
Inferring Graphs from Walks
(Extended Abstract)

Javed A. Aslam∗ Ronald L. Rivest†

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02139

Abstract

We consider the problem of inferring an undirected, degree-bounded, edge-colored
graph from the sequence of edge colors seen in a walk of that graph. This problem can
be viewed as reconstructing the structure of a Markov chain from its output. (That is,
we are not concerned with inferring the transition probabilities, but only the underlying
graph structure of the Markov chain.) We present polynomial-time algorithms for the
inference of underlying graphs of degree-bound 2 (linear chains and cycles), based on
some surprising properties about the confluence of various sets of rewrite rules.

1 Introduction

Consider an undirected, edge-colored graph G = (V, E, c) with vertex set V , edge set E,
and edge coloring c : E "→ Σ. A walk of G starts at some vertex vi and makes transitions
from vertex to vertex by arbitrarily selecting some edge incident on the current vertex and
traversing it. The output of such a walk is the sequence of colors of the edges traversed.

We ask: given the output of a walk and a degree-bound k, what is the smallest undirected,
degree-bound k, edge-colored graph G consistent with this output? (A graph has degree-
bound k if every vertex has degree at most k.)

For a particular output sequence, there may be many graphs G of varying degree-bounds
that are consistent with this output. For example, the output sequence abccbbcdeffe could
have been produced by a walk of any of the graphs in Figure 1. For a given output sequence
and degree-bound k, we wish to find the smallest degree-bound k graph that is consistent
with the output. We call this minimum consistent inference. In Figure 1, (a) is the minimum

We gratefully acknowledge support from NSF (grant CCR-8914428), ARO (grant DAAL03-86-K-0170),
and the Siemens Corporation.

∗Author’s net address: jaa@theory.lcs.mit.edu
†Author’s net address: rivest@theory.lcs.mit.edu

1

Figure 1: Graphs consistent with the walk abccbbcdeffe.

consistent degree-bound 2 graph, (b) is the minimum consistent degree-bound 4 graph, and
(d) is the minimum consistent degree-bound 6 graph.

In this paper, we give polynomial-time algorithms for the minimum consistent inference
of degree-bound 2 graphs. It is an open question whether the minimum consistent inference
of degree-bound k graphs for k > 2 is tractable or NP-complete.

This work is related to other work in the computer science literature. Rudich [9] has
considered the problem of inferring Markov chains from their output. He considers a re-
stricted class of Markov chains whose output is binary. Given the binary output of a Markov
chain, Rudich gives algorithms that, in the limit, reconstruct the underlying Markov chain
structure as well as the associated transition probabilities. Our focus is, however, on the
efficient (i.e. polynomial time) inference of the underlying graph structure, and not on the
inference of the associated transition probabilities.

Angluin [3] and Gold [6] have considered the problem of automaton identification from
input/output behavior. Given the input/output behavior of an automaton, one would like
to construct the directed graph corresponding to the state transition diagram of the smallest
automaton compatible with the given data. Angluin and Gold have shown that this partic-
ular problem is NP-complete. Our work is different in that it is concerned with the class of
undirected underlying graphs.

Section 2 provides some intuition for our method of inferring degree-bound 2 graphs from
walks. Section 3 then supplies some necessary definitions regarding sets of rewrite rules.
Section 4 shows how rewrite rules can be used to find minimum linear chains consistent with
a given walk. Section 5 shows how to extend this result to infer cycles. Finally, Section 6
sketches the proofs of some key lemmas used in the correctness proofs (complete proofs will

2

be given in the full paper).

2 Intuition

When we have a degree-bound of 2, we are restricted to inferring linear chains and cycles. It is
convenient to identify a chain with the sequence of edge colors seen in a end-to-end traversal
of the chain. Similarly, a cycle can be identified with any of the edge-color sequences seen
in a single loop around the cycle.

Consider the output sequence y = abccbbcdeffe. Clearly, the minimum consistent chain
for this example is identified by the sequence z = abcdef. How do we get from y to z? The
subsequence bccbbc is of the form xxRx for x = bc, and can therefore be obtained by
traversing bc in the forward direction, then in the bacward direction, and then again in the
forward direction. By replacing bccbbc with the shorter sequence bc we obtain a shorter
string that represents a chain that can be walked to obtain the original sequence. We can
also replace the terminal subsequence effe in y with ef. Since effe is a final subsequence,
the resulting shorter sequence can still be walked to obtain the original sequence.

