact time when

the opponent played last before time t.
– Full history [FH]. The mover finds out the complete history of moves made by

both players so far.
Since feedback is the means by which a player acquires more knowledge in FLIPIT,

we are now ready to define the view or knowledge of a player. The view of a player after
playing his nth move is the history of the game from this player’s viewpoint from the
beginning of the game up to and including his nth move. It lists every time that player
moved, and the feedback received for that move, up to and including his nth move.

We can now define a player’s strategy in the game. Informally, a strategy for a player
defines how moves in the game are chosen as a function of time, the knowledge about
the opponent acquired before the game starts and the amount of feedback received by
a player during the game. More formally, a strategy for playing FLIPIT is a (possibly
randomized) mapping S from views to positive real numbers. If S is a strategy and v a
view up to and including the player’s nth move, then S(v) denotes the time the player
waits before making his (n+ 1)st move.

Strategies can be grouped into several classes. For instance, the class of non-adaptive
strategies includes all strategies for which players do not receive any feedback during
the game. The class of renewal strategies is a subset of non-adaptive strategies in which
the intervals between a player’s consecutive moves are generated by a renewal process.
As such, the inter-arrival times between moves in a renewal strategy are independent
and identical distributed random variables chosen from the same probability density
function. The class of adaptive strategies encompasses strategies in which players re-
ceive feedback during the game according to either LM or FH notions defined above.

A game instance in FLIPIT is given by two classes of strategies, one for the at-
tacker and one for the defender, from which the players can select their strategies before
the game starts. The strategy can be randomized and adapted according to the feedback
received during the game. We denote by FlipIt(C0, C1) the FLIPIT game in which
player i chooses a strategy from class Ci, for i ∈ {0, 1}. Here, we identify the defender
with 0 and the attacker with 1.

For a particular choice of strategies S0 ∈ C0 and S1 ∈ C1, the benefit βi(S0, S1) of
player i is defined in the following way:

– We define k0 and k1 as the cost of the defender’s and attacker’s moves, respectively.
– By αi(t) we denote the average move rate by player i up to time t. In other words,
αi(t) is equal to the total number of moves by player i up to time t divided by t.

– By γi(t) we denote the average gain rate for player i defined as the fraction of time
that player i has been in control of the game up to time t.

– Now we are ready to define player i’s average benefit rate up to time t as βi(t) =
γi(t) − kiαi(t). This is equal to the fraction of time the resource has been owned
by player i, minus the cost rate for moving.

– The benefit βi of player i is defined as the liminf of player i’s benefit rate up to time
t as t tends to infinity; lim inft→∞ βi(t).

The average move, gain and benefit rates all depend on the exact strategies S0 and S1

played by defender and attacker. (Here, benefits represent the notion of utility.)

Applications of FLIPIT to System Security 5

In [14], we have presented a detailed definition of the FLIPIT game and a rigorous
analysis of several aspects of the game, including Nash equilibria for certain FlipIt
instances and an analysis of dominated strategies within certain classes of strategies.

2.2 Principles for Designing Defensive Strategies
FLIPIT was motivated by the observation that systems should nowadays be designed
to be resilient to very powerful adversaries that can eventually fully compromise the
system. Defenders protecting sensitive resources (including sensitive personal informa-
tion, cryptographic keys, national secrets) face increasingly sophisticated attackers and
traditional defensive techniques are no longer effective. The framework provided by
FLIPIT provides a model of continuous interaction between a defender and attacker
in controlling a resource, which can be used to study this new reality. Based on our
theoretical analysis in [14] we outline in this section several principles for designing
effective defensive strategies when dealing with various security situations.

There are three main categories of principles, detailed in the rest of the section:
(A) Principles about selecting a defensive strategy given some knowledge about the

class of strategies employed by the attacker;
(B) Principles about the setup of the FLIPIT game resulting in various system design

choices for the defender;
(C) Principles about the amount of feedback received by the defender and made avail-

able to the attacker during the game.

