
TRAINING A 3-NODE NEURAL NETWORKIS NP-COMPLETEAvrim L. Blum� Ronald L. RivestyMIT Laboratory for Computer Science MIT Laboratory for Computer ScienceCambridge, Mass. 02139 USA Cambridge, Mass. 02139 USAAppears in: Neural Networks, Vol. 5, pp.117-127, 1992.Copyright 1992 Pergamon Press plcRunning title: Training a 3-Node Network

�This material is based upon work supported under a National Science Foundation graduate fellowship.yThis paper was prepared with support from NSF grant DCR-8607494, ARO Grant DAAL03-86-K-0171, and theSiemens Corporation.

Training a 3-Node Network 2TRAINING A 3-NODE NEURAL NETWORKIS NP-COMPLETEAbstract: We consider a 2-layer, 3-node, n-input neural network whose nodes compute linear thresholdfunctions of their inputs. We show that it is NP-complete to decide whether there exist weights andthresholds for this network so that it produces output consistent with a given set of training examples.We extend the result to other simple networks. We also present a network for which training is hard butwhere switching to a more powerful representation makes training easier. These results suggest thatthose looking for perfect training algorithms cannot escape inherent computational di�culties just byconsidering only simple or very regular networks. They also suggest the importance, given a trainingproblem, of �nding an appropriate network and input encoding for that problem. It is left as an openproblem to extend our result to nodes with non-linear functions such as sigmoids.Keywords: Neural networks, computational complexity, NP-completeness, intractability, learning,training, multilayer perceptron, representation.1 INTRODUCTIONOne reason for the recent surge in interest in feed-forward neural networks is the development of the\back-propagation" training algorithm (Rummelhart, Hinton and Williams, 1986). The ability to trainlarge multi-layer networks is essential for utilizing neural networks in practice (eg. Sejnowski andRosenberg (1987)), and the back-propagation algorithm promises just that. In practice, however, theback-propagation algorithm often runs very slowly (Tesauro and Janssens, 1988), and the questionnaturally arises as to whether there are necessarily intrinsic computational di�culties associated withtraining neural networks, or whether better training algorithms might exist. This paper shows thatin a certain worst-case sense, there are intrinsic di�culties in training even some very simple 2-layernetworks.A common paradigm for the use of neural networks is that a sample of data is divided into a trainingset and a test set; the network is trained for some time on the training set until it makes few mistakes,and its performance is then measured on the test set. Two important theoretical issues arise in thisframework. One is a sample complexity question which we do not deal with here, but see Baum andHaussler (1989) and Haussler (1989), which asks: how large should the training set be so that one canexpect good performance in the training phase to translate to good performance in the testing phase?The other issue is the computational complexity question: how much computational e�ort is requiredto achieve good performance in the training phase in the �rst place? This paper addresses the latterissue.For the single-layer, n-input perceptron, if there exist edge weights so that the network correctly classi�esa given training set, then such weights can be found in time guaranteed to be polynomial in n, usinglinear programming. The question arises: is there an algorithm with the same guarantees for largermulti-layer networks? This paper shows that no such training algorithm exists for a very simple 2-layernetwork with only two hidden nodes and a single output node, unless a widely believed complexity-theoretic assumption proves false. Speci�cally, we show that unless P = NP, for any polynomial-timetraining algorithm there will be some sets of training data on which the algorithm fails to correctly trainthe network, even though there exist edge weights so the network could correctly classify the data.

Training a 3-Node Network 31.1 Previous workA common method of demonstrating a problem to be intrinsically hard is to show the problem to beNP-complete. NP is the class of decision problems for which an a�rmative answer can be veri�ed inpolynomial time, and NP-complete problems are the hardest problems of this class; they are hardestin the sense that a polynomial time algorithm to solve one NP-complete problem could be used tosolve any problem in NP in polynomial time. (NP-hard problems are like NP-complete problems, butneed not belong to the class NP.) Also, P is the class of those decision problems solvable in polynomialtime. Although no proof is known that no polynomial-time algorithm exists for NP-complete problems(that is, that P 6= NP), many infamous hard problems|such as the traveling salesman problem|arenow known to be NP-complete. A good discussion of the theory of NP-completeness, as well as adescription of several hundreds of NP-complete problems, is given by Garey and Johnson (1979). WhileNP-completeness does not render a problem totally inapproachable in practice, and does not addressthe speci�c instances one might wish to solve, it often implies that only small instances of the problemcan be solved exactly, and that large instances can at best only be solved approximately, even withlarge amounts of computer time.The work in this paper is inspired by Judd (1990) who shows the following problem to be NP-complete:\Given a neural network and a set of training examples, does there exist a set of edgeweights for the network so that the network produces the correct output for all the trainingexamples?"Judd shows that the problem remains NP-complete even if the network is only required to produce thecorrect output for two-thirds of the training examples, which implies that even approximately training aneural network is intrinsically di�cult in the worst case (Judd, 1988). Judd produces a class of networksand training examples for those networks such that any training algorithm will perform poorly on somenetworks and training examples in that class. The results, however, do not specify any particular \hardnetwork"|that is, any single network hard to train for all algorithms. Also, the networks producedhave a number of hidden nodes that grows with the number of inputs and outputs, as well as a quiteirregular connection pattern.The work in this paper is also inspired by Megiddo (1986) who shows that if input features are allowedto be arbitrary rational values, then training a variant of the main network we consider here is NP-complete. If inputs are restricted to, say, binary or ternary values, then his proof techniques breakdown. The proofs we present here for our more general results are of a very di�erent style.1.2 Our resultsWe extend the results of Judd and Megiddo by showing that it is NP-complete to train a speci�c verysimple network, that has only two hidden nodes, a regular interconnection pattern, and binary inputfeatures. We also present classes of regular 2-layer networks such that for all networks in these classes,the training problem is NP-complete. In addition, we relate certain problems in approximate networktraining to other di�cult (but not known to be NP-hard) approximation problems. In particular,we consider the problem of �nding approximation algorithms that make only one-sided error and theproblem of approximating the minimum number of hidden-layer nodes needed for correct classi�cationof a given training set.Our results, like Judd's, are described in terms of \batch"-style learning algorithms that are given allthe training examples at once. It is worth noting that training is at least as hard with an \incremental"algorithm, such as back-propagation, that sees the examples one at a time.Our results state that given a network of the classes considered, for any training algorithm there willbe some types of training problems such that the algorithm will perform poorly as the problem size

