
Machine Learning, 18,231-254 (1995)
© 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Piecemeal Learning of an Unknown Environment

MARGRIT BETKE margrit @theory.lcs.mit.edu
RONALD L. RIVEST rivest@theory.lcs.mit.edu
MONA SINGH mona @theory.lcs.mit.edu
Laboratory.for Computer Science, Massachusetts Institute of Technology, 545 Technology Square, Cambridge,
MA 02139

Editor: Sally A. Goldman

Abstract. We introduce a new learning problem: learning a graph by piecemeal search, in which the learner
must return every so often to its starting point (for refueling, say). We present two linear-time piecemeal-search
algorithms for learning city-block graphs: grid graphs with rectanguiar obstacles.

Keywords: map learning, graph algorithms, robot navigation

1. I n t r o d u c t i o n

We address the situation where a learner, to perform a task better, must learn a complete
map of its environment. For example, the learner might be a security guard robot, a taxi
driver, or a trail guide.

Exploration of unknown environments has been addressed by many previous authors,
such as Papadimin-iou and Yanakakis (1991), B lum, Raghavan, and Schieber (199 t), Rivest
and Schapire (1989), Deng and Papadimitriou (1990), Betke (1992), Deng, Kameda, and
Papadimitriou (1991), Rao, Kareti, Shi and Iyengar (1993), and Bar-Eli, Berman, Fiat, and
Yan (1992).

This paper considers a new constraint: for some reason learning must be done "piecemeal"
- - tha t is, a little at a time. For example, a rookie taxi driver might learn a city bit by bit
while returning to base between trips. A planetary exploration robot might need to return
to base camp periodically to refuel, to return collected samples, to avoid nightfall, or to
perform some other task. A tourist can explore a new section of Rome each day before
returning to her hotel.

The "piecemeal constraint" means that each of the learner's exploration phases must be
o f limited duration. We assume that each exploration phase starts and ends at a f ixed start
position s. This special location might be the airport (for a taxi driver), a refueling station,
a base camp, or a trailhead. Between exploration phases the learner might perform other
unspecified tasks (for example, a taxi driver might pick up a passenger). Piecemeal learning
thus enables "learning on the job", since the phases of piecemeal learning can help the learner
improve its performance on the other tasks it performs. This is the "exploration/exploitation
tradeoff": spending some time exploring (learning) and some time exploiting what one
has learned.

The piecemeal constraint can make efficient exploration surprisingly difficult. This paper
presents our preliminary results on piecemeal learning of arbitrary undirected graphs and
gives two linear-time algorithms for the piecemeal search of grid graphs with rectangular
obstacles. The first algorithm, the "wavefront" algorithm, can be viewed as an optimization

232 BETKE ET AL.

of breadth-first search for our problem. The second algorithm, the "ray" algorithm, can
be viewed as a variation on depth-first search. Although the ray algorithm is simpler,
the wavefront algorithm may prove a more fruitful foundation for generalization to more
complicated graphs.

Our problem formulation bears some similarity to a variety of AI-type "search" problems.
But our goal is somewhat different: instead of searchingfor a particular state or path to a
state in a graph, our learner has the goal of building up a model (i.e., learning a model) of
the entire graph.

We are deliberately vague, as well, about the ultimate purpose or use for the learned
model. While many learning papers include a specific "performance" component on which
the learning algorithm is to be evaluated, in our case we focus exclusively on the problem
of building up an accurate model, with the expectation that such a model might be used in
a variety of applications (such as finding shortest paths to a goal specified later on). We
care here only about learning an accurate model of the entire environment in an efficient
manner, under a piecemeal constraint.

Because we do not specify a particular "performance task" we do not explicitly specify
how learning the environment improves performance on that task. For many tasks, however,
the difference between having learned a model and not having one means the difference
between being able to perform the task at all and not being able to perform it. (Consider
the case of a taxi driver being asked to drive to a location that is as yet unknown to him.) In
consonance with the above remarks, we do not use a common approach of considering how
performance at some task improves as learning progresses, but rather we pay attention to
achieving the final goal of learning a complete and accurate model in an efficient manner.

We now give a brief summary of the rest of the paper. Section 2 gives the formal model.
Section 3 discusses piecemeal search on arbitrary graphs and gives an approximate solution
to the off-line version ofthis problem. Section 4 introduces the notion of"city-block" graphs
and discusses shortest paths in such graphs. Section 5 introduces the notion of a wavefront,
gives the wavefront algorithm for piecemeal search of city-block graphs, proves it correct,
and derives its running time. Section 6 introduces the ray algorithm as another way to do
piecemeal search of city-block graphs. Section 7 concludes with some open problems.

2. A Formal Model of Piecemeal Learning

We model the learner's environment as a finite connected undirected graph G = (V, E)
with distinguished start vertex s. Vertices represent accessible locations. Edges represent
accessibility: if {x, y} E E then the learner can move from x to y, or back, in a single step.

We assume that the learner can always recognize a previously visited vertex; it never
confuses distinct locations. At any vertex the learner can sense only the edges incident to
it; it has no vision or long-range sensors. It also does not have a compass. The learner can
distinguish between incident edges at any vertex. Each edge has a label that distinguishes it
from any other edge. Without loss of generality, we can assume that the edges are ordered.
At a vertex, the learner knows which edges it has traversed already. The learner only incurs
a cost for traversing edges; thinking (computation) is free. We also assume a uniform cost

for an edge traversal.
The learner is given an upper bound B on the number of steps it can make (edges it can

traverse) in one exploration phase. In order to assure that the learner can reach any vertex

PIECEMEAL LEARNING OF AN UNKNOWN ENVIRONMENT 233

in the graph, do some exploration, and then get back to the start vertex, we assume B ailows
for at least one round trip between s and any other single vertex in G, and also allows
for some number of exploration steps. More precisely, we assume B = (2 + oe)r, where
« > 0 is some constant, and r is the radius of the graph (the maximum of all shortest-path
distances between s and any vertex in G).

Initially all the learner knows is its starting vertex s and the bound B. The learner's goal
is to explore the entire graph: to visit every vertex and traverse every edge, minimizing the
total number of edges traversed.

3. Pieeemeal Search on General Graphs

In this section, we discuss piecemeal search on general graphs. In particular, we show why
"standard" approaches to this problem do not work. We also define the off-line version of
this problem, and give an approximate solution for it. Finally, we give a general method
for converting certain types of search algorithms into piecemeal search algorithms.

3.1. Initial Approaches Using DFS and BFS

A simple approach to piecemeal search on arbitrary undirected graphs is to use an ordinary
search algorithm--breadth-first search (BFS) or depth-first search (DFS)- -and jus t interrupt
the search as needed to return to visit s. (Detailed descriptions of BFS and DFS can be found
in algorithms textbooks (Cormen, Leiserson & Rivest, 1990). Once the learner has returned
to s, it goes back to the vertex at which search was interrupted and resumes exploration.

In depth-first search, edges are explored out of the most recently discovered vertex v that
still has unexplored edges leaving it. When all of v 's edges have been explored, the search
"backtracks" to explore edges leaving the vertex from which v was discovered. This process
continues until all edges are explored. This research strategy, without interruptions due to
the piecemeal constraint, is efficient since at most 2lE[edges are traversed. Interruptions,
or exploration in phases of limited duration, complicate matters. For example, suppose
in the first phase of exploration, at step BI2 of a phase the learner reaches a vertex v as
illustrated in Fig. 1. Moreover, suppose that the only path the !earner knows from s to v
has length BI2. At this point, the learner must stop exploration and go back to the start
location s. In the second phase, in order for the learner to resume a depth-first search, it
should go back to v, the most recently discovered vertex. However, since the learner only
knows a path of BI2 to v, it cannot proceed with exploration from that point.