This gives us a replacement strategy where substrings of the form xxRx are replaced by
x, and suffixes of the form xxR are replaced by x. What about more difficult cases where
the xxRx patterns are nested inside one another? We can imagine a reasonably efficient
strategy where the patterns are replaced, say, in order of smallest to largest. But what
guarantees that the resulting string is, in fact, consistent and smallest? Questions similar to
this have been studied in the context of eliminating redundant steps in computer programs
[1, 2] and evaluating expressions in the Lambda calculus [4, 5]. In these contexts, properties
of a particular replacement system are proved that guarantee “consistent” and “smallest”.
In the following section, we present the definitions, notation and basic results of replacement
systems. Following this, we develop replacement systems to solve our particular problem,
employing the results given in the next section.

3 Preliminaries

Let S be an arbitrary set. A binary relation on S is a subset of S × S. Let → be a binary
relation on S. If (x, y) ∈ →, we write x → y. The following definitions and notation have
been adapted from Huet [8], Huet and Oppen [7] and Aho, Sethi and Ullman [1]:

Let ı be the identity relation on S, ı = {(x, x) | x ∈ S}. Given two binary relations →A

and →B, we define their composition as →A · →B = {(x, y) | ∃z, x →A z & z →B y}. An
element x ∈ S is irreducible if ' ∃y ∈ S such that x→y. Inductively, we define the following:

3

0→ = ı
ε→ = → ∪ ı
i→ = → · i−1→ ∀i > 0
+→ =

⋃

i>0

i→

∗→ = +→ ∪ ı

→̂ = {(x, y) | x
∗→ y & y is irreducible}

If x
∗→ y and y is irreducible, then y is called the → normal form of x. We shall denote

the normal form of x by x̂.

Definition 1 A binary relation → is noetherian if and only if there is no infinite sequence
x1 → x2 → . . . → xn → . . .

Definition 2 A binary relation → is confluent if and only if ∀w, x, y w
∗→ x & w ∗→ y ⇒

∃z, x ∗→ z & y ∗→ z.

Definition 3 A binary relation → is locally confluent if and only if ∀w, x, y w → x & w →
y ⇒ ∃z, x

∗→ z & y ∗→ z.

It should be noted that the confluence property is equivalent to the widely known Church-
Rosser property. The following two results are well known and can be found in [8]:

Theorem 1 A noetherian relation is confluent if and only if it is locally confluent.

Theorem 2 If a binary relation is confluent, then the normal form of any element, if it
exists, is unique.

We are concerned with a specific subclass of noetherian relations defined as follows.

Definition 4 A binary relation → is strictly decreasing if ∀x, y x → y ⇒ |y| < |x|.

Clearly, every strictly decreasing relation is noetherian. We can now show the following:

Theorem 3 If → is confluent and strictly decreasing, then ∀x, y x ∗→ y ⇒ |y| ≥ |x̂|.

Proof: By contradiction, assume that ∃y such that x
∗→ y and |y| < |x̂|. Clearly, x ∗→ x̂.

By confluence, ∃z such that y
∗→ z and x̂

∗→ z. Since x̂ is irreducible, z = x̂. Therefore
y ∗→ x̂, but this is not possible since |y| < |x̂| and → is strictly decreasing.

4

4 Inference of Linear Chains

In this section we examine the inference of linear chains. We define a linear chain as degree-
bound 2, undirected, edge-colored graph G = (V, E, c) with vertices V = {v1, v2, . . . , vN},
edges E = {(v1, v2), (v2, v3), . . . , (vN−1, vN)} and edge colors c(u, v) ∀(u, v) ∈ E. If we let Σ
be the set of all colors, then we may denote a linear chain by a string z ∈ Σ+ corresponding
to the sequence of edge colors c(v1, v2), c(v2, v3), . . . , c(vN−1, vN).

4.1 Inference of Linear Chains from End-to-End Walks

An end-to-end walk on a linear chain z is a sequence of colors corresponding to the edges
traversed in some walk on z that begins at the left vertex v1 and ends at the right vertex
vN . If we let Σ be the set of letters, then z = abcda is a linear chain, and y1 = abcccda
and y2 = abccbbcda are both end-to-end walks on z. The string y is an end-to-end walk
on z if and only if it embeds or folds into z. The embedding of y in z partitions y into
segments corresponding to substrings between the folds in y necessary to embed y in z. For
y = abccbbcda and z = abcda, the embedding of y in z partitions y as follows: abc, cb,
bcda.

For the set Σ+, we define a binary relation →B = {(pxxRxq, pxq) | p, q ∈ Σ∗, x ∈ Σ+}
where xR is the reverse of the string x. If y ∗→B z, then z is called a B-contraction of y.
(The letter “B” is used because this relation affects the body of the string.) Conversely, y
is called a B-expansion of z. Clearly, →B is strictly decreasing since ∀y, z ∈ Σ+, if y →B z
then |z| < |y|.