Training a 3-Node Network 4
. . .

1 2 3

N1 N2

N3

4 . . . nFigure 1: The 3-Node Network.increases. The results leave open the possibility that given a training problem that is hard for somenetwork, there might exist a di�erent network and encoding of the input that make training easy. Infact, we present an example of two networks, the second more powerful than the �rst, such that trainingthe �rst is NP-complete but the second can be trained in polynomial time. So, in particular, those setsof examples hard to train on the �rst network can be trained easily on the other. Kearns and Valiant(1989) show, however, that there exist more complicated networks for which this approach will not helpin the worst case. Preliminary versions of this paper have appeared in Blum and Rivest (1988), (1989)and Blum (1989).2 THE TRAINING PROBLEM AND NETWORKS CONSIDEREDDe�nition 1 Given a neural network N , let the training problem for N be the question:\Given a set of training examples, do there exist edge weights and thresholds for the nodesof N so that it produces output consistent with the training set?"Note that we have stated the training problem as a decision (\yes" or \no") problem, but that thesearch problem (�nding the weights) is at least as hard.For most of this paper, we will focus on a multilayer network with n binary inputs and three nodeslabeled N1; N2;N3. All inputs are connected to nodes N1 and N2. The outputs of hidden nodes N1and N2 are connected to output node N3 which gives the output of the network (see Figure 1).Each node Ni computes a linear threshold function (also called Ni) on its inputs. If Ni has inputx = (x1; . . . ; xm), then for some values a0; . . . ; am,Ni(x) = � +1 if a1x1 + a2x2 + � � �+ amxm > a0�1 otherwise.The aj 's (j � 1) are typically viewed as weights on the incoming edges and a0 as the threshold. Wewill call the network as described above the 3-Node Network.

Training a 3-Node Network 5A training algorithm for this network is given a set of training examples. Each is either a positiveexample (an input for which the desired network output is +1) or a negative example (an input forwhich the desired output is �1). The main result of this paper is that the training problem for the3-Node Network is NP-complete. That is, unless P = NP there is no polynomial-time algorithm thatgiven a collection of training examples on n Boolean inputs, can always correctly decide whether thereexist linear threshold functions for nodes N1, N2, and N3 so that the 3-Node Network produces outputconsistent with the training examples.Since it is NP-complete to train, the 3-Node Network di�ers greatly in a computational sense from thesingle-node perceptron which can be trained in polynomial time using linear programming. Note the3-Node Network training problem is in NP since the maximum number of bits needed for each weightis the same as that needed for the weights of a perceptron. Raghavan (Raghavan, 1988) shows thatin fact one needs at most O(n logn) bits per weight (and threshold) and therefore one can certainlywrite down all the weights and thresholds, and then verify that the network so produced classi�es allexamples correctly, in polynomial time.We also show the training problem for the following networks to be NP-complete:1. The 3-Node Network restricted so that any or all of the weights for one hidden node are requiredto equal the corresponding weights of the other (so possibly only the thresholds di�er) and anyor all of the weights are required to belong to f+1;�1g.2. Any k-hidden node, for k � 2 and bounded above by some polynomial in n (eg: k = n2), two-layerfully-connected network with linear threshold function nodes where the output node is requiredto compute the AND function of its inputs.3. The 2-layer, 3-node n-input network with an XOR output node, if ternary features are allowed.In addition we show that any set of positive and negative training examples classi�able by the 3-nodenetwork with XOR output node (for which training is NP-complete) can be correctly classi�ed bya perceptron with O(n2) inputs which consist of the original n inputs and all products of pairs ofthe original n inputs (for which training can be done in polynomial-time using linear programmingtechniques).3 TRAINING THE 3-NODE NETWORK IS NP-COMPLETEIn this section, we prove the following theorem.Theorem 1 Training the 3-Node Network is NP-complete.First, we provide some intuition. To see why training such a simple network might be hard, imagine thatthe output node were required to compute the AND function of its inputs|that is, output +1 whenit receives inputs (+1;+1) from nodes N1 and N2, and output �1 on all other pairs of inputs. Whenthe network is presented with a positive example, we know that both hidden nodes N1 and N2 mustoutput +1. Therefore, we know in some sense in what direction we should modify the weights of thesenodes. When the network is presented with a negative example, however, all we know is that either N1or N2 (or both) should output �1. We might, perhaps, just try to make both nodes output �1, butunless the positive and negative examples are linearly separable|implying that we could have solvedthe training problem on a perceptron|this will not work. For some negative examples, we will have tomake a choice: should N1 output �1 or should N2 output �1? It may be that we must make the correctcombination of choices over all or at least a large number of the negative examples in order to correctlytrain the network, and there are an exponential number of such combinations. NP-completeness tells usthat in the worst case, we will not be able to do much better than just blindly trying all combinationsand seeing if one happens to work, which clearly would take exponential time. So, regardless of thelinear programming problem of �nding a good set of weights for a node given that we know what it