(A) Principles related to strategy selection. The first type of principles are as follows.
Residual Game [RG]. There is an assumption in game theory that a rational player
does not choose to play a strategy that is strongly dominated by other strategies. There-
fore, iterative elimination of strongly dominated strategies for both players is a stan-
dard technique used to reduce the space of strategies available to each player (see, for
instance, the book by Myerson [8]). For a game instance FlipIt(C0, C1), we denote by
FlipIt∗(C0, C1) the residual FLIPIT game consisting of surviving strategies after elim-
ination of strongly dominated strategies from classes C0 and C1. A rational player will
always choose a strategy from the residual game resulting in the following principle:

RG Principle: Given a particular game instance, a defensive strategy should
be selected from the residual game.
For instance, one set of results in [14] analyzes the game instance in which both

players can select strategies from the class of renewal strategies R (i.e., to set the time
between moves according to a fixed probability distribution) or that of periodic strate-
gies P with random phase (i.e., to set the first move uniformly at random, while all
next moves are chosen according to a fixed period). For this game instance, the periodic
strategy with random phase strongly dominates the renewal strategies of similar play
rate, i.e., the residual game FlipIt∗(R∪P,R∪P) turns out to be equal to FlipIt(P,P).

A second example is a scenario in which an LM adaptive defender plays against
an attacker employing an exponential strategy (i.e., the intervals between moves are se-
lected according to an exponential distribution). Then the defender’s strongly dominant
strategy among all adaptive strategies is periodic play.
Randomized Strategy [RS]. In a FLIPIT game in which an NA defender plays against
an adaptive LM attacker (i.e., the attacker acquires additional knowledge through last

6 K. D. Bowers et al.

move feedback), the defender should either introduce randomness when selecting her
moves or not play at all (assuming that the attacker plays with some positive rate).

A deterministic, predictable strategy for the defender (e.g., periodic play) results
in total loss of control: an adaptive attacker finding out the exact last move time of
the defender can predict the time of the defender’s next move and move right after the
defender. With this strategy, the attacker controls the resource virtually at all times.
Therefore, adding randomization to the intervals between defender’s moves has the
advantage of increasing the attacker’s uncertainty about the defender’s strategy. This
results in the following principle:

RS Principle: The defender should use randomization in her strategy (or not
play at all) when confronted with an adaptive attacker moving with positive
rate.
While introducing randomization when selecting defensive moves against an adap-

tive attacker has a clear benefit in increasing the defender’s benefit, the amount of vari-
ability in the defender’s strategy has to be carefully calibrated to not deviate too much
from the optimal strategy. We’d like to highlight here that finding the strongly dom-
inant non-adaptive (randomized) defensive strategy against an adaptive attacker is an
open problem (see [14]).

Drop Out Principle [DOP]. For some applications the resource is so valuable that the
loss of control (even for small fraction of time) results in highly negative benefit for the
defender. For such scenarios, the strongly dominant strategy for the defender is to play
fast enough in order to force a rational attacker to drop out of the game.

In [14] we showed two results:
- If the defender plays periodic with rate α > 1/k1, then the attacker’s strongly

dominant adaptive strategy is to drop out of the game.
- If the defender plays periodic with rate α > 1/(2k1), then the attacker’s strongly

dominant non-adaptive strategy is to drop out of the game.
These findings result in the following principle:
DOP Principle: For valuable resources, the defender should play fast enough
to force the attacker to drop out of the game.
To force the attacker out of the game, the move rate of the defender is dependent

on the attacker’s move cost. In order for the defender’s benefit to be positive, her move
cost should be lower than the attacker’s (k0 < k1). As the ratio between the attacker’s
and defender’s move costs increases, the defender improves his benefit. Achieving such
conditions is discussed below.

(B) Principles related to game setup. In the security situations that we model, typ-
ically the defender has the advantage that she is responsible for setting up the game.
Typically, the resource is initially controlled by the defender, and she can make various
design choices that can result in different game parameters. Below we highlight two
principles related to controlling the attacker and defender move costs.

Move Cost Principles [MCP]. The defender’s benefit increases if she arranges the
game so that her moves cost much less than the attacker’s moves. Lower move cost
for the defender implies that the defender can play more frequently, and control the
resource more. For some situations, a reduction in defender’s move cost results in the

Applications of FLIPIT to System Security 7

ability of the defender to play with sufficiently high rate that it eventually forces the
attacker to drop out of the game (as illustrated in the DOP principle). This observation
leads to the following principle:

MCP Principle 1: The defender should arrange the game so that her moves
cost much less than the attacker’s.
An interesting research challenge for system designers is how to design an infras-

tructure in which refresh/clean costs are very low. We believe that virtualization has
huge potential in this respect. For instance, refreshing a virtual machine has much lower
cost than refreshing a physical machine. For cleaning a physical machine, full system
wiping and reinstallation of all software is needed, while a virtual machine imagine can
be simply restored from a clean-state version in a couple of minutes.