Since DFS with interruptions fails to reach all the vertices in the graph, another approach
to solve the piecemeal search problem would be to try a bounded @th-first search strategy.
In bounded DFS, edges are explored out of the most recently discovered vertex v which had
depth less than a given bound fl. However, a bounded DFS strategy also does not translate
into a piecemeal search algorithm for arbitrary undirected graphs.

On the other hand, breadth-first search with interruptions does guarantee that all vertices
in the graph are ultimately explored. Whereas a DFS strategy cannot resume exptoration at
vertices to which it only knows a long path, a BFS strategy can always resume exploration.
This is because BFS ensures that the learner always knows a shortest path from s to any
explored vertex. However, since aBFS strategy explores all the vertices at the same distance

234 BETKE ET AL.

_ _ . v , w i I i
-" . s I I i

! i B/Œ !

Figure 1. The learner reaches vertex v after B/2 steps in a depth-first search. Then it taust interrupt its search
and return to s. It cannot resume exploration at v to get to vertex w, because the known return path is longer than
BI2, the remaining number of steps allowed in this exploration phase. DFS falls.

Figure 2.

s

A simple graph for which the cost of BFS is quadratic in the number of edges.

from s before exploring any vertices that are further away from s, the resulting algorithm
may not be efficient. Note that in the usual BFS model, the algorithm uses a queue to keep
track of which vertex it will search from next. Thus, searching requires extracting a vertex
from this queue. In our model, however, since the learner can only search from its current
location, extracting a vertex from this queue results in a reIocation from the learner's current
location to the location of the new vertex. In Fig. 2 we give an example of a graph in which
vertices of the same shortest path distance from s are far away from each other. For such
graphs the cost of relocating between vertices can make the overall cost of BFS quadratic
in the number of edges in the graph.

3.2. Off-Line Piecemeal Search

We now develop a strategy for the off-line piecemeal search problem which we can adapt
to get a strategy for the on-line piecemeal search problem.

In the off-line piecemeal search problem, the learner is given a finite connected undirected
graph G = (V, E), a start location s e V, and a bound B on the number of edges traversed in
any exploration phase. The learner's goal is to plan an optimal search of the graph that visits
every vertex and traverses every edge, and also satisfies the piecemeal constraint (i.e., each
exploration phase traverses at most B edges and starts and ends at the start location). Note
that since the graph is given, the problem does not actually have a learning or exploration
component. However for simplicity we continue using "learner" and "exploration."

The off-line piecemeal search problem is similar to the well-known Chinese Postman
Problem (Edmonds & Johnson, 1973), but where the postman must return to the post-office
every so offen. (We could call the off-line problem the Weak Postman Problem, for postmen
who cannot carry much mail.) The same problem arises when many postmen taust cover
the same city with their routes.

The Chinese Postman Problem can be solved by a polynomial time algorithm if the graph
is either undirected or directed (Edmonds & Johnson, 1973). The Chinese Postman problem
for a mixed graph that has undirected and directed edges was shown to be NP-complete by
Papadimitriou (1976). We do not know an optimal off-line algorithm for the Weak Postman
Problem; this may be an NP-hard problem. This is an interesting open problem.

P I E C E M E A L L E A R N I N G O F A N U N K N O W N E N V I R O N M E N T 235

We now give an approximation algorithm for the off-line piecemeal search problem using
a simple "interrupted-DFS" approach.

THEOREM 1. There exists an approximate solution to the off-line piecemeal search probIem
for an arbitrary undirected graph G = (V, E) which traverses OriEl) edges.

PROOF. Assume that the radius of the graph is r and that the number of edges the learner
is allowed to traverse in each phase of exploration is B = (2 ÷ o0r, for some constant oe
such that dr is a positive integer. Before the learner starts traversing any edges in the graph,
it looks at the graph to be explored, and computes a depth-first search tree of the graph.
A depth first traversal of this depth-first search tree defines a path of length 21El which
starts and ends at s and which goes through every vertex and edge in the graph. The learner
breaks this path into segments of length oer. The learner also computes (off-line) a shortest
path from s to the start of each segment.

The learner then starts the piecemeal exploration of the graph. Each phase of the ex-
ploration consists of taking a shortest path from s to the start of a segment, traversing the
edges in the segment, and taking a shortest path back to the start vertex. For each seg-
ment, the learner traverses at most 2r edges to get to and from the segment. Since there are
F2FEI-1 segments, there are [2 1 E I 7 - - 1 interruptions, and the number of edge traversals due

d r - - c~r -

to interruptions is at most:

Thus the total number of edge traversals is at most (4/ce + 2)[EI = O (E). []

3.3. On-Line Piecemeal Search

We now show how we can change the strategy outlined above to obtain an efficient onqine
piecemeal search algorithm.

We call an on-line search optimally interruptible if it always knows a shortest path back
to s can always be composed from the edges that have been explored. We refer to a search
as efficiently interruptible if it always knows a path back to s via explored edges of length
at most the radius of the graph. We say a search algorithm is a linear time algorithm if the
learner traverses O(E) edges during the search.

THEOREM 2. An efficiently interruptible, linear-time algorithm for searching an undi-
rected graph can be transformed into a linear-time piecemeal search algorithm.

PROOF. The proof of this theorem is similar to the proof of Theorem 1. However, there are
a few differences. Instead of using an ordinary search algorithm (like DFS) and interrupting
as needed to return to s, we use an efficiently interruptible, linear time search algorithm.
Moreover, the search is on-line and is being interrupted during exploration. Finally, the
cost of the search is not 21El as in DFS, but at most clEI for some constant c.

236 BETKE ET AL.

Assume that the radius of the graph is r and that the number of edges the learner is allowed
to traverse in each phase of exploration is B = (2 ÷ «)r , for some constant Œ such that otr
is a positive integer. Since the search algorithm is efficient, the length of the path defined by
the search algorithm is at most clE], for some constant c, c > 0. In each exploration phase,
the learner will execute ~er steps of the original search algorithm. At the beginning of each
phase the learner goes to the appropriate vertex to resume exploration. Then the learner
traverses c~r edges as determined by the original search algorithm, and finally the learner
returns to s. Since the search algorithm is efficiently interruptible, the learner knows a path
of distance at most r from s to any vertex in the graph. Thus the learner traverses at most
2r + oer = B edges during any exploration phase.

[-clEI] - nr - Since there are --'~-r - segments, there are FclEIq -- 1 interruptions, and the number of
edge traversals due to interruptions is:

(F 1) c,~ c[E___~[- 1 2r < 12r
k / oer l otr

2clEI

OE

Thus, the total number of edge traversals is]El(2c/« + c) = O(E). []

For arbitrary undirected planar graphs, we can show that any optimally inten'uptible
search algorithm requires f2 (IEI z) edge traversals in the worst case. For example, exploring
the graph in Fig. 2 (known initially only to be an arbitrary undirected planar graph) would
result in lE 12 edge traversals if the search is required to be optimally interruptible.

Because it seems difficult to handle arbitrary undirected graphs efficiently, we have
begun this line of research by focusing our attention on a special class of undirected planar
graphs. These graphs, known as city-block graphs, are defined in the next section. For these
graphs we present two efficient O (lE]) optimally interruptible search algorithms. Since an
optimally interruptible search algorithm is also an efficiently interruptible search algorithm,
these two algorithms give efficient piecemeal search algorithms for city-block graphs.

4. Shortest Paths in City-Block Graphs

This section first defines and motivates the class of city-block graphs, and then develops
some useful properties of such graphs that will be used in sections 5 (which gives the
wavefront algorithm for piecemeal search of a city-block graph) and 6 (which gives the ray
algorithm for such searches).