Training a 3-Node Network 6should output, what makes the training problem hard is that we must decide what the outputs for thehidden nodes should be in the �rst place.The proof of Theorem 1 involves reducing the known NP-complete problem \Set-Splitting" to thenetwork training problem. In order to more clearly understand the reduction, we begin by viewingnetwork training as a geometrical problem.3.1 The geometric point of viewA training example can be thought of as a point in n-dimensional Boolean space f0;1gn, labeled `+' or`�' depending on whether it is a positive or negative example. The zeros of the linear functions that arethresholded by nodes N1 and N2 can be thought of as (n � 1)-dimensional hyperplanes in this space.These hyperplanes divide the space into four quadrants according to the four possible pairs of outputsfor nodes N1 and N2. If the hyperplanes are parallel, then one or two of the quadrants is degenerate(non-existent). In this paper, the words \plane" and \hyperplane" will be used interchangeably.Since the output node receives as input only the outputs of the hidden nodes N1 and N2, it can onlydistinguish between points in di�erent quadrants. The output node is also restricted to be a linearfunction. It may not, for example, output \+1" when its inputs are (+1;+1) and (�1;�1), and output\�1" when its inputs are (+1;�1) and (�1;+1).So, the 3-Node Network training problem is equivalent to the following: given a collection of points inf0;1gn, each point labeled `+' or `�', does there exist either1. a single plane that separates the `+' points from the `�' points, or2. two planes that partition the points so that either one quadrant contains all and only `+' pointsor one quadrant contains all and only `�' points.We �rst look at a restricted version which we call the Quadrant of Positive Boolean Examples problem:\Given O(n) points in f0;1gn, each point labeled `+' or `�', do there exist two planes thatpartition the points so that one quadrant contains all `+' points and no `�' points?"The Quadrant of Positive Boolean Examples problem corresponds to having an \AND" function at theoutput node. Once we have shown this to be NP-complete, we will extend the proof to the full problemby adding examples that disallow the other possibilities at the output node. Megiddo (Megiddo, 1986)has shown that for a collection of arbitrary `+' and `�' points in n-dimensional Euclidean space, theproblem of whether there exist two hyperplanes that separate them is NP-complete. His proof breaksdown, however, when one restricts the coordinate values to f0;1g as we do here. Our proof turns outto be of a quite di�erent style.3.2 Set-splittingThe following problem, Set-Splitting, was proven to be NP-complete by Lov�asz (Garey and Johnson,1979).\Given a �nite set S and a collection C of subsets ci of S, do there exist disjoint sets S1, S2such that S1 [S2 = S and 8i; ci 6� S1 and ci 6� S2?"The Set-Splitting problem is also known as 2-non-Monotone Colorability or Hypergraph 2-colorability.Our use of this problem is inspired by its use by Kearns, Li, Pitt, and Valiant to show that learningk-term DNF is NP-complete (Kearns et al., 1987) and the style of the reduction is similar.

Training a 3-Node Network 7
c

1

c
2

s
1

s
2

s
3

⇔ +

+

+

-
- -

(000) (100)

(001)

(010)

(011)

(110)Figure 2: An example.3.3 The proofTheorem 2 Quadrant of Positive Boolean Examples is NP-complete.Proof: The proof is by reduction from Set-Splitting. That is, given an instance of Set-Splitting, weconvert it into an instance of Quadrant of Positive Boolean Examples, such that the constructed instancehas a solution if and only if the Set-Splitting instance had a solution.So, given an instance of the Set-Splitting problem:S = fsig; C = fcjg; cj � S; j S j= n;We create the following signed points on the n-dimensional hypercube f0;1gn:� Let the origin 0n be labeled `+'.� For each si, put a point labeled `�' at the neighbor to the origin that has a 1 in the ith bit|thatis, at (1020 ���� � �0 i10 ���� � �n0). Call this point pi.� For each cj = fsj1; . . . ; sjkjg, put a point labeled `+' at the location whose bits are 1 at exactlythe positions j1; j2; . . . ; jkj|that is, at pj1 + � � �+ pjkj .For example, let S = fs1; s2; s3g; C = fc1; c2g; c1 = fs1; s2g; c2 = fs2; s3g: We create `�' points atpositions: (0 0 1), (0 1 0), (1 0 0) and `+' points at positions: (0 0 0), (1 1 0), (0 1 1) in this reduction(see Figure 2).We now show that the given instance of the Set-Splitting problem has a solution i� the constructedinstance of the Quadrant of Positive Boolean Examples problem has a solution.())Given S1; S2 from the solution to the Set-Splitting instance, let P1 be the plane a1x1+. . .+anxn = �12 ,where ai = �1 if si 2 S1, and ai = n if si 62 S1. Similarly, let P2 be the plane b1x1 + . . . + bnxn = �12where bi = �1 if si 2 S2, and bi = n otherwise. Let a = (a1; . . . ; an) and b = (b1; . . . ; bn).Plane P1 separates from the origin all `�' points corresponding to si 2 S1 and no `+' points. For eachsi 2 S1; a � pi = �1, which is less than � 12 . For each `+' point p we have a � p > �12 since either p isthe origin or else p has a 1 in a bit i such that si 62 S1. Similarly, plane P2 separates from the origin all

Training a 3-Node Network 8
+ +

+

-
- -

(000) (100)

(001)

(010)