Moreover, the defender should make design choices that increase the attacker’s
move costs. This will result in the attacker playing less frequently, which in turn also
implies higher control for the defender. Thus, the following principle can be derived:

MCP Principle 2: The defender should arrange the game so that she increases
the move cost of the attacker.
Another interesting research problem for system designers is how to setup an infras-

tructure that increases the attacker’s move costs in practice. For instance, sensitive data
or cryptographic keys can be split (shared) over multiple storage servers such that only
by accessing all servers can the sensitive data can be reconstructed while no informa-
tion is obtained if at least one of the servers is not accessed/controlled. This reduces the
attack surface: in order to compromise the sensitive data, the attacker needs to obtain
control of all servers, effectively multiplying his move cost by the number of servers.

In our analysis from [14], we showed, for instance, that when playing with an expo-
nential distribution against an LM-adaptive attacker, the defender can achieve benefits
ranging from 0.1262 to 0.75 as the move cost ratio k1/k0 varies from 1 to 4. Similarly,
when playing with a delayed exponential distribution the benefit achieved by the de-
fender varies between 0.15 and 0.85 as the move cost ratio k1/k0 changes from 1 to 4.
These examples clearly illustrate the MCP principles.

(C) Principles related to feedback received during the game. Our theoretical anal-
ysis in [14] demonstrates that any amount of feedback (even limited) received during
the game about the opponent benefits a player in FLIPIT. Both players can control to
some extent the amount of feedback received by the opponent, but again the defender
has some advantage in setting up and knowing all the details of the internal infrastruc-
ture of the resource that she protects.

Feedback Principles [FP]. The defender’s benefit increases if the amount of feedback
received during the game about the attacker’s moves is increased. Defenders, therefore,
should monitor their systems frequently to gain information about the attacker’s strategy
and detect potential attacks quickly after take over. Both monitoring and fast detection
help a defender to more effectively schedule moves, which results in more control of
the resource and less budget spent on moves, increasing the defender’s benefit. As a
consequence, the following principle follows naturally:

FP Principle 1: Defenders should monitor their resources to increase the amount
of feedback received during the game.

8 K. D. Bowers et al.

Moreover, limiting the amount of feedback available to the attacker upon moving
can also contribute to an increased benefit for the defender. The defender can employ
various techniques to hide information about the exact time when she performed a
move. The defender may, e.g., decide not to log timing information about when a system
was cleaned. Accordingly, the following principle can be derived:

FP Principle 2: Defenders should limit the amount of feedback available to the
attacker during the game.

3 Applications to Credential Expiration
In this section we highlight credential expiration as an application of particular practical
interest. Credentials confirm the identity of a party. We focus on the two most common
forms: passwords and cryptographic keys. The most common practice for managing
credentials is to let credentials expire after a certain period. As we show the FLIPIT
defending principles offer some simple, easy-to-deploy improvements to this practice.

We first discuss password reset and show the benefit of the randomized strategy
principle. Next we discuss a storage service managed by a single enterprise that main-
tains directories with documents for its employees. Employees may update their doc-
uments, create new and remove old documents. We assume that access control to em-
ployee specific directories is managed by authentication keys. We discuss the well-
established practice of key management by means of key-rotation and illustrate the
DOP principle by a parameterization in which rational adversaries are forced to drop
out. We extend our example by showing a reduction in defensive move costs when the
storage service is outsourced to the cloud.

3.1 Password Reset
Knowledge of a password usually equates with control of a resource, such as an account.
Thus we may view an adversary’s attempt to compromise a password as a game of
control. On learning a password, the adversary seizes control of an account. By resetting
the password, the account owner regains control.

FLIPIT for password reset. When resetting a password, a user typically obtains no
feedback on whether it’s been compromised. Conversely, though, on (re-)compromising
a password, an attacker learns whether it has been reset, simply by observing whether
the password has changed since the last compromise. Where fixed-period password-
reset policies are in force, an attacker will also generally know the period, as it’s a
matter of organization-wide policy. Worse still, in many situations, the adversary may
also know or learn over time the phase of a user’s password reset schedule.