An optimally interruptible algorithm maintains at all times knowledge of a shortest path
back to s. Since BFS is optimally interruptible, we study BFS in some detail to understand
the characteristics of shortest paths in city-block graphs. Also, our wavefront algorithm is
a modification of BFS. Figure 4 illustrates the operation of BFS. Out algorithms depend on
the special properties that shortest paths have in city-block graphs.

PIECEMEAL LEARNING OF AN UNKNOWN ENVIRONMENT 237

Figure 3. A city-block graph with distinguished start vertex s.

Figure 4. Environment explored by breath-first search, showing only "waveffonts" at odd distance to s.

4.1. City-BIock Graphs

We model environments such as cities or office buildings in which efficient on-line robot nav-
igation may be needed. We focus on grid graphs containing some non-touching axis-parallel
rectangular "obstacles". We call these graphs city-block graphs. They are rectangular pla-
nar graphs in which all edges are either vertical (north-south) or horizontal (east-west), and
in which all faces (city blocks) are axis-parallel rectangles whose opposing sides have the
same number of edges. A 1 x 1 face might correspond to a standard city block; larger faces
might correspond to obstacles (parks or shopping malls). Figure 1 gives an example. City-
block graphs are also studied by Papadimitriou and Yanakakis (1991), B lum, Raghavan, and
Schieber (1991), and Bar-Eli, Berman, Fiat and Yan (1992).

An m x n city-block graph with no obstacles has exactly mn vertices (at points (i, j) for
1 < i < m, 1 < j < n) and 2mn - (m + n) edges (between points at distance 1 from
each other). Obstacles, if present, decrease the number of accessible locations (vertices)

238 BETKEETAL.

iI
Figure 5. The four monotone paths and the four regions.

and edges in the city-block graph. In city-block graphs the vertices and edges are deleted
such that all remaining faces are rectangles.

We assume that the directions of incident edges are apparent to the learner.
Let 3(v, v/) denote the length of the shortest path between v and v', and let d[v] denote

6(v, s), the length of the shortest path from v back to s.

4.2. Monotone Paths and the Four-Way Decomposition

A city-block graph can be usefully divided into four regions (north, south, east, and west)
by four monotone paths: an east-north path, an east-south path, a west-north path, and a
west-south path. The east-north path starts from s, proceeds east until it hits an obstacle,
then proceeds north until it hits an obstacle, then turns and proceeds east again, and so
on. The other paths are similar (see Fig. 5). Note that all monotone paths are shortest
paths. Furthermore, note that s is included in all four regions, and that each of the four
monotone paths (east-north, east-south, west-north, west-south) is part of all regions to
which it is adjacent.

In Lemma 1 we show that for any vertex, there is a shortest path to s through only one
region. Without loss of generality, we therefore only consider optimally interruptible search
algorithms that divide the graph into these four regions, and search these regions separately.
In this paper, we only discuss what happens in the northern region; the other regions are
handled similarly.

LEMMA 1, There exists a shortest path from s to any point in a region that only goes
through that region.

PROOF. Consider a point v in some region A. Let p be any shortest path from s to the
point v. If p is not entirely contained in region A, we can construct another path p ' that
is entirely contained in region A. We note that the vertices and edges which make up the
monotone paths surrounding a region A are considered to be part of that region.

Since path p starts and ends in region A but is not entirely contained in region A, there
must be a point u that is on p and also on one of the monotone paths bordering A. Note

PIECEMEAL LEARNING OF AN UNKNOWN ENVIRONMENT 239

that u may be the same as v. Without loss of generality, let u be the last such point, so that

the portion of the path from u to v is contained entirely within region A. Then the path p '
will consist of the shortest path from s to u along the monotone path that u is on, followed
by the portion of p from u to v. This path p ' is a shortest path from s to v because p was a
shortest path and pl can be no longer than p.

4.3. Canonical Shortest Paths of City-Block Graphs

We now make a fundamental observation on the nature of shortest paths from a vertex v
back to s. In this section, we consider shortest paths in the northern region; properties of

shortest paths in other region are similar.

LEMMA 2. For any vertex v in the northern region, there is a canonical shortest path from
v to the start vertex s which goes south wheneverpossible. The canonical shortestpath goes
east or west only when it is prevented from going south by an obstacle or by the monotone
path defining the northern region.

PROOF. We call the length d[v] of the shortest path from v to s the depth of vertex v. We
show this lemma by induction on the depth of a vertex.

For the base case, it is easy to verify that any vertex v such that dir] = 1 has a canonical
shortest path that goes south whenever possible.

For the inductive hypothesis, we assume that the lemma is true for all vertices that have
depth t - 1, and we want to show it is true for all vertices that have depth t. Consider a
vertex p at depth t. If there is an obstacle obstructing the vertex that is south of point p or
if p is on a horizontal segment of the monotone path defining the northern region, then it is
impossible for the canonical shortest path to go south, and the claim holds. Thus, assume
the point south of p is not obstructed by an obstacle or by the monotone path defining the
northern region. Then we have the following cases:

Case 1: Vertex Ps directly south of p has depth t - 1. In this case, there is clearly a
canonical shortest path from p to s which goes south from p to p., and then follows the
canonical shortest path of Ps, which we know exists by the inductive assumption.

Case 2: Vertex Ps directly south of p has depth not equal to t - 1. Then one of the
remaining adjacent vertices must have depth t - 1 (otherwise it is impossible for p to have
depth t). Furthermore, none of these vertices has depth less than t - 1, for otherwise vertex p
would have depth less than t.

Note that the point directly north of p cannot have depth t - 1. If it did, then by the
inductive hypothesis, it has a canonical shortest path which goes south. But then p has
depth t - 2, which is a contradiction.

Thus, either the point west of p or the point east of p has depth t - 1. Without loss of
generality, assume that the point Pw west of p has depth t - 1. We consider two subcases.
In case (a), there is a path of length 2 from Pw to Ps that goes south one step from pw, and
then goes east to p . , In case (b), there is no such path.

Case (a): If~here is such a path, the vertex directly south o f p ~ exists, and by the inductive
hypothesis has depth t - 2 (since there is a canonical shortest path from Pw to s of length
t - 1, the vertex directly to the south of Pw has depth t - 2). Then Ps, which is directly east

2 4 0 BETKE ET AL.

of this point, has depth at most t - 1 and thus there is a canonical path from p to s which
goes south whenever possible.

Case (b): Note that the only way there does not exist a path of length 2 from Pw to p.,.

(other than the obvious one through p) is if p is a vertex on the northeast corner of an
obstacle which is bigger than 1 x 1. Suppose the obstacle is kl x k2, where k1 is the length
of the north (and south) side of the obstacle, and k 2 is the length of the east (and west) side
of the obstacle. We know by the inductive hypothesis that the canonical shortest path from
Pw goes either east or west along the north side of this obstacle, and since the vertex p
has depth t we know that the canonical shortest path goes west. After having reached the

corner, the canonical shortest path from pw to s proceeds south. Thus, the vertex which
is on the southwest corner of this obstacle has depth I = t - 1 - @1 - 1) - k 2. If we go
from this vertex to p.~ along the south side of the obstacle and then along the east side of
the obstacle, then the depth of point p, is at most l + kl + (k2 - 1) = t - 1. Thus, in this
case there is also a canonical path from p to s which goes south whenever possible. []

LEMMA 3. Consider adjacent vertices v and w in the grid graph where v is north o f w.
In the northern region, without loss o f generality, d[v] = d[w] + 1.

PROOF. The proof follows immediately from Lemma 2. []

LEMMA 4. Consider adjacent vertices v and w in the grid graph where v is west o f w. In

the northern region, without loss o f generality, d[v] = d[w] ± 1.