-

Figure 3: The gadget.`�' points corresponding to si 2 S2 and no `+' points. Thus, the quadrant a � x > �12 and b � x > �12contains all points labeled `+' and no points labeled `�'.(()Let S1 be the set of points separated from the origin by P1 and S2 be those points separated by P2.Place any points separated by both planes in either S1 or S2 arbitrarily. Sets S1 and S2 cover S since all`�' points are separated from the origin by at least one of the planes. Consider some cj = fsj1 � � � sjkjgand the corresponding `�' points pj1; . . . ;pjkj . If, say, cj � S1, then P1 must separate all the pji fromthe origin. Therefore, P1 must separate pj1+. . .+pjkj from the origin. Since that point is the `+' pointcorresponding to cj , the `+' points are not all con�ned to one quadrant, contradicting our assumptions.So, no cj can be contained in S1. Similarly, no cj can be contained in S2.We have shown that the training problem for the 3-Node Network is NP-complete if the output node isrequired to compute the AND of its two inputs. In order to handle the other possibilities at the outputnode, we now add a \gadget" consisting of six new points in three new dimensions. The gadget forcesthat the only way in which two planes could separate the `+' points from the `�' points would be tocon�ne the `+' points to one quadrant.Proof of Theorem 1: Given an instance of Set-Splitting, create examples as in the proof of Theorem 2,except in addition we add three new dimensions, xn+1; xn+2; and xn+3, and put `+' points in locations:(0 � � � 0 101), (0 � � � 0 011)and `�' points in locations:(0 � � � 0 100), (0 � � � 0 010), (0 � � �0 001), (0 � � �0 111):(See Figure 3.)The `+' points of this cube can be separated from the `�' points by appropriate settings of the weights ofplanes P1 and P2 corresponding to the three new dimensions. Given planes P 01 : a1x1+ � � �+anxn = �12and P 02 : b1x1 + � � �+ bnxn = �12 which solve a Quadrant of Positive Boolean Examples instance in ndimensions, expand the solution to handle the gadget by settingP1 to a1x1 + � � �+ anxn + xn+1 + xn+2 � xn+3 = � 12P2 to b1x1 + � � �+ bnxn � xn+1 � xn+2 + xn+3 = �12(P1 separates `�' point (0 � � �0 001) from the `+' points and P2 separates the other three `�' pointsfrom the `+' points). On the other hand, notice that no single plane can separate the `+' points fromthe `�' points in the cube and there is no way for two planes to con�ne all the negative points in one

Training a 3-Node Network 9quadrant. Thus, any solution to the network training problem must have all `+' points in one quadrantand so as in the proof of Theorem 2, give a solution to the Set-Splitting instance.4 CLASSES OF HARD NETWORKS4.1 The Restricted 3-Node NetworkIn order to approach the dividing line between computational feasibility and infeasibility for neuralnetwork training, we now consider an even simpler network. If we require the two hidden nodes N1and N2 of the 3-Node Network to compute exactly the same function, then the network would reduceto the simple perceptron and be trainable in polynomial time. However, suppose we allow only thethresholds used by N1 and N2 to di�er; that is, we require just the weights on edges into node N1 toequal the corresponding weights on edges into node N2. We show that the training problem for sucha network is NP-complete. Thus, adding the single extra free parameter of thresholds that may di�erresults in intractability. Another natural way we might simplify the network would be to require theedge weights to be either +1 or �1. This requirement forces nodes N1 and N2 to each separate outsome Hamming ball in f0;1gn|that is, all points on the hypercube di�ering in at most some �xednumber of bits from some center|instead of just any linearly-separable region. Unfortunately, trainingfor this type of network is also NP-complete as we will show.De�nition 2 A Restricted 3-Node Network is a version of the 3-Node Network in which some or all ofthe weights of hidden node N1 are required to equal the corresponding weights of hidden node N2, withpossibly only the thresholds allowed to di�er, and in which some or all of the weights may be restrictedto be from the set f�1;+1g.We prove that training the Restricted 3-Node Network is NP-complete. The proof uses a reductionfrom Set-Splitting slightly di�erent from that in the last section and we use a form of the Set-Splittingproblem in which the subsets cj have at most three elements (this restricted version of Set-Splitting isstill NP-complete). The reduction has the property that the following are equivalent:� The instance of the Set-Splitting problem is solvable.� The sets of `+' and `�' points created can be separated by two hyperplanes.� The points can be separated by two parallel hyperplanes with coe�cients in f+1;�1g.That is, the reduction will also imply that training the 3-Node Network remains NP-hard even if weonly look at training sets in which all the positive examples lie in two disjoint Hamming balls. Thus,restricting oneself to considering only sets of training data where the concept (set of positive examples)consists of two disjoint Hamming balls does not reduce the computational complexity in the worst case.The proof appears in appendix A.4.2 Networks with More Intermediate NodesWe will now consider networks with more than two nodes in the hidden layer and present a large classof such networks for which training is NP-complete.De�nition 3 Let � be the family of 2-layer, n-input, single-output networks in which there are r � 2linear threshold function nodes in the hidden layer, each one connected to all n inputs, and in whichthe output node computes the AND function. That is, the output node outputs +1 if and only if all ofits inputs are +1.