Password reset thus involves asymmetric knowledge. The defender receives no feed-
back, while the attacker learns whether a password is still valid. So a FLIPIT game for
password reset is similar to the basic FLIPIT model with a non-adaptive defender and
LM-adaptive attacker. The move cost for a defender is essentially the human overhead
of creating and memorizing a new password. The cost of password compromise by the
attacker depends on the environment: There are many vectors for password compro-
mise, e.g., database breaches, password-stealing Trojans, etc.

Applications of FLIPIT to System Security 9

Resetting passwords at fixed 90-day intervals, as commonly employed by most or-
ganizations today, is a poor defensive strategy. The Randomized Strategy (RS) principle
offers a key insight into password refreshing:

To minimize adversarial control of a password-protected account, password
resets should take place at randomly determined intervals.

Case study. Consider the application of FLIPIT to the problem of password reset
for corporate e-mail accounts. The cost to an attacker of compromising a password is
perhaps most meaningfully reflected in the price of account passwords in underground
markets. In a 2008 report on the underground economy, Symantec reported a price range
of $4-$30 for a compromised e-mail password.4 Quantifying the defender’s cost in this
setting is harder, as the overhead of password reset includes a substantial intangible
burden on the user. Enterprise help-desk calls for password reset offer an indirect esti-
mate of the human cost. A 2004 Gartner case study [15] documented an average cost of
$17.23 (here, rounded to $17.00) per password reset call at a large beverage company.

Quantifying the benefit over time of account control is an even greater challenge,
and depends largely on the attacker’s control objective and its strategy for monetizing
or otherwise exploiting a compromised account. We might notionally assume that the
benefit of account control is equal for attacker and defender and also that the value of
an account is much larger than the cost of password resets. With the cost of password
reset at $17 every 90 days, we assume that the value of the account is 10 times larger,
resulting in approximately a value of $2.00 per-day benefit. We’d like to highlight that
these numbers are for illustration purposes only, the analysis can be easily adapted if
some of the parameters change their values.

With these parameter settings, we can set k0 = 17/2 = 8.5 and k1 ∈ [4/2, 30/2].
For a defender playing with a 90-day period strategy against an adaptive attacker, the
amount of control is 0 and her benefit is always negative at 0 − 8.5/90 = −0.09.
We quantify now the exact benefits for the attacker and defender in case the defender
employs an exponential strategy and the attacker is LM adaptive. From our analysis in
[14] (see Theorem 8), we distinguish two cases:
1. If k1 ≥ k0/0.854 = 10, then the defender’s optimal play is exponential with rate
λ = 1/k1 (and mean k1), and the defender’s benefit is β0 = 1 − k0/k1. The
attacker’s best response is not playing at all and his benefit β1 is zero.

2. If k1 < k0/0.854 = 10, the defender’s maximum benefit is achieved by playing
at rate λ = (1 − (1 + z)e−z)/k1, where z is such that (ez − 1 − z)/z3 = k0/k1.
The attacker’s maximum benefit is achieved for playing periodically with period
δ = z/λ.
We present in Table 1 the defender’s optimal average inter-move delay (in days),

the attacker’s period of play (in days), and the defender’s and attacker’s optimal bene-
fits (expressed in dollars) for different values of k1. As observed, the defender always
achieves positive benefit when employing an exponential strategy. As expected, the de-
fender’s benefit increases with higher attacker cost, validating the Move Cost Principle

4 http://eval.symantec.com/mktginfo/enterprise/white papers/b-
whitepaper underground economy report 11-2008-14525717.en-us.pdf

10 K. D. Bowers et al.

(MCP). The Drop Out Principle (DOP) is also demonstrated as the attacker’s optimal
strategy is not playing at all once his move cost exceeds a certain threshold.

Table 1. Parameters and benefits for exponential defender strategy. The defender’s average inter-
move delay and attacker’s period are given in days and the defender’s and attacker’s benefit in $.

k1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Def. average 289 193 145 116 97 84 74 66 10 11 12 13 14 15
Att. period 35 36 37 38 39 40 41 42 ∞ ∞ ∞ ∞ ∞ ∞
Def. benefit 0.058 0.088 0.116 0.14 0.16 0.206 0.236 0.266 0.3 0.45 0.582 0.692 0.784 0.866
Att. benefit 1.768 1.64 1.548 1.46 1.34 1.24 1.144 1.05 0 0 0 0 0 0

This case study illustrates the principle that the defender should use randomization
when facing an adaptive attacker. At the same time, it shows the limitations of employ-
ing a simple non-adaptive strategy. Clearly, the defender achieves much lower benefit
than the attacker when the attacker’s move cost are lower or equal to the defender’s.
According to our Feedback Principles (FP), the defender would improve his benefit if
she is able to obtain more feedback during the game. For instance, certain defensive
techniques such as monitoring the infrastructure to detect password compromises or
requiring multi-factor authentication will enhance the defender’s benefit.