PROOF. We prove the lemma by induction on the y-coordinate of the vertices in the
northern region. If v and w have the same y-coordinate as s, then we know that d[v] =
d[w] + 1 if s is east of w and d[v] = d[w] - 1 if s is west of v. Assume that the claim
is true for vertices v and w with y-coordinate k. In the following we show that it is also
true for vertices v and w with y-coordinate k + 1. We distinguish the case that there is no
obstacle directly south of v and w from the case that there is an obstacle directly south of

u o r w .

If there is no obstacle directly south of v and w the claim follows by Lemma 3 and the

induction assumption.
Now we consider the case that there is an obstacle directly south of v or w. We assume

without loss of generality that both v and w are on the boundary of the north side of the

obstacle. (Note that v or w may, however, be at a corner of the obstacle.)
If our claim did not hold it would mean that d[v] = d[w] for two adjacent vertices v

and w (because, in any graph, the d values for adjacent vertices can differ by at most one).
This would also mean that all shortest paths from v to s must go through vertex vw at
the north-west corner of the obstacle and all shortest paths from w to s must go through
vertex Ve at the north-east corner of the obstacle. However, we next show that there is a grid
point m on the boundary of the north side of the obstacle that has shortest paths through

both ve and Vw. The claim of Lemma 4 follows directly.
The distance x between m and vw can be obtained by solving the following equation:

x + d[vw] = (k - x) + d[ve] where k is the length of the north side of the obstacle. The
distance x is (k + d[ve] - d[vw])/2. This distance is integral (and thus m exists in the graph)
because by inductive assumption the following holds: If k is even then Id[ve] - d[vw]l is
even, and i f k is odd then td[ve] - d[vw]t is odd. []

PIECEMEAL LEARNING OF AN UNKNOWN ENVIRONMENT 241

5. The Wavefront Algorithm

The wavefront algorithm is based on BFS, but overcomes the BFS's problem of relocation
cost. In this section we first develop some preliminary concepts and results based on an
analysis of breadth-first search. We then present the wavefront algorithm, prove it to be
correct, and show that it runs in linear time.

5.1. BFS and Wavefronts

In city-block graphs a BFS can be viewed as exploring the graph in waves that expand
outward from s, much as waves expand from a pebble thrown into a pond. Figure 4
illustrates the wavefronts that can arise.

A wavefront w can then be defined as an ordered list of explored vertices (vl, v2 vm),
m > 1, such that d[vi] = d[vl] for all i, and such that 3 (vi, Vi+l) < 2 for all i. (As we shall
prove, the distance between adjacent points in a wavefront is always exactly equal to 2.)
We call d[w] = d[vl] the distance of the wavefront.

There is a natural "successor" relationship between BFS wavefronts, as a wavefront at
distance t generates a successor at distance t + 1. We informally consider a wave to be
a sequence of successive wavefronts. Because of obstacles, however, a wave may split
(if it hits an obstacle) or merge (with another wave, on the far side of an obstacle). Two
wavefronts are sibling wavefronts if they each have exactly one endpoint on the same
obstacle and if the waves to which they belong merge on the far side of that obstacle. The
point on an obstacle where the waves first meet is called the meeting point m of the obstacle.
In the northern region, meeting points are always on the north side of obstacles, and each
obstacle has exactly one meeting point on its northern side. See Figs. 6 and 7.

LEMMA 5. A wavefi'ont can only consist of diagonal segments.

PROOF. By definition a wavefront is a sequence of vertices at the same distance to s for
which the distance between adjacent vertices is at most 2. It follows from Lemma 3 and
4 that neighboring points in the grid cannot be in the same wavefront. Therefore, the
distance between adjacent vertices is exactly 2. Thus, the wavefront can only consist of
diagonal segments. []

We call the points that connect diagonal segments (of different orientation) of a wavefront
peaks or valleys. A peak is a vertex on the wavefront that has a larger y-coordinate than
the y-coordinates of its adjacent vertices in the wavefront, and a valley is a vertex on the
wavefront that has a smaller y-coordinate than the y-coordinates of its adjacent vertices as
illustrated in Fig. 7.

The initial wavefront is just a list containing the start point s. Until a successor of the
initial wavefront hits an obstacle, the successor wavefronts consist of two diagonal segments
connected by a peak. This peak is at the same x-coordinate for these successive wavefronts.
Therefore, we say that the shape of the wavefronts does not change. In the northern region
a wavefront can only have descendants that have a different shape if a descendant curls
around the northern corners of an obstacle, or when it merges with another wavefront, or
splits into other wavefronts. These descendants may have more complicated shapes.

A wavefront w splits whenever its hits an obstacle. That is, if a vertex vi in the wavefront

242 BETKE ET AL.

T N 2 N L - " ~ ' :e~lri g p c I n
- i i i i N N 2 , . L i

, 5 ~ N.'M',~ 1
N v~2 NIX \ .N.'NXN

' 1 ~ " ~ I

Figure 6. Splitting and merging of wavefronts along a corner of an obstacle. Illustration of meeting point and
sibling wavefronts.

Figure 7. Shapes ofwavefronts. Illustration of peaks and valleys, and front and back of an obstacle. The meeting
point is the lowest point in the valley.

is on the boundary of an obstacle, w splits into wavefronts wl = (vl, v2 Vil and
w2 = (vi, vi+l Vm). Wavefront wl propagates around the obstacle in one direction,
and wavefront w2 propagates around in the other direction. Eventually, some descendant
wavefront of wl and some descendant wavefront of w2 will have a common point on
the boundary of the obs tac le - - the meeting point. The position of the meeting point is
determined by the shape of the wave approaching the obstacle. (In the proof of Lemma 4
vertex m is a meeting point and we showed how to calculate its position once the length k
of the north side of the obstacle and the shortest path distances of the vertices v« and v~ at
the north-east and north-west corners of the obstacle are known: The distance from vw to
the meeting point m is (k + d[v~] - d[v«])/2.)

In the northern region, the f ront of an obstacle is its south side, the back of an obstacle
is its north side, and the sides of an obstacle are its east and west sides. A wave always
hits the front of an obstacle first. Consider the shape of a wave before it hits an obstacle
and its shape after it passes the obstacle. If a peak of the wavefront hits the obstacle (but
not at a corner), this peak will not be part of the shape of the wave after it "passes" the
obstacle. Instead, the merged wavefront may have one or two new peaks which have the
same x-coordinates as the sides of the obstacle (see Fig. 7). The merged wavefront has a
valley at the meeting point on the boundary of the obstacle.

PIECEMEAL LEARNING OF AN UNKNOWN ENVIRONMENT 243

5.2. Descr ip t ion o f the Wavefront Algor i thm

The wavefront algorithm, presented in this section, mimics BFS in that it computes exactly
the same set of wavefronts. However, in order to minimize relocation costs, the wavefronts
may be computed in a different order. Rather than computing all the wavefronts at distance t
before computing any wavefronts at distance t ÷ 1 (as BFS does), the wavefront algorithm
will continue to follow a particular wave persistently, before it relocates and pushes another
ware along.

We define expanding a wavefront w = (vl, v2 vl) as computing a set ofzero or more
successor wavefronts by looking at the set of all unexplored vertices at distance one from
any vertex in w. Every vertex v in a successor wavefront has d[v] = d[w] + 1. The learner
starts with vertex vl and moves to all of its unexplored adjacent vertices. The learner then
moves to the next vertex in the wavefront and explores its adjacent unexplored vertices. It
proceeds this way down the vertices of the wavefront.

The following lemma shows that a wavefront of l vertices can be expanded in time O (l).

LEMMA 6. A learner can expand a wavefront w = (vl , v2, . . . , vr) by traversing at mos t

2(l - 1) + 2[/ /2] + 4 edges.