Training a 3-Node Network 10The class � is just the straightforward generalization of the 3-Node Network to networks with morethan two hidden nodes, with the restriction that the output node compute the AND of its inputs insteadof an arbitrary linear threshold function.Theorem 3 For any network of the family � such that the number of hidden nodes, r, is bounded bysome �xed polynomial in the number of inputs, n, the training problem is NP-complete.Essentially, to prove this result, for each of r � 2 hidden nodes, we take an unused corner of then-dimensional hypercube and label it `�' and all its neighbors `+'. This will force a hyperplane cor-responding to a hidden node to have as its sole function separating the `�' point from the rest of thehypercube. There will be two hidden nodes left so we can then use the reduction from the proof ofTheorem 1. The proof appears in appendix B.4.3 The 3-Node Network with XOR OutputThe last network for which we will show training to be NP-complete is a modi�cation of the 3-NodeNetwork in which the output node computes the XOR function. When the outputs of the two hiddennodes are (+1;�1) or (�1;+1), then the network output is \+1" and otherwise the network outputis \�1". We will call this network the 3-Node Network with XOR Output, or 3NX. The motivationfor considering this network is that in chapter 6 we will present a network that can both correctlyclassify any set of training examples that 3NX can, and be trained in polynomial time. This shows thatworst-case hardness of training is not necessarily directly related to network power.In the following discussion, we will suppose that the inputs to 3NX are from a ternary alphabet. Insteadof each input being on or o�, an input can be positive, negative or neutral.Theorem 4 Training 3NX is NP-complete if ternary input attributes are allowed.Proof: The ternary attributes used are f�1;0; 1g so every training example is a vector in f�1; 0;1gnlabeled `+' or `�'. Given an instance of Set-Splitting on n elements, create signed points in f�1; 0;1gnas follows:� Let the origin 0n be labeled `+'.� For each si, put a `�' point at pi = (10 20 ���� � � 0 i1 0 ���� � � n0) and at �pi = (10 20 ���� � � 0 i�1 0 ���� � � n0).� For each cj = fsj1 ; . . . ; sjkg, put a `+' point at pj1 + � � �+ pjk .These points are the same as in the proof of Theorem 1 except the re
ection of each `�' point throughthe origin is also given and there is no \gadget".A solution S1; S2 to the Set-Splitting instance can be translated into the same plane equations P1; P2as in the proof of Theorem 1. P1 is a1x1 + . . . + anxn = �12 where ai = �1 for si 2 S1 and ai = n forsi 62 S1; P2 is created from S2 similarly. Notice that the `�' point pi is separated from the `+' pointsby P1 if si 2 S1 and by P2 if si 2 S2. Conversely �pi is separated from the `+' points by P2 if si 2 S1and by P1 if si 2 S2. Also, no `�' point is separated from the `+' points by both planes which impliesthat the network can correctly classify the training examples with an XOR output node.A solutionP1; P2 to the training problem can be translated into sets S1; S2, where S1 = fsi j P1 separatespi from the origin g and S2 = fsi j P2 separates pi from the origin g. The following claim implies thatthese sets solve the Set-Splitting instance.Claim: Given cj = fsj1 ; . . . ; sjkg, P1 does not separate all of pj1 ; . . . ; pjk from the origin.

Training a 3-Node Network 11Proof of claim: If P1 separates all of the pji from the origin, it also separates the point p = pj1 +. . .+pjk (the `+' point corresponding to cj) from the origin and does not separate any of the �pjifrom the origin. Therefore, the other plane P2 must separate all of the �pji from the origin andcannot separate p or any of the pji from the origin. So, the point p and all the pji are on thesame side of both planes and the training problem is not correctly solved.The claim implies that each cj is split by S1 and S2, proving the theorem.5 GETTING AROUND INTRACTABILITYThe results presented in the previous sections show several classes of networks such that for any trainingalgorithm there will be some hard training problems. It is quite possible, however, that a problem hardfor one network might be easier for another network. In this section, we describe two networks such thattraining the �rst is NP-complete, but the second can both be trained in polynomial time and is morepowerful than the �rst in that it can be trained correctly on any set of examples the �rst is powerfulenough to correctly classify. This phenomenon was discovered independently by Valiant and Warmuth(1989).The �rst network is the network 3NX described earlier. The second is a perceptron with an expandedinput representation. This perceptron has 2n+ n(n � 1)=2 inputs, consisting of the original n inputs,their squares, and all n(n� 1)=2 products of pairs of the original n inputs. We will call this network P2and the regular n-input perceptron, P . The number of weights in P2 is O(n2), compared with O(n) for3NX. However, P 2 can be trained in polynomial time since it is just a perceptron with O(n2) inputs.Theorem 5 Any set of training data that 3NX can correctly classify, P 2 can also correctly classify.Proof: Let w1x1+. . .+wnxn+w0 � 0 and v1x1+. . .+vnxn+v0 � 0 be the linear threshold functionsfor the two hidden nodes of 3NX. (Notice we have moved the thresholds w0 and v0 to the left-handsides of the inequalities.) We may assume that on all training examples, w1x1 + . . . + wnxn + w0 6= 0and v1x1 + . . . + vnxn + v0 6= 0, since we can perturb the thresholds w0 and v0 by slight amounts if wewish and not a�ect the function computed by the network. Therefore, the network 3NX outputs \+1"exactly when (w1x1 + . . . +wnxn + w0 > 0) and (v1x1 + . . . + vnxn + v0 < 0)or(w1x1 + . . . +wnxn + w0 < 0) and (v1x1 + . . . + vnxn + v0 > 0):Equivalently, 3NX outputs \+1" exactly when(w1x1 + . . . +wnxn + w0)(v1x1 + . . . + vnxn + v0) < 0which impliesv0w0 + nXi=1(v0wi + w0vi)xi + nXi=1 viwix2i + nXi=2 i�1Xj=1(wivj + viwj)xixj > 0:The left-hand side of this last formula is a linear function of the inputs to P 2. So, there exist edgeweights for P 2 (those described by the above formula) such that P 2 classi�es the examples in exactlythe same way as does 3NX.Theorem 5 shows that by increasing the power of a network, it is possible to remove as well as tointroduce computational intractability. In terms of their representational power, we have:P � 3NX � P2