Lemma 1 For all strings y, z ∈ Σ+, y is an end-to-end walk on the linear chain z ⇐⇒ y is
a B-expansion of z.

Proof (⇒): By contradiction, assume that the ⇒ implication is false. Then there must
exist some shortest counterexample y such that y is an end-to-end walk on some linear chain
z, and y is not a B-expansion of z. Let s be the shortest segment of y in the embedding of
y in z. Clearly, the segment preceding s must end in sR and the segment following s must
begin with sR. Thus, y may be written as pxxRxq for some p, q ∈ Σ∗ and x = sR. Further,
pxq is also an end-to-end walk on z. If pxq ∗→B z, we then have y = pxxRxq →B pxq ∗→B z
which implies that y is a B-expansion of z, a contradiction. If pxq is not a B-expansion of
z, then pxq is a shorter couterexample than y, also a contradiction.

Proof (⇐): By definition, if y is a B-expansion of z then y ∗→B z. Since →B is strictly
decreasing, we may write y = wn →B wn−1 →B . . . →B w2 →B w1 = z for some finite n.
We show that wi is an end-to-end walk on z by induction on i. Clearly, w1 is a (trivial)
end-to-end walk on z. Assume wi−1 is an end-to-end walk on z. Since wi →B wi−1, we have
wi = pxxRxq and wi−1 = pxq for some p, q ∈ Σ∗, x ∈ Σ+. The string wi may be embedded
in z as follows: embed px in the same manner that px is embedded for wi−1, embed xR by
tracing the embedding of x backwards, and finally embed xq in the same manner as xq is

5

Input:
y - string of symbols
n - length of y

Output:
z - string of symbols corresponding to ŷ
m - length of z

Procedure:
1 m = 0;
2 for i = 1 to n
3 m = m + 1;
4 z[m] = y[i];
5 if z has a suffix of the form xxRx then
6 l = length of the xxRx suffix;
7 m = m − 2

3 l;
8 endif
9 end

Figure 2: Algorithm for obtaining the B-normal-form of y.

embedded for wi−1. Therefore wi is an end-to-end walk on z, and by induction y = wn is an
end-to-end walk on z.

Lemma 2 The binary relation →B is confluent.

Since →B is strictly decreasing, we need only show that →B is locally confluent. This
proof is given in Section 6.1.

Theorem 4 If y is an end-to-end walk, then the shortest linear chain that can produce y is
ŷ, the B-normal-form of y.

Proof: Since y
∗→B ŷ, y is an end-to-end walk on ŷ by Lemma 1. Assume that y is an

end-to-end walk on some z and |z| < |ŷ|. By Lemma 1, y ∗→B z. Now, Theorem 3 implies
that |z| ≥ |ŷ|, a contradiction.

Thus, in order to obtain the minimum consistent linear chain that can produce an end-to-
end walk y, we must find ŷ. Since →B is confluent, ŷ may be obtained by repeatedly replacing
substrings of the form xxRx in y by x (by Theorem 2). Since →B is strictly decreasing, this
process is guaranteed to terminate.

Claim 1 On input y, the algorithm in Figure 2 produces ŷ, the B-normal-form of y.

Proof: Let zi be the string z after the ith iteration of the for loop. Clearly, z1 = y[1] and
zi−1y[i] ε→B zi ∀i > 1. Thus y = z1y[2]y[3] · · ·y[n] ε→B z2y[3]y[4] · · ·y[n] ε→B . . . ε→B zn = z
which implies that y ∗→B z. We next show that zi is irreducible for all i by induction. Clearly,
z1 = y[1] is irreducible. Given that zi−1 is irreducible, we must show that zi is irreducible.
We have two cases: either a suffix of the form xxRx was found during the ith iteration or
one was not. In the former case let αy[i]y[i]αRαy[i], α ∈ Σ∗ be the suffix of the form xxRx
found. Then zi−1 = βαy[i]y[i]αRα and zi = βαy[i], β ∈ Σ∗. Assume zi is not irreducible.

6

Then zi−1 is also not irreducible since zi is a substring of zi−1, a contradiction. In the latter
case we have zi−1 = β and zi = βy[i], β ∈ Σ+. Assume that zi is not irreducible. Since no
suffixes of zi were of the form xxRx, some substring of β must be of the form xxRx. This
implies that zi−1 = β is not irreducible, a contradiction. Therefore, zi is irreducible ∀i, and
in particular z = zn is irreducible. Thus, we have y ∗→B z and z irreducible which implies
that z is the normal form of y.