PROOF. To expand a wavefront w = (vl, v2 vl) the learner needs to move along each
vertex in the wavefront and find all of its unexplored neighbors. This can be done efficiently
by moving along pairs of unexplored edges between vertices in w. These unexplored edges
connect l of the vertices in the successor wavefront. This results in at most 2 (/ - 1) edge
traversals, since neighboring vertices are at most 2 apart. The successor wavefront might
have 1 + 2 vertices, and thus at the beginning and the end of the expansion (i.e., at vertices
vl and vl), the learner may have to traverse an edge twice. In addition, at any vertex which
is a peak, the learner may have to traverse an edge twice. Note that a wavefront has at most
Fl/21 peaks. Thus, the total number of edge traversals is at most 2(l - 1) + 2 Fl/27 + 4. []

Since our algorithm computes exactly the same set of wavefronts as BFS, but persistently
pushes one wave along, it is important to make sure the wavefronts are expanded correctly.
There is really only one incorrect way to expand a wavefront and get something other than
what BFS obtained as a successor: to expand a wavefront that is touching a meeting point
before its sibling wavefront has merged with it. Operationally, this means that the wavefront
algorithm is blocked in the following two situations: (a) it cannot expand a wavefront from
the side around to the back of an obstacle before the meeting point for that obstacle has
been set (see Fig. 8), and (b) it cannot expand a wavefront that touches a meeting point until
its sibling has arrived there as well (see Fig. 9). A wavefront w2 blocks a wavefront wl if
w2 taust be expanded before wl can be safely expanded. We also say w2 and wl interfere.

A wavefront w is an expiring wavefront if its descendant wavefronts can never interfere
with the expansion of any other wavefronts that now exist or any of their descendants. A
wavefront w is an expiring wavefront if its endpoints are both on the front of the same
obstacle; w will expand into the region surrounded by the wavefront and the obstacle, and
then disappear or "expire." We say that a wavefront expires if it consists of just one vertex
with no unexplored neighbors.

Procedure WAVEFRONT-ALGORITHM is an efficient optimally interruptible search algo-
rithm that can be used to create an efficient piecemeal search algorithm. It repeatedly

244 BETKE ET AL.

i

i

, , ' ~ X X / \ . ' , 4 I I
/~/7,)x \T~ !
~ : / T',4N/.N! w~ ,,~ ~!

Figure 8. Blockage of w l by t/) 2. Wavefront wl has finished covering one side of the obstacle and the meeting
point is not set yet.

S

Figure 9. Blockage of w~ by w2. Wavefront wl has reached the meeting point on the obstacle, but the sibling
wavefront w2 has not.

Figure 10.

H 1111111111111111

~ i i i i i i i i B i i ~ i i i @ i i i i i ~ _ / i ~

?NIN.rN~fJN.rNINI~

I I N I F I I I N s ' x 2 x . ~
L T I ! I I I N2~N.~

I I I I I i I I I I ~ N _ _ N

Triangular areas (shaded) delineated by two expiring wavefronts.

expands one wavef ron t until it splits, merges, expires, or is blocked. The WAVEFRONT-

ALGORITHM takes as an input a start point s and the boundary coordinates o f the envi-

ronment . It calls p rocedure CREATE-MONOTONE-PATHS to explore four mono tone paths

(see sect ion 4.2) and define the four regions. Then procedure EXPLORE-AREA is called for

each region.

1. WAVEFRONT-ALGORITHM (S, boundary)
2. Crea te -monotone-pa ths
3. F o r region = north, south, east, and west

PIECEMEAL LEARNING OF AN UNKNOWN ENVIRONMENT 245

4. initialize current wavefront w := (s)
5. EXPLORE-AREA (w, region)
6. Take a shortest path to s

For each region we keep an ordered list L of all the wavefronts to be expanded. In
the northern region, the wavefronts are ordered by the x-coordinate of their west-most
point. Neighboring wavefronts are wavefronts that are adjacent in the ordered list L of
wavefronts. Note that for each pair of neighboring wavefronts there is an obstacle on which
both wavefronts have an endpoint.

Initially, we expand each wavefront in the northern region from its west-most endpoint
to its east-most endpoint (i.e., we are expanding wavefronts in a "clockwise" manner). The
direction of expansion changes for the first time in the northern region when a wavefront
is blocked by a wavefront to its west (the direction of expansion then becomes "counter-
clockwise"). In fact, the direction of expansion changes each time a wavefront is blocked
by a wavefront that is in the direction opposite of expansion. We introduce this notion of
expanding wavefronts in either "clockwise" or "counter-clockwise" directions in order to
simplify the analysis of the algorithm.

We treat the boundaries as large obstacles. The north region has been fully explored
when the list L of wavefronts is empty.

Note that vertices on the monotone paths are considered initially to be unexplored, and
that expanding a wavefront returns a successor that is entirely within the same region.

Each iteration of EXPLORE-AREA expands a wavefront. When EXPAND is caIled on a
wavefront w, the learner starts expanding w fi'om its current location, which is a vertex at
one of the end points of wavefront w. It is convenient, however, to think of EXPAND as
finding the unexplored neighbors of the vertices in w in parallel.

Depending on what happens during the expansion, the successor wavefront can be split,
merged, blocked, or may expire. Note that more than one of these cases may apply.

1. EXPLORE-AREA (to, region)
2. initialize list of wavefronts L := (w)
3. initialize direction dir := clockwise
4. Repeat
5. EXPAND current wavefront w to successor wavefront Ws
6. RELOCATE (ws, dir)
7. current wavefront w := Ws
8. I f w is a single vertex with no unexplored neighboring vertices
9. Then

10. remove w from ordered list L of wavefronts
11. I f L is not empty
12. Then
13. w := neighboring wavefront of w in direction dir
14. RELOCATE (w, dir)
15. Else
16. replace w by Ws in ordered list L of wavefronts
17. I f the second back corner of any obstacle(s)
18. has just been explored
19. Then set meeting points for those obstacle(s)
20. I f w can be merged with adjacent wavefront(s)

246 BETKE ET AL

21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

Then MERGE (to, L, region, dir)
I f w hits obstacle(s)

Then SPLIT (w, L, region, dir)
I f L not empty

Then
I f w is blocked by neighboring wavefront w' in direction

D E {clockwise, counter-clockwise}
Then

dir:= D
While w is blocked by neighboring wavefront w'

Do
tO :--~- tO /

RELOCATE (w, dir)
until L is empty

Procedures MERGE and SPLIT (see following pages) handle the (not necessarily disjoint)
cases of merging and splitting wavefronts. Note that we use call-by-reference conventions
for the wavefront w and the list L of wavefronts (that is, assignments to these variables
within procedures MERGE and SPLIT affect their values in procedure EXPLORE-AREA). Each
time procedure RELOCATE(w, dir) is called, the learner moves from its current location to
the appropriate end point of w: in the northern region, if the direction is "clockwise" the
learner moves to the west-most vertex of w, and if the direction is "counter-clockwise," the
learner moves to the east-most vertex of w.

Procedure RELOCATE(to, dir) can be implemented so that when it is called, the learner
simply moves from its current location to the appropriate endpoint of w via a shortest path
in the explored area of the graph. However, for analysis purposes, we assume that when
RELOCATE(tO, dir) is called the learner moves from its current location to the appropriate
end point of w as follows.

• When procedure RELOCATE(Ws, dir) is called in line 6 of EXPLORE-AREA, the learner
traverses edges between the vertices in wavefront ws to ger back to the appropriate end
point of the newly expanded wavefront.

• When procedure RELOCATE(tos, dir) is called in line 14 of EXPLORE-AREA, the learner
traverses edges along the boundary of an obstacle.