Training a 3-Node Network 12where P can be trained in polynomial time, training 3NX is NP-complete, and P2 can again be trainedin polynomial time. Intuitively, the reason that network P2 can be both more powerful than 3NX andeasier to train is that we are giving it prede�ned non-linearities. The network P 2 does not have to startfrom scratch, but instead is given more powerful building blocks (the products of pairs of the inputs)to work with.By using P2 instead of 3NX, we gain in a worst-case computational sense, but lose in that the number ofweights increases from O(n) to O(n2). The increase in the number of weights implies that the number oftraining examples needed to constrain those weights so that the network can meaningfully generalize onnew examples increases correspondingly (eg. see Baum and Haussler, 1989). Thus, there is a tradeo�.Theorem 5 can be extended in the obvious way to networks like 3NX with k > 2 hidden nodes; thenumber of inputs to the resulting perceptron will be nk.In practice, if one were to use the strategy of adding non-linear inputs to the perceptron, then insteadof giving the perceptron all O(n2) products of pairs as inputs at once, one might just give the networkthose products that appear related to the training problem at hand. One could then test to see whetherthose products su�ce by running a training algorithm and checking whether or not the network correctlyclassi�es the training data. In addition, products of triples of inputs or other non-linear functions of theoriginal inputs could be given as new inputs to the perceptron if the trainer has some prior knowledgeof the particular training problem.6 HARDNESS RESULTS FOR APPROXIMATION ALGORITHMSWe now state, but do not prove, two hardness results on approximate network training; the proofsappear in (Blum, 1989).The �rst problem we consider is relaxing the restriction that the trained network output correctly onall the training examples, even if there exist edge weights so that the network would do so. Judd (1988)shows that there exist hnetwork, training seti pairs for which outputting correctly on better than 2/3of the training examples is NP-hard. He proves this result by showing training to be NP-complete forsome such pair in which the training set has only 3 elements and therefore one cannot do better than67% accuracy without achieving 100% accuracy. The networks he considers are quite complicated andcontain many output nodes, however. Our results are weaker than his in that we cannot show thatachieving such a high error rate is necessarily hard, but hold for the very simple networks discussed inthe previous chapters.De�nition 4 A training algorithm with one-sided error for a single-output network N is an algorithmthat given a collection of positive and negative training examples that N can correctly classify, willproduce edge weights so that N outputs correctly on all of the positive examples and at least an �fraction of the negative examples, for some constant � > 0.In this section we will use the problem Graph k-Colorability. An instance of this problem is a graphconsisting of n vertices connected by some number of edges and k allowed colors. A solution is anassignment to each vertex of one of the k colors so that no edge has both endpoints given the samecolor. Graph k-Colorability is NP-complete for k � 3 and approximate graph coloring (approximatingthe minimum number of colors needed to color a graph) appears to be a hard problem in the worst casealso for all k � 3.Theorem 6 For any network N 2 � with n inputs and k � 3 hidden nodes, any training algorithmwith one-sided error for N can be used to color any n-vertex k-colorable graph with O(k logn) colors.Theorem 6 implies, for instance, that training the network N 2 � that has 3 hidden nodes so that Nwill output correctly on all the positive examples and on at least 10% of the negative examples (� =0.1) on a collection of training data which M is powerful enough to correctly classify, is as hard in theworst case as O(logn)-coloring a 3-colorable graph.

Training a 3-Node Network 13Finding O(k logn) approximations for the k-coloring problem is not known to be NP-complete, butO(k logn) is much lower than the bounds achieved by the current best approximation algorithms whichall grow as n� for a constant � < 1. Thus, Theorem 6 suggests that one-sided error training in theworst case is \probably hard".A second form of approximate training we consider is that given a set of training examples that is hardfor a particular network, one might try to add power to the network in some way in order to maketraining easier. For the 2-layer networks of the kind discussed in this paper, one natural way to addpower is to add more nodes to the hidden layer. We show that for networks of the class �, if one addsonly relatively few nodes to the hidden layer, then there will be training sets that are hard for both theoriginal and the enlarged network, so this approach will likely not help in the worst case.De�nition 5 Given two networks N and N 0, an N 0=N -training algorithm is one that given any setof training data that N is powerful enough to correctly classify, will correctly train N 0.Thus, for instance, in the last section we showed a P2=3NX-training algorithm.Theorem 7 Given network N 2 � with k hidden nodes and N 0 2 � with k0 hidden nodes (k0 > k),then N 0=N -training is as hard as coloring a k-colorable graph with k0 colors.Theorem 7 implies that to avoid NP-completeness, one must in general at least double the number ofhidden nodes, since it is NP-hard to color a k-colorable graph with 2k� � colors for general k. Currentstate-of-the-art coloring approximation algorithms (Wigderson, 1983; Blum, 1989b) suggest that onemay wish to add at least n� hidden nodes, (0 < � < 1) for � depending on the original number ofhidden nodes k. Of course there is no guarantee here that adding this number of hidden nodes willactually help, in a worst-case computational complexity sense.7 CONCLUSIONSWe show for many simple two-layer networks whose nodes compute linear threshold functions of theirinputs that training is NP-complete. For any training algorithm for one of these networks there will besome sets of training data on which it performs poorly, either by running for more than an amount oftime polynomial in the input length, or by producing sub-optimal weights. Thus, these networks di�erfundamentally from the perceptron in a worst-case computational sense.The theorems and proofs are in a sense fragile; they do not imply that training is necessarily hard fornetworks other than those speci�cally mentioned. They do, however, suggest that one cannot escapecomputational di�culties simply by considering only very simple or very regular networks.On a somewhat more positive note, we present two networks such that the second is both more powerfulthan the �rst and can be trained in polynomial time, even though the �rst is NP-complete to train.This shows that computational intractability does not depend directly on network power and providestheoretical support for the idea that �nding an appropriate network and input encoding for one'straining problem is an important part of the training process.An open problem is whether the NP-completeness results can be extended to neural networks thatuse the di�erentiable logistic linear functions. We conjecture that training remains NP-complete whenthese functions are used since it does not seem their use should too greatly alter the expressive powerof a neural network (though Sontag (1989) has demonstrated some important di�erences between suchfunctions and thresholds). Note that Judd (1990), for the networks he considers, shows NP-completenessfor a wide variety of node functions including logistic linear functions.References[1] Baum, E. B. and Haussler, D. (1989). What size net gives valid generalization? In Advancesin Neural Information Processing Systems I, pages 81{90. Morgan Kaufmann.