The worst case running time of the algorithm in Figure 2 occurs when y is itself irre-
ducible. In this case, no suffix of the form xxRx is found in step 5 of the algorithm. If we
search for this suffix in the obvious manner, then O(i2) time is required in the ith iteration.
This yields an overall running time of O(n3).

4.2 Inference of Linear Chains from General Walks

A walk on a linear chain z is a sequence of colors corresponding to the edges traversed in
some walk on z that begins at some vertex vi and at some point passes through the left
vertex v1 and right vertex vN . We no longer require that the walk start at the left vertex
or end at the right vertex. For the linear chain z = abcda, y1 = baabcccdaadc and y2 =
abcdaadcbb are both walks on z. The string y is a walk on the linear chain z if an only if it
embeds in z. For y = baabcccdaadc and z = abcda, the embedding of y in z partitions y
as follows: ba, abc, c, cda, adc.

For the set Σ+, we define new binary relations →H = {(xRxq, xq) | q ∈ Σ∗, x ∈ Σ+} and
→T = {(pxxR, px) | p ∈ Σ∗, x ∈ Σ+}. (The letters “H” and “T” are used because these
relations affect the head and tail of the string, respectively.) Let →HBT = →B ∪ →H ∪ →T.
If y

∗→HBT z, then z is called an HBT -contraction of y. Conversely, y is called an HBT -
expansion of z. Clearly, →HBT is strictly decreasing since ∀y, z ∈ Σ+, if y →HBT z then
|z| < |y|.

Lemma 3 For all strings y, z ∈ Σ+, y is a walk on the linear chain z ⇐⇒ y is an HBT -
expansion of z.

Proof (⇒): By contradiction, assume that ⇒ implication is false. Then there must exist
some shortest counterexample y such that y is a walk on some linear chain z, and y is not an
HBT -expansion of z. Consider the embedding of y in z. Without loss of generality, assume
that the walk on z visits the left vertex before the right vertex. Let the head of y, yH , be
the prefix of y corresponding to all edges traversed until the left vertex is reached for the
first time. Let the body of y, yB, be the subsequent portion of y until the right vertex is
reached for the last time. Let the tail of y, yT , be the remaining portion of y. Clearly, yB is
an end-to-end walk on z, yH is a walk on αR where α is a prefix of z, and yT is a walk on βR

where β is a suffix of z. Let z = αγ1 = γ2β. If yH is not an HBT -expansion of αR then yH is
a shorter counterexample than y, a contradiction. Similarly, if yT is not an HBT -expansion
of βR then yT is a shorter counterexample than y, also a contradiction. We therefore have
yH ∗→HBT αR and yT ∗→HBT βR. By Lemma 1, yB ∗→B z and therefore yB ∗→HBT z. We now

7

have the following: y = yHyByT ∗→HBT yHαγ1yT ∗→HBT αRαγ1yT →HBT αγ1yT = γ2βyT ∗→HBT

γ2ββR →HBT γ2β = z. Thus y ∗→HBT z, a contradiction.

Proof (⇐): By definition, if y is an HBT -expansion of z then y ∗→HBT z. Since →HBT is
strictly decreasing, we may write y = wn →HBT wn−1 →HBT . . . →HBT w2 →HBT w1 = z for
some finite n. We show that wi is a walk on z by induction on i. Clearly, w1 is a (trivial)
walk on z. Assume wi−1 is a walk on z. Since wi →HBT wi−1, we have either wi →B wi−1

or wi →H wi−1 or wi →T wi−1. The first case was examined in the proof of Lemma 1. If
wi →T wi−1 then wi = pxxR and wi−1 = px for some p ∈ Σ+, x ∈ Σ∗. The string wi may
be embedded in z as follows: embed px in the same manner that px is embedded for wi−1,
and embed xR by tracing the embedding of x backwards. The case wi →H wi−1 is similar.
Therefore wi is a walk on z, and by induction y = wn is a walk on z.

Lemma 4 The binary relation →HBT = →B ∪ →H ∪ →T is confluent.

Since →HBT is strictly decreasing, we need only show that →HBT is locally confluent. This
proof is given in Section 6.2.

Theorem 5 If y is a walk, then the shortest linear chain that can produce y is ŷ, the HBT -
normal-form of y.

Proof: Similar to proof of Theorem 4.

Lemma 5 If w→̂Bx→̂Hy→̂Tz, then z is the HBT -normal-form of w.