• When procedure RELOCATE(Ws, dir) is called in line 10 of MERGE, the learner traverses
edges between vertices in wavefront w to get to the appropriate end point of the newly
merged wavefront.

• When procedure RELOCATE(Ws, dir) is called in line 32 of EXPLORE-AREA, the learner
traverses edges as follows. Suppose the learner is in the northern region and at the
west-most vertex of wavefront Wo, and assume that w is to the east of wo. Note that
both Wo and w a r e in the current ordered list of wavefronts L. Thus there is a path
between the learner's current location and wavefront w which "follows the chain" of
wavefronts between wo and w. That is, the learner moves from wo to w as follows. Let
wl, w2, . . •, wk be the wavefronts in the ordered list of wavefronts between wo and and w,
and let bo, bi bk+l be the obstacles separating wavefronts wo, wl wk, w (i.e.,
obstacle b0 is between Wo and wl, obstacle bi is between wl and w2, and so on). Then to
relocate from wo to w, the learner traverses the edges between vertices of wavefront Wo

PIECEMEAL LEARNING OF AN UNKNOWN ENVIRONMENT 247

to get to the east-most vertex of wo which is on obstacle b0. Then the learner traverses the
edges of the obstacle b0 to get to the west-point vertex of wl, and then the learner traverses
the edges between vertices in wavefront wl to get to the east-most vertex of wl which
is on obstacle bi . The learner continues traversing edges in this manner (alternating
between traversing wavefronts and traversing obstacles) until it is at the appropriate end

vertex of wavefron w.

1. MERGE (W, L, region, dir)
2. remove w from list L of wavefronts
3. W h i l e there is a neighboring wavefront w ~ with which w can merge
4. Do
5. remove w' from list L of wavefronts
6. merge w and w' into wavefront w 'I
7. w : : w 'I
8. put w in ordered list L of wavefronts
9. I f w is not blocked

10. Then RgLOCATg (w, dir)

Wavefronts are merged when exploration continues around an obstacle. A wavefront can
be merged with two wavefronts, one on each end.

When procedure SPLIT is called on wavefront w, we note that the wavefront is either
the result of calting procedure EXPAND in line 5 of EXPLORE-AREA or the result of calling
procedure MERGE in line 21 of EXPLORE-AREA. Once wavefront w is split into W o , . . . , wn,
we update the ordered list L of wavefronts, and update the current wavefront.

1. SPLIT (t t) , L, region, dir)
2. split w into appropriate wavefronts w o , . . . , wn in standard order
3. remove w from ordered list L of wavefronts
4. F o r i = 0 T o n
5. put wi on ordered list L of wavefronts
6. I f dir = clockwise
7. Then w : = wo
8. Else w : = w~

5.3. Correctness of the piecemeaI search algorithm

The fol lowing theorems establish the correctness of our algorithm.

THEOREM 3. The algorithm EXPLORE-AREA expands wavefronts so as to maintain optimal
interruptability.

PROOF. This is shown by induction on the distance of the wavefronts. The key observations
are (1) there is a canonical shortest path from any vertex v to s which goes south whenever
possible, but east or west around obstacles and (2) a wavefront is never expanded beyond
a meeting point.

First we claim that at any time our algorithm knows the shortest path from s to any
explored vertex in the north region. We show this by induction on the number of stages in
the algorithm. Each stage of the algorithm is an expansion of a wavefront.

248 BETKE ET AL.

The shortest path property is trivially true when the number of stages k = 1. There
is initially only one wavefront, the start point. Now we assume all wavefronts that exist
just after the k-th stage satisfy the shortest path property, and we want to show that all
wavefronts that exist just after the k + 1-st stage also satisfy the shortest path property.

Consider a wavefront w in the k-th stage which the algorithm has expanded in the k + 1-st
stage to w~.. We claim that all vertices in w.,. have shortest path length d[w] + I. Note that
any vertex in w, which is directly north of a vertex in w definitely has shortest path length
d[w] + 1. This is because there is a shortest path from any vertex v to s which goes south
whenever possible, but if it is not possible to go south because of an obstacle, it goes east
or west around the obstacle.

The only time any vertex v in w,. is not directly north of a vertex in w is when w is
expanded around the back of an obstacle. This can only occur for a vertex that is either the
west-most or east-most vertex of a wavefront in the north region. Without loss of generality
we assume that v is the west-most point on ws and v is on the boundary of some obstacle b.
Let p be the path that leads northwards from the front east corner vc of obstacle b to the
meeting point of b. We know that there exists a shortest path from s to any vertex Vp on p
that goes from s to Vc and from Vc to v e along path p. (The shortest path does not go through
the front west corner because Vp is east of the meeting point.) Because the algorithm only
expands any wavefront until it reaches the meeting point of an obstacle, vertex v is not to
the west of the meeting point. It has a shortest path from s that goes through vc and along
the obstacle to v. Thus, the wavefront that includes vertex v is expanded correctly so as to
maintain shortest path information. []

THEOREM 4. There is always a wavefront that is not blocked.

PROOF. We consider exploration in the north region. The key observations are that
(1) neighboring wavefronts cannot simultaneously block each other and (2) the east-most
wavefront in the north region cannot be blocked by anything to its east, and the west-
most wavefront in the north region cannot be blocked by anything to its west. Thus the
learner can always "follow a chain" of wavefronts to either its east or west to find an
unblocked wavefront.

A neighboring wavefront is either a sibling wavefront or an expiring wavefront. An
expiring wavefront can never block neighboring wavefronts. In order to show that neigh-
boring wavefronts cannot simultaneously block each other, it thus suffices to show next that
sibling wavefronts cannot block each other. We use this to show that we can always find
a wavefront t~ which is not blocked. The unblocked wavefront t~ nearest in the ordered
list of waveffonts L can be found by "following the chain" of blocked wavefronts from w
to t~. By following the chain of wavefronts between w and t~ we mean that the learner
must traverse the edges that connect the vertices in each wavefront between w and tb in L
and also the edges on the boundaries of the obstacles between these wavefronts. Note that
neighboring wavefronts in list L each have at least one endpoint that lies on the boundary
of the same obstacle.

Before we show that sibling wavefronts cannot block each other we need the following.
The first time an obstacle is discovered by some wavefront, we call the point that the
wavefront hits the obstacle the discovery point. (Note that there may be more than one
such point. We arbitrarily choose one of these points.) In the north region, we split up the
wavefronts adjacent to each obstacle into an east wave and a west wave. We call the set of all

P1ECEMEAL LEARNING OF AN UNKNOWN ENVIRONMENT 249

these wavefronts which are between the discovery point and the meeting point of the obstacle
in a clockwise manner the west wave. We define the east ware of an obstacle in the same way.

The discovery point of an obstacle b is always at the front of b. The wavefront that hits
at b is split into two wavefronts, one of which is in the east wave and one of which is in the
west wave of the obstacle. We claim that a descendent wavefront w~ in the west wave and a
descendant wavefront w2 in the east wave cannot simultaneously block each other. Assume
that the algorithm is trying to expand wt but that wavefront w 2 blocks wl. Wavefront w2
can only block wl if one of the following two cases applies. In both cases, we show that
wl cannot also block Wz.

In the first case, w~ is about to expand to the back of obstacle b, but both of the back
corners of obstacle b have not been explored, and thus the meeting point has not been
deterrnined. Wavefront w2 can only be blocked by wl if w2 is either already at the meeting
point of the obstacle or about to expand to the back of the obstacle. Since none of the back
corners of obstacle b have been exp•ored, neither of these two possibilities holds. Thus,
wavefront wl does not block wz.