Training a 3-Node Network 14[2] Blum, A. (1989). On the computational complexity of training simple neural networks. Mas-ter's thesis, MIT Department of Electrical Engineering and Computer Science. (Publishedas Laboratory for Computer Science Technical Report MIT/LCS/TR-445 (May, 1989).).[3] Blum, A. (1989b). An ~O(n0:4)-approximation algorithm for 3-coloring (and improved ap-proximation algorithms for k-coloring). In Proceedings of the Twenty-First Annual ACMSymposium on Theory of Computing, Seattle, pages 535{542.[4] Blum, A. and Rivest, R.L. (1988). Training a 3-node neural network is NP-Complete. InProceedings of the 1988 Workshop on Computational Learning Theory, pages 9{18. MorganKaufmann.[5] Blum, A. and Rivest, R. L. (1989) Training a 3-node neural net is NP-Complete. InDavid S. Touretzky, editor, Advances in Neural Information Processing Systems I, pages494{501. Morgan Kaufmann.[6] Garey, M. and Johnson, D. (1979). Computers and Intractability: A Guide to the Theory ofNP-Completeness. W. H. Freeman, San Francisco.[7] Haussler, D. (1989). Generalizing the PAC model for neural net and other learning applica-tions. Technical Report UCSC-CRL-89-30, University of California Santa Cruz.[8] Judd, J. S. (1988). Neural Network Design and the Complexity of Learning. PhD thesis,University of Massachusetts at Amherst, Department of Computer and Information Science.[9] Judd, J. S. (1990). Neural Network Design and the Complexity of Learning. MIT Press.[10] Kearns, M., Li, M., Pitt, L., and Valiant, L. (1987). On the learnability of boolean formulae.In Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pages285{295, New York.[11] Kearns, M. and Valiant, L. (1989). Cryptographic limitations on learning boolean formulaeand �nite automata. In Proceedings of the Twenty-First Annual ACM Symposium on Theoryof Computing, pages 433{444, Seattle, Washington.[12] Megiddo, N. (1986). On the complexity of polyhedral separability. Technical Report RJ5252, IBM Almaden Research Center.[13] Raghavan, P. (1988). Learning in threshold networks. In First Workshop on ComputationalLearning Theory, pages 19{27. Morgan-Kaufmann.[14] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning internal represen-tations by error propagation. In David E. Rumelhart and James L. McClelland, editors,Parallel Distributed Processing { Explorations in the Microstructure of Cognition, chapter 8,pages 318{362. MIT Press.[15] Sejnowski, T. J. and Rosenberg, C. R. (1987). Parallel networks that learn to pronounceEnglish text. Journal of Complex Systems, 1(1):145{168.[16] Sontag, E. D. (1989). Sigmoids distinguish better than Heavisides. Neural Computation,1:470{472.[17] Tesauro, G. and Janssens, B. (1988). Scaling relationships in back-propagation learning.Complex Systems, 2:39{44.[18] L. Valiant and Warmuth M.K. (1989). Predicting symmetric di�erences of two halfspacesreduces to predicting halfspaces. Unpublished manuscript.[19] Wigderson, A. (1983). Improving the performance guarantee for approximate graph coloring.JACM, 30(4):729{735.