Variant. We might consider an enhanced password-reset model with asymmetric play
as well. The attacker then has a second action type available to it, a check that deter-
mines whether it still has control, and is distinct from a move. This move corresponds
to an attacker attempt to use a password in order to check its validity. A check move,
like an ordinary reset move, carries some cost: It increases the detection risk for the
attacker. (In a system in which unsuccessful login events are logged, for instance, every
check will potentially trigger an investigation by the defender.)

3.2 Key Management
We now explore the application of FLIPIT in the area of key management. We examine
the use case of key management for authenticating employee directories, by considering
two concrete, contrasting deployment models:

- Deployment of key management within a single enterprise: This deployment
model is very commonly used in the industry today. Widely adopted key management
products, e.g., from IBM, HP, EMC, Thales, Symantec/PGP and many other vendors,
provide solutions for managing cryptographic keys at an enterprise level.

- Deployment of key management within a cloud infrastructure. This deploy-
ment model relies on the shared infrastructure of a cloud service provider on behalf of
multiple tenant enterprises, and is emerging as a significant alternative to enterprise-
based key-management infrastructures. Architectural and security considerations for
this model have been discussed in the Cloud Security Alliance Security Guidance for
Critical Areas of Focus in Cloud Computing 3.0.5 We focus on the deployment of
enterprise-specific key managers within a dedicated and isolated segment of a Cloud
Service Provider infrastructure, a model already exemplified in commercial products,
e.g., Microsoft Azure Trust Services.

5 https://cloudsecurityalliance.org/guidance/csaguide.v3.0.pdf.

Applications of FLIPIT to System Security 11

The FLIPIT game offers an alternative way to look at the question of whether and
when to use key rotation. As NIST SP 800-57, Part 2 [2] (pp. 45), suggests, evaluation of
key rotation policy should take into account “the threat to the information (e.g., who the
information is protected from, and what are their perceived technical capabilities and
financial resources to mount an attack).” We achieve this with FLIPIT, by exploring
whether there are ways to take advantage of key rotation that might invoke the Drop
Out Principle, so that the best strategy for the attacker is to defect from the game.

FLIPIT for key rotation. In this game, the defender’s moves implement key rotation
in order to refresh keys. We will assume that the defender plays a non-adaptive periodic
strategy because she does not see the attacker’s moves until the point at which the
compromise is exposed. We assume the following parameters for the defender:

- Refreshing a single authentication key costs about $1 (this estimate seems to be
well supported due to the cost of interaction with the parties who need the authentication
key for accessing their directory). Let u be the period (measured as a fraction of a year)
at which the defender rotates each key. Then 1/u equals the defender’s move cost in $
per key per year.

- If the attacker gets hold of an authentication key, then the loss to the defender due
to the leakage of the protected documents (which are updated, created and removed
continuously) is assumed to be about $200 /year (this estimate comes from Ponemon
estimating in their 2012 report6 that the costs for responding to a data breach incident
typically equals $204 per stolen credit card record; here we assume a continued loss of
$200 /year due to illegitimate access to protected documents). So, being in control of an
authentication key means that the defender does not incur a loss at rate $200 /year. We
may model this as a gain of $200 /year being in control. So, for γ0 denoting the fraction
of time the defender is in control of an authentication key, the defender’s gain is equal
to $200γ0 per key per year.

In FLIPIT notation, where benefit is normalized with respect to the value of being
in control, the defender’s benefit is equal to γ0 − k0/u, where k0 = 1/200.