In the second case, wl has reached the meeting point at the back of b. Therefore, both
back corners of the obstacle have been explored and wl is not blocking w»

We have just shown that if w2 blocks wl then wl cannot also block Wz. Thus, the
algorithm tries to pick w2 as the nearest unblocked wavefront to w~. However, w2 may be
blocked by its sibling wavefront w3 on a different obstacle b'. For this case, we have to
show that this sibling wavefront w3 is not blocked, or that its sibling wavefront w4 on yet
another obstacle b" is not blocked and so forth. Without loss of generality, we assume that
the wavefronts are blocked by wavefronts towards the east. Proceeding towards the east
along the chain of wavefronts will evenmally lead to a wavefront which is not blocked-- the
east-most wavefront in the northern region. The east-most wavefront is adjacent to the
initial monotone east-north path. Therefore, it cannot be blocked by a wavefront towards
the east. []

THEOREM 5. The wavefront algorithm is an optimally interruptible piecemeal search
algorithm for city-block graphs.

PROOF. To show the correctness of a piecemeal algorithm that uses our wavefront algo-
rithm for exploration with interruption, we show that the wavefront algorithm maintains the
shortest path property and explores the entire environment.

Theorem 3 shows by induction on shortest path length that the wavefront algorithm
mimics breadth-first search. Thus it is optimally interruptible.

Theorem 4 shows that the algorithm does not terminate until all vertices have been
explored. Completeness follows. []

5.4. Efficiency of the Wavefront Algorithm

In this section we show the number of edges traversed by the piecemeal algorithm based
on the wavefront algorithm is linear in the number of edges in the city-block graph.

We first analyze the number of edges traversed by the wavefront algorithm. Note that
the learner traverses edges when procedures CREATE-MONOTONE-PATHS, EXPAND, and
RELOCATE are called. In addition, it traverses edges to ger back to s between calls to

250 BETKE ET AL.

EXPLORE-AREA. These are the only times the learner traverses edges. Thus, we count the
number of edges traversed for each of these cases. In Lemmas 7 to 10, we analyze the
number of edges traversed by the learner due to calls of RELOCATE. Theorem 6 uses these
lemmas and calculates the total number of edges ~raversed by the wavefi'ont algorithm.

LEMMA 7. An edge is traversed at most once due to relocations after a wavefront has
expired (line 14 of EXPLORE-AREA).

PROOF. Assume that the learner is in the northern region and expanding wavefronts in
a clockwise direction. Suppose wavefront w has just expired onto obstacle b (i.e., it is
a single vertex with all of its adjacent edges explored). The learner now must relocate
along obstacle b to its neighboring wavefront w' to the east. Note hat w' is also adjacent to
obstacle b, and therefore the learner is only traversing edges on the obstacle b.

Note that at this point of exploration, there is no wavefront west of w which will expire
onto obstacle b. This is because expiring wavefronts are never blocked, and thus the direction
of expansion cannot be changed due to an expiring wavefront. So, when a wavefront is split,
the learner always chooses the west-most wavefront to expand first. Thus, the wavefronts
which expire onto obstacle b are explored in a west to east manner. Thus relocations
after wavefronts have expired on obstacle b continuously move east along the boundary of
this obstacle. []

LEMMA 8. An edge is traversed at most once due to relocations after wavefronts have

merged (line 10 of MERGE).

PROOF. Before a call to procedure MERGE, the learner is at the appropriate end vertex of
wavefront w. Let 's assume that the learner is in the northern region and expanding wave-
fronts in a clockwise direction. Thus the learner is at the west-most vertex of wavefront w.
Note that wavefront w can be merged with at most two wavefronts, one at each end, but only
merges with the wavefront to the west of w actually cause the learner to relocate. Suppose
wavefront w is merged with wavefront w' to its west to form wavefront w". Then, if the
resulting wavefront w" is unblocked, procedure RELOCATE is called and the learner must
traverse w t~ to its west-most vertex (i.e., also the west-most vertex of wl). However, since
wavefront w" is unblocked, w" can immediately be expanded and is not traversed again. []

LEMMA 9. At most one wavefront from the east wave of an obstacle is blocked by one or

more wavefronts in the west wave. At most one wavefront from the west wave is blocked by

one or more wavefronts in the east wave.

PROOF. Consider the west wave of an obstacle. By the definition of blocking, there are
only two possible wavefronts in the west wave that can be blocked. One wavefront is
adjacent to the back corner of the obstacle. Call this wavefront Wl. The other wavefront is
adjacent to the meeting point of the obstacle. Call this wavefront w2.

We first show that if wl is blocked then w2 will not be blocked also. Then we also know
that if w2 is blocked then w~ must not have been blocked. Thus at most one wavefront in
the west wave is blocked.

If wl is blocked by one or more wavefronts in the east wave then these wavefronts
can be expanded to the meeting point of the obstacle without interference from w~. That

PIECEMEAL LEARNING OF AN UNKNOWN ENVIRONMENT 251

is, wavefront to 1 cannot block any wavefront in the east ware, and thus there will be no
traversals around the boundary of the obstacle until the east wave has reached the meeting
point. At this point, the west wave can be expanded to the meeting point without any
wavefronts in the east wave blocking any wavefronts in the west wave.

Similarly, we know that at most one wavefront from the west wave is blocked by one or
more wavefronts in the east wave. []

LEMMA 10. An edge is traversed at most three times due to relocation after blockage (Iine
33 of EXPLORE-AREA).

PROOF. Without loss of generality, we assume that the wavefronts are blocked by wave-
fronts towards the east. Proceeding towards the east along the chain of wavefronts will
eventually lead to a wavefront which is not blocked, since the east-most wavefront is adja-
cent to the initial monotone east-north path.

First we show that any wavefront is traversed at most once due to blockage. Then we
show that the boundary of any obstacle is traversed at most twice due to blockage. Note
that pairs of edges connecting vertices in a wavefront may also be edges which are on the
boundaries of obstacles. Thus any edge is traversed at most three times due to relocation
after blockage.

We know from Theorem 4 that there is always a wavefront that is not blocked. Assume
that the learner is at a wavefront w which is blocked by a wavefront to its east. Following
the chain of wavefronts to the east leads to an unblocked wavefront w'. This results in one
traversal of the wavefronts. Now this wavefront w' is expanded until it is blocked by some
wavefront w ' . Note that wavefront w" cannot be to the west of w', since we know that
the wavefront west of w' is blocked by w'. (We show in the proof of Theorem 4 that if wl
blocks w2 then w2 does not block Wl .) The learner will not move to any wavefronts west of
wavefront w' until a descendant of w I no longer blocks the wavefront immediately to its west.
Once this is the case, then the west wavefront can immediately be expanded. Similarly, we
go back through the chain of wavefronts, s ince--as the learner proceeds west-- i t expands
each wavefront in the chain. Thus the learner never traverses any wavefront more than once
due to blockage.

Now we consider the number of traversals, due to blockage, of edges on the boundary of
obstacles. As wavefronts expand, their descendant wavefronts may still be adjacent to the
same obstacles. Thus, we need to make sure that the edges on the boundaries of obstacles
are not traversed too often due to relocation because of blockage. We show that any edge
on the boundary of an obstacle is not traversed more than twice due to relocations because
of blockage. That is, the learner does not move back and forth between wavefronts on
different sides of an obstacle. Lemma 9 implies that each edge on the boundary of the
obstacle is traversed at most twice due to blockage.

Thus, since the edges on the boundary of an obstacle may be part of the pairs of edges
connecting vertices in a wavefront, the total number of times any edge can be traversed due
to blockage is at most three. []

THEOREM 6. The wavefront algorithm is linear in the number of edges in the city-block
graph.