Training a 3-Node Network 15APPENDIX ATheorem 8 The training problem for a Restricted 3-Node Network is NP-complete.Proof of Theorem 8: The reduction proceeds as follows. Given an instance of the Set-Splittingproblem on n=2 elements in which each subset cj has at most three elements:S = fsig; C = fcjg; cj � S; jSj = n=2; jcjj � 3;create labeled points in n-dimensional space as follows.� Label the origin `+' as before.� For each si, put a `�' point at the location with 1's in bits 2i� 1 and 2i and 0's in all other bits.We will call the bits 2i � 1 and 2i the bits \corresponding" to si.� For each subset cj, there are two cases: jcjj = 2 or jcjj = 3. Create 22 = 4 or 23 = 8 `+' pointsrespectively, such that for each `+' point, exactly one of the two bits corresponding to each si 2 cjis 1.For example, consider S = fs1; s2; s3g; C = fc1; c2g; c1 = fs1; s2g and c2 = fs2; s3g. Then the `�'points are: (110000); (001100); (000011) and the `+' points are: (000000); (101000), (100100), (011000),(010100), (001010), (001001), (000110), (000101).We will also need a \gadget" as we did to prove Theorem 1, in order to force the planes to have all `+'points in one region and the `�' points in the others. This \gadget" is essentially the same as in theproof of Theorem 1. In six new dimensions,put points labeled `+' at locations: (0 � � �0 001111); (0 � � � 0 110011)and points labeled `�' at locations: (0 � � �0 110000); (0 � � � 0 001100); (0 � � �0 000011); (0 � � � 0 111111)where the bits in the n old dimensions are zero. That is, we replace each bit in the old gadget by twoin the new gadget.Claim 1: Given a solution for an instance of the Set-Splitting problem, we can �nd parallel hyperplaneswith coe�cients in f�1;+1g that separate the `+' and `�' points.Proof: Given S1, create the plane P1: a1x1 + � � � + anxn = �1, where a2i�1 = a2i = �1 if si 2 S1and a2i�1 = a2i = +1 if si 62 S1:Note that for all `�' points corresponding to si 2 S1, a1x1 + � � � + anxn = �2 and for all other `�'points, a1x1 + � � �+ anxn = +2. For all `+' points, a1x1 + � � � + anxn 2 f�1;0;+1g since each cj hasat most three elements of which at least one contributes a \�1" and at least one contributes a \+1".Therefore, the plane P1 separates exactly the `�' points derived from si 2 S1 from the `+' points sincefor all `+' points, a1x1 + � � � + anxn � �1 and for all `�' points corresponding to si 2 S1, we havea1x1 + � � �+ anxn < �1. De�ne the second plane analogously.To correctly \slice" the gadget, for one plane let the coe�cients an+1; . . . ; an+6 in dimensions n +1; . . . ; n + 6 respectively be �1;�1;�1;�1;+1;+1, and for the other plane, let the coe�cients be+1;+1;+1;+1;�1;�1. One can just \plug in" the 6 gadget points to see that this works.Planes P1 and P2 are parallel since the coe�cients a1; . . . ; an+6 of plane P1 are just the negation of thecorresponding coe�cients of plane P2.Claim 2: Given splitting planes (not necessary parallel, any coe�cients allowed) we can �nd a solutionto the Set-Splitting instance.

Training a 3-Node Network 16Part 1: The gadget cannot be split with the `�' points all in one quadrant.Proof: Exactly the same as for the reduction in the proof of Theorem 1.Part 2: A single plane cannot have all `�' points corresponding to a subset cj on one side and all `+'son the other.Proof: Suppose one did. Given a plane a1x1 + � � � + anxn = a0, without loss of generality assumethat for the `+' points, a1x1 + � � � + anxn > a0, and that for all the `�' points corresponding to theelements of cj, we have a1x1 + � � �+ anxn � a0. Since the origin is a `+' point, we know that a0 mustbe negative.For each si 2 cj , since si has 1's in bits 2i � 1 and 2i, we have a2i�1 + a2i � a0 which impliesthat either a2i�1 � 12a0 or a2i � 12a0 (or both). Therefore, if jcjj = 2, then at least one of the `+'points corresponding to cj will have 1's in bits i1 and i2 for which ai1 ; ai2 � 12a0 and thus will forcea1x1 + � � � + anxn � 2 � 12a0. If jcjj = 3, then at least one of the `+' points corresponding to cj willforce a1x1 + � � �+ anxn � 3� 12a0. This presents a contradiction since we assumed that for all the `+'points, we had a1x1 + � � �+ anxn > a0 (recall, a0 is negative).APPENDIX BProof of Theorem 3: Given an instance of Set-Splitting on n elements, we create training examplesof length n+ 2 (alternately `+' and `�' points in (n+ 2)-dimensional space) as follows.1. Create labeled points as in the reduction in the proof of Theorem 1 (except we have added twoextra dimensions):� Let the origin be labeled `+'.� For each si 2 S, put a `�' point at pi = (1020 ���� � �0 i10 ���� � �n+20).� For each cj = fsj1 ; . . . ; sjkg, put a `+' point at pj1 + . . . + pjk.Note that all these points created have zeros in bits n + 1 and n+ 2.2. For each of r � 2 hidden nodes in the network, we will create labeled points as follows.� Choose any arbitrary empty (unlabeled) position in f0;1gn+2 with 1's in bits n+1 and n+2such that the total number of 1's in the vector for that position is odd and put a `�' pointthere. For example, we might pick position: 0110010011 (if n were 8).� Label all neighbors of (all positions di�ering in exactly one bit from) that `�' point as `+'points.For each `�' point p created in created in step 2, there must be some plane that separates it from the`+' points. Since all the neighbors of p are labeled `+', a separating plane will have p on one side andthe rest of the (n + 2)-dimensional hypercube of the other. Thus, only two planes remain to separatethe `�' points created in step 1 from the `+' points. The proof of Theorem 1 shows that two planesthat separate these `�' points from the `+' points will yield a solution to the Set-Splitting instance.Given a solution to the Set-Splitting instance, we can create r hyperplanes that separate the `+' and`�' points with all the `+' points in one region (which we want since the output node computes theAND function) by using r � 2 hyperplanes to separate the `�' points created in step 2 and two planesto separate those from step 1. The two planes that separate the `�' points created in step 1 from therest of the hypercube are formed exactly as in the proof of Theorem 1 except that the coe�cients indimensions n+1 and n+2 are large positive integers (an+1 = an+2 = n) so that all the `+' points fromstep 1 are in the same region as the `+' points from step 2.We can handle up to 2+2n�1 hyperplanes (hidden nodes), and therefore certainly any �xed polynomialin n of them as n becomes large, using about as many labeled points (training examples) as the totalnumber of weights in the network.