We assume a typical scenario of an enterprise with 10, 000 authentication keys (this
estimate comes from [2]). For the attacker we assume the following parameters:

- To exfiltrate keys an attacker needs to launch an attack of $10, 000 (move) cost.
- Let n be the total number of exfiltrated keys per attack. As n increases, the de-

fender detects the attack with higher probability. We model this by introducing a param-
eter r, the probability that the defender detects the compromise of a single key. Then,
assuming that the detection of different key compromises are independent events, the
probability of detecting the compromise of n keys is 1 − (1 − r)n. In the first exam-
ple of deployment within the enterprise, we consider the worst case for the defender,
in which the attacker is detected with probability 0. When deploying key management
to the cloud, we assume a better detection mechanism (r > 0) as the cloud provider
handles keys of multiple tenants.

6 Ponemon Institute, 2009 Annual Study, http://www.ponemon.org, “Cost of a Data Breach:
Understanding Financial impact, Customer Turnover and Preventive Solutions.”

12 K. D. Bowers et al.

- If the attacker gets an authentication key without being detected, then access to the
protected documents leads to a gain of about $4 /year (monetizing leaked data is orders
of magnitude less than the loss to the defender caused by their leakage).

Summarizing, a single attack in which n keys are extracted costs $10, 000 and leads
to an expected value of being in control of [(1− (1− r)n) · 0 + (1− r)n · 4] · n $/year.
In FLIPIT notation: k1 = 10000/[4(1− r)nn].

An adaptive attacker drops out if he can get no benefit at all: this happens if u < k1.
This shows that if the defender chooses u slightly less than k1 = 2500/[(1 − r)nn],
then the attacker must drop out in order to avoid a negative benefit. In the enterprise
deployment example, in the worst case for the defender, r = 0 (no detection) and
n = 10000 (all keys within the enterprise are stolen). For these parameters the defender
should choose u < 0.25, i.e., the defender’s period is at most 3 months. The defender’s
benefit per key per year is equal to $(200 − 1/u) = $196 which is very close to $200.
Hence, for a small cost of $4 per key per year, no documents will be stolen by a rational
adversary playing a periodic strategy. Overall, the Drop Out Principle offers a key
insight for effective key rotation:

To minimize the possibility of exfiltration of documents protected using authen-
tication keys, key rotation should be applied sufficiently often; at least every 3
months in our concrete setting above.
For a non-adaptive attacker the drop out condition is u < 2k1, and key rotation

must occur at least every 6 months in which case for a small cost of $2 per key per
year for the defender no documents will be stolen by a rational adaptive attacker. So, by
reducing the feedback available to the attacker, the defender halves his cost per key per
year. This demonstrates the Feedback Principle:

To minimize the possibility of exfiltration of documents protected using au-
thentication keys, key rotation should be applied sufficiently often; for a non-
adaptive attacker at least every 6 months in our concrete setting above.
As an extension to this case study we now assume that the enterprise outsources its

document storage and key management to a cloud provider. Since the cloud provider
manages the keys of several enterprises/tenants, we may assume that more detection
mechanisms are available to detect stolen keys, e.g., let us assume that the probability
of detecting the event of stealing one key is equal to r = 1/10000.

The optimal defender’s period u against an adaptive attacker is now equal to k1 =
2500/[(1− r)nn], which is in the worst case minimized for n equal to the minimum of
−1/ ln(1 − r) and 10,000, the total number of keys of a single enterprise. This results
in an optimal defender’s period of u = 0.68 or 248 days. This shows that the increased
risk to the attacker allows the defender/cloud to choose a period which is 2.72 times
larger than the 3 months key rotation period for enterprise key management. This leads
to a reduction from $4 cost per key to $1.47 cost per key. (A second benefit of having a
cloud provider manage enterprise keys is a reduction in the initial start up costs which
is now shared among all the tenants of the cloud provider.)

The main goal in both the enterprise and the cloud service provider game is to invoke
the Drop Out Principle, creating such a significant advantage for the defender that the
rational strategy for the attacker is to quit the game. A key factor in achieving this result
is the risk to the attacker. We have formulated this risk in terms of the possibility that

Applications of FLIPIT to System Security 13

the value of the stolen information will be negated if and when the attack is exposed.
Such a result can be demonstrated in a number of real-life situations in which the rapid
discovery of an attack prevented the attacker from deriving value from their theft, such
as in the case of the 2011 attack on Lockheed-Martin that attempted to use information
stolen from RSA, as a vector in the attack.7

4 Other Applications
We next consider two more applications of FLIPIT, emphasizing its breadth of ap-
plication, rather than detailed analysis. We first examine defensive virtual-machine re-
fresh. While less mature a practice than password reset and key rotation, it’s an emerg-
ing approach that fits well within the basic FLIPIT framework. Secondly, we consider
FLIPIT as a model for automated (cryptographic) cloud service auditing.