PROOF. We show that the total number of edge traversals is no more than 141El. Note

252 BETKE ET AL.

that when the procedures CREATE-MONOTONE-PATHS, EXPAND, and RELOCATE are called,
the learner traverses edges in the environment. In addition, the learner traverses edges in
the environment to get back to s after exploration of each of the four regions. These are the
only times the learner actually traverses edges in the environment. Thus, to calculate the
total number of edge traversals, we count the edge traversals for each of these cases.

The learner traverses the edges on the monotone paths once when it explores them, and
once to get back to the start point. This is clearly at most 21 El edge traversals. The learner
walks back to s four times after exploring each of the four regions. Thus the number
of edges traversed here is at most 41El. Lemma 6 implies that the total number of edge
traversals caused by procedure EXPAND is at most 2IEt. We now only need to consider the
edge traversals due to calls to procedure RELOCATE.

Procedure RELOCATE is called four times within EXPLORE-AREA and MENGE. The four
calls are due to expansion (line 6 of EXPLORE-ANEA), expiring (line 14 of EXPLONE-AREA),
merging (linel0 of MENGE) and blocking (line 33 of EXPLORE-AREA). Relocations after
expanding a wavefront results in a total of [El edge traversals. Lemma 7 shows that edges
are traversed at most twice due to expiring wavefronts. Lemma 8 shows that edges are
traversed at most once due to relocations after merges. Finally, Lemma 10 shows that edges
are traversed at most three times due to relocations after blockage. Thus the total number
of edge traversals due to calls of procedure RELOCATE is at most 6]El.

Thus the total number edges traversed by the wavefront algorithm is at most 14[El. A
more careful analysis of the wavefront algorithm can improve the constant factor.

THEOREM 7. A piecemeal algorithm based on the wavefront algorithm runs in time linear
in the number of edges in the cizy-b;ock graph.

PROOF. This follows immediately from Theorem 5 and Theorem 6. []

6. Ray Algorithm

We now give another efficient optimally interruptible search algorithm, called the ray al-
gorithm. The ray algorithm is a variant of DFS that always knows a shortest path back
to s. This thus yields another efficient piecemeal algorithm for searching a city-block
graph. This algorithm is simpler than the wavefront atgorithm, but may be less suit-
able for generalization, because it appears more specifically oriented towards city-block
graphs.

The ray algorithm also starts by finding the four monotone paths, and splitting the graph
into four regions to be searched separately. The algorithm explores in a manner similar to
depth-first search, with the following exceptions. Assume that it is operating in the northern
region. The basic operation is to explore a northern-going "ray" as far as possible, and then
to return to the start point of the ray. Along the way, side-excursions of one-step are made
to ensure the traversal of east-west edges that touch the ray. Optimal interruptability will
always be maintained: the ray algorithm will not traverse a ray until it knows a shortest
path to s from the base of the ray (and thus a shortest path to s from any point on the ray,
by Lemma 2).

The high-level operation of the ray algorithm is as follows. (See Fig. 11.) From each
point on the (horizontal segments of the) monotone paths bordering the northern region, a

PIECEMEAL LEARNING OF AN UNKNOWN ENVIRONMENT 253

Figure 11. Operation of the ray algorithm.

north-going ray is explored. On each such ray, exploration proceeds north until blocked
by an obstacle or the boundary of the city-block graph. Then the learner backtracks to
the beginning of the ray and starts exploring a neighboring ray. As described so far, each
obstacle creates a "shadow region" of unexplored vertices to its north. These shadow
regions are explored as follows. Once the two back corners of an obstacle are explored, the
shortest paths to the vertices at the back of an obstacle are then known; the "meeting point"
is then determined. Once the meeting point for an obstacle is known, the shortest path from
s to each vertex on the back border of the obstacle is known. The learner can then explore
north-going rays starting at each vertex at the back border of the obstacle. There may be
further obstacles that were all or partially in the shadow regions; their shadow regions are
handled in the same manner.

We note that not all paths to s in the "search tree" defined by the ray algorithm are shortest
paths; the tree path may go one way around an obstacle while the algorithm knows that
the shortest path goes the other way around. However, the ray algorithm is nonetheless an
optimally interruptible search algorithm.

THEOREM 8. The ray algorithm is a linear-time optimally interruptible search algorithm
that can be transformed into a linear-time piecemeal search of a city-block graph.

PROOF. This follows from the properties of city-block graphs proved in Section 4, and the
above discussion. In the ray algorithm each edge is traversed at most twice, with a careful
attention to details. The linearity of the corresponding piecemeal search algorithm then
follows from Theorem 2. Q

7. Conclusions

We have presented efficient algorithms for the piecemeal search of city-block graphs. We
leave as open problems finding linear-time algorithms (if they exist) for the piecemea!
search of:

• grid graphs with non-convex obstacles,

254 BETKE ET AL.

• other tesselations, such as tr iangular tesselat ions with tr iangular obstacles, and

• more genera l classes o f graphs, such as the class of planar graphs.

In addit ion, we are interested in finding the most efficient a lgor i thm possible for the

piecerneal search o f an arbitrary undirected graph. We have some pre l iminary results in

this d i rect ion (Awerbuch, et al., 1994), based on some interest ing relat ionships be tween our

learning p rob l em and implementa t ions of breadth-first search in a distributed comput ing

envi ronment , but the ques t ion as to whether there exists a linear-tirne a lgor i thm for the

genera l p rob l em remains open.

References

Awerbuch, Baruch, Margrit Betke, Ronald L. Rivest, & Mona Singh, (1994). How to do BFS without teleportation.
In preparation.

Bar-Eli, E., Berman, E, Fiat, A., & Yan., E (1992). On-line Navigation in a Room, Symposium on Discrete
Algorithms, pp. 237-249.

Betke, Margrit. (1992). Algorithrns for Exploring an Unknown Graph. MIT Laboratory for Computer Science.
Technical Report MIT/LCS/TR-536.

Blum, Avrim, Prabhakar Raghavan, & Baruch Schieber. (1991). Navigating in Unfamiliar Geometric Terrain,
Proceedings of Twenty-Third ACM Symposium on Theory «)f" Computing, ACM, pp. 494-504.

Cormen, Thomas H., Charles E. Leiserson, & Ronald L, Rivest. (1990). Introduction to Algorithms, MIT
Press/McGraw-Hill.

Deng, Xiaotie, Tiko Kameda, & Christos H. Papadimitriou. (1991). How to learn an unknown environment,
Proceedings of the 32nd Symposium on Foundations of Computer Science, IEEE, pp. 298-303

Deng, Xiaotie & Christos H. Papadimitriou. (1990). Exploring an Unknown Graph, Proceedings of the 31st
Symposium on Foundations of Computer Science, pp. 355-361.

Edmonds, Jack & Ellis L. Johnson. (1973). Matching, Euler Tours and the Chinese Postrnan, Mathematical
Programming, 5, pp. 88-124.

Papadimitriou, Christos H. (1976). On the complexity of edge traversing, J. Assoc. Comp. Mach., 23, pp. 544-554.
Papadimitriou, Christos H. & M. Yanakakis. (1991). Shortest paths without a map, Theoretical Computer Science,

84, pp. 127-150.
Rao, Nagewara S.V., Srikumar Kareti, Weimin Shi, & S. Sitharama lyengar. (1993). Robot Navigation in Unknown

Terrains: Introductory Survey of Non-Heuristic Algorithms, Oak Ridge National Laboratory, ORNL/TM-
12410.

Rivest, Ronald L. & Robert E. Schapire. (1989). Inference of Finite Automata using Homing Sequences, Pro-
eeedings of the Twenty-First AnnuaI ACM Symposium on Theory «)[" Computing, ACM, Seattle, Washington, pp.
411-420.

Received October 20, 1993
Accepted February 21, 1994
Final Manuscript April 29, 1994