4.1 Virtual-Machine Refresh
Virtualization is seeing heavy use today in the deployment of servers in data centers. As
individual servers may experience periods of idleness, consolidating multiple servers as
VMs on a single physical host often results in greater hardware utilization. Similarly,
Virtual Desktop Infrastructure (VDI) is an emerging workplace technology that pro-
visions users with VMs (desktops) maintained in centrally managed servers. In this
model, users are not bound to particular physical machines. They can access their vir-
tual desktops from any endpoint device available to them, even smart phones.

While virtualization exhibits many usability challenges, one key advantage is a se-
curity feature: VMs can be periodically refreshed (or built from scratch) from “clean”
images.

Takeover of a VM results in a game very similar to that for a physical host. Virtu-
alization is of particular interest in the context of FLIPIT, though, because FLIPIT
offers a means of measuring its security benefits. Refreshing a VM is much less cumber-
some than rebuilding the software stack in a physical host. In other words, virtualization
lowers the move cost for the defender illustrating the Move Cost Principle (MCP):

When designing system infrastructures, virtualization is a key technique useful
in reducing the defender’s move cost.

4.2 Cloud Service Auditing
When a cloud service provider furnishes a resource to a client, it’s desirable for the
client, or an auditor acting on its behalf, to audit the provider. A provider generally
furnishes resources to clients under a Service-Level Agreement (SLA), a contractual
specification of configuration options and minimum service levels. Compliance or de-
viation from an SLA, however, isn’t always readily apparent to clients—particularly for
security or reliability objectives.

Although real-time cloud-service auditing, applied as remote spot-checks, isn’t com-
mon today, it will inevitably become a regular practice, as recognized by the growth of
supporting standards such as SCAP and CloudTrust. The growing literature on remote
testing of cloud security properties [1,3] largely neglects the question of how challenges

7 See article in Infosecurity Magazine at http://www.infosecurity-magazine.com/view/18299.

14 K. D. Bowers et al.

should be scheduled, or assumes a simplistic partitioning of time into epochs. Overall,
FLIPIT offers a more refined temporal framework for these protocols.

Our Randomization Principle (RP) shows that the defender must adopt a random-
ized strategy to perform well, i.e., audit spot checks must be unpredictable to be effec-
tive in an adversarial environment.

An optimal cloud service auditing strategy is adaptive, i.e., conditions chal-
lenge times on the observed compliance or non-compliance of the provider.

The defender has a disadvantage in the game defined so far as the cloud provider has
complete feedback about the defender’s moves. The Feedback Principle (FP) teaches us
that the defender further benefits in the game if the exact audit times are not divulged to
the provider. To implement such a defensive technique, the defender might, for instance,
use an auditing technique having the property that audit requests are indistinguishable
from normal requests. This allows the defender to spread and hide her audits at slow
rate among the normal requests to the cloud. We believe that designing such an auditing
techniques is an interesting topic of future work.

5 Related Work
FLIPIT was first presented at an invited talk by Ron Rivest at CRYPTO 2011[12];
[14] introduces FLIPIT and gives a formal treatment with theoretical analysis.

In the game theory literature, FLIPIT is related to “repeated games” (see, for
example, the excellent text by Mailath and Samuelson [5]), but it differs from them
through its stealthy aspect and continuous time. Nonetheless, at a higher level, FLIPIT
does share some qualitative characteristics with repeated games. If both players of
FLIPIT play adaptively, then FLIPIT acquires the rich complexity of repeated Pris-
oner’s Dilemma, where players may choose to cooperate for their mutual benefit.

FLIPIT is also related to a game of timing [11] where (1) there is an infinite time
interval and a finite amount of resources (moves) within each finite subinterval, and (2)
the resources/moves of a player are either silent (i.e., the other player does not learn
when the moves take place) or noisy with delay till the other player moves (i.e., the
other player learns the full history of moves when he moves himself). As future work,
we plan to investigate how the theory of games of timing applies to FLIPIT.

Conventional game theory has a long history of application to and enhancement
by cryptography and network security; see [4,6] for two surveys. More pertinent to
FLIPIT are games modeling system security. Roy et al. [13] offer a taxonomy and
survey of game-theoretic models in network security in particular. They note a pre-
ponderance of games differing from FLIPIT in two ways: The games assume perfect
information (i.e., players know the full game state) and synchronous moves by players.

Some recent information security modeling has made use of extensive forms, which
permit complex modeling, strictly within a framework of synchronous moves. This ap-
proach gives rise to security games with imperfect information, as in a game devised
by Moore et al. [7] to model zero-day disclosure by competing entities. Nguyen et
al. [9] consider an abstract, repeated security game with imperfect information and also
incomplete information, in the sense that players don’t know one another’s payoffs.
Related work also includes a synchronous territorial game of incomplete, perfect infor-

Applications of FLIPIT to System Security 15

mation proposed by Pavlovic [10] which models two-player cybersecurity scenarios for
information gathering via deception.

6 Conclusion
While its rules are simple, we have shown that FLIPIT is a conceptually rich security
model that yields both important general defensive principles and specific guidance
in a number of real-world security scenarios. The Randomized Strategy Principle, for
instance, yields a beneficial randomization of password-reset policies. The Drop Out
Principle highlights the importance of key rotation frequency. The Move Cost Principle
underscores one of the benefits of virtualization, namely its reduction in defender’s
move costs. FLIPIT offers similarly useful insights across a broad range of real-world
security applications, of which we’ve presented only a small set here. It also gives rise
to a wealth of variants applicable to diverse and potentially complex security scenarios.

While this paper provides a glimpse into the applications of FLIPIT, the underly-
ing model of complete and silent compromise has countless uses, especially in a world
where no system is safe and the longstanding assumptions of cryptographers and secu-
rity system designers can no longer be taken for granted.

References
1. G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song. Prov-

able data possession at untrusted stores. In Proc. 14th ACM Conference on Computer and
Communication Security (CCS), 2007.

2. E. Barker, W. Barker, W. Polk, and M. Smid. Recommendation for key management II: Best
practices for key management organization. NIST SP, (2/3):1–79, 2005.

3. A. Juels and B. Kaliski. PORs: Proofs of retrievability for large files. In Proc. 14th ACM
Conference on Computer and Communication Security (CCS), pages 584–597, 2007.

4. J. Katz. Bridging game theory and cryptography: Recent results and future directions. In
Proc. Theory of Cryptography Conference (TCC), pages 251–272, 2008.

5. G. J. Mailath and L. Samuelson. Repeated Games and Reputations: Long-run relationships.
Oxford, 2006.

6. M. Manshaei, Q. Zhu, T. Alpcan, T. Basar, and J.P. Hubaux. Game Theory Meets Network
Security and Privacy. Technical report, EPFL, 2010.

7. T. Moore, A. Friedman, and A. Procaccia. Would a “cyber warrior” protect us? Exploring
trade-offs between attack and defense of information systems. In NSPW, pages 85–94, 2010.

8. R. B. Myerson. Game Theory—Analysis of Conflict. Harvard University Press, 1997.
9. K. C. Nguyen, T. Alpcan, and T. Basar. Security games with incomplete information. In

Proc. IEEE International Conference on Communications (ICC), 2009.
10. D. Pavlovic. Gaming security by obscurity, 2011. CoRR abs/1109.5542.
11. T. Radzik. Results and problems in games of timing. Statistics, Probability and Game

Theory, 30, 1996.
12. R. L. Rivest. Illegitimi non carborundum. Invited keynote talk given at CRYPTO 2011, Au-

gust 15, 2011. http://people.csail.mit.edu/rivest/pubs.html#Riv11b.
13. S. Roy, C. Ellis, S. Shiva, D. Dasgupta, V. Shandilya, and Q. Wu. A survey of game theory

as applied to network security. In Int. Conf. on System Sciences (HICSS), pages 1–10, 2010.
14. M. van Dijk, A. Juels, A. Oprea, and R. L. Rivest. FlipIt: The game of “stealthy takeover”.

To appear in Journal of Cryptology, 2012.
15. R. J. Witty, K. Brittain, and A. Allen. Justify identity management investment with metrics,

23 February 2004. Gartner Group report.

http://people.csail.mit.edu/rivest/pubs.html#Riv11b

	Defending Against the Unknown Enemy: Applying FlipIt to System Security