Proof: We have w
∗→B x ∗→H y ∗→T z which implies that w ∗→HBT z. Clearly, z is

irreducible under →T. Also, z is a prefix of y by the definition of →T. Suppose that z is not
irreducible under →H. Then y is not irreducible under →H, which contradicts the definition
of →̂H. Further, z is a substring of x by the definition of →H and →T. Suppose that z is not
irreducible under →B. Then x is not irreducible under →B which contradicts the definition
of →̂B. Therefore, z is irreducible under →B & →H & →T and hence under →HBT. Thus z is
the HBT -normal-form of w.

To obtain the minimum consistent linear chain that can produce a walk y, we must
find the HBT -normal-form of y. By Lemma 5, we may obtain this string in three stages.
The algorithm in Figure 2 accomplishes the first stage as previously noted. We now need
algorithms to find the H-normal-form and T -normal-form of y. Clearly, only one is necessary
since →H and →T are symmetric.

Claim 2 On input y, the algorithm in Figure 3 produces ŷ, the T -normal-form of y.

Proof: Let y1, y2, y3, . . . be the sequence of strings obtained during a run of this algorithm.
Each new yi is obtained in step 4 when the if statement in step 3 is true, and clearly
yi−1 →T yi. Therefore the output of this algorithm is an T -contraction of the input. The

8

Input:
y - string of symbols
n - length of y

Output:
y - string of symbols corresponding to ŷ
n - length of y

Procedure:
1 l = 1;
2 while 2l ≤ n do
3 if y has a length 2l suffix of the form xxR then
4 n = n − l;
5 l = 1;
6 else
7 l = l + 1;
8 endif
9 end

Figure 3: Algorithm for obtaining the T -normal-form of y.

algorithm does not terminate until the final yi is found to have no suffixes of the form xxR.
Thus, the output of this algorithm is the T -normal-form of the input.

The worst case running time of this algorithm is O(n2). If the input is irreducible, O(n2)
time is be spent trying to find a suffix of the form xxR. If the input is not irreducible, O(i2)
time is spent finding each xxR suffix of length 2i or verifying that one does not exist. We
thus obtain the recurrence T (n) = maxi{T (n − i) + O(i2)}, whose solution is O(n2).

We can therefore find the HBT -normal-form of y in O(n3) time by applying the algorithm
in Figure 2 (O(n3) time) followed by two applications of the algorithm in Figure 3 (O(n2)
time).

5 Inference of Cycles from Walks

In this section we examine the inference of cycles from walks. We define a cycle as a degree-
bound 2, undirected, edge-colored graph G = (V, E, c) with vertices V = {v1, v2, . . . , vN},
edges E = {(v1, v2), (v2, v3), . . . , (vN−1, vN), (vN , v1)} and edge colors c(u, v) ∀(u, v) ∈ E. Let
Σ be the set of all colors. If we “break” a cycle C at vertex i, the graph we obtain is a linear
chain which we denote Ci. Ci may be represented by a string in Σ+ corresponding to the
sequence of edge colors c(vi, vi+1), c(vi+1, vi+2), . . . , c(vi−1, vi).

A walk on a cycle C is a sequence of colors corresponding to the edges traversed in some
walk on C that begins at some vertex vi and eventually crosses all edges in C (i.e. completes
the cycle). If we let Σ be the set of letters, then C1 = abcd is a linear chain corresponding
to a cycle C, and w1 = bcdabbbc and w2 = cdaadcba are both walks on C. The string w is
a walk on a cycle C if and only if it embeds in C. For w = bcdabbbc and C1 = abcd, the
embedding of w in C partition w as follows: bcdab, b, bc.

In order to develop an algorithm for inferring the minimum consistent cycle C from a
given walk w, we must first give some properties of minimum consistent cycles. Let w be a
walk and let C be the minimum consistent cycle corresponding to w. By definition, w must

9

embed in C, and w must eventually cross every edge in C. Consider the embedding of w
in C. There must exist some vertex k corresponding to that vertex reached when the walk
w completes the cycle C for the first time. Let x be the prefix of w corresponding to all
edges traversed until vertex k is reached for the first time. Let y be the subsequent portion
of w corresponding all edges traversed until vertex k is again reached and the cycle is first
completed. Let z be the remaining portion of w. We observe the following facts: xR must
embed in C starting at vertex k, y is an end-to-end walk on Ck, and z must embed in C
starting at vertex k. If y is an end-to-end walk on Ck, then y ∗→B Ck by Lemma 1.

Lemma 6 Ck is irreducible.

Proof sketch: Suppose that Ck is not irreducible. We then have Ck = pttRtq and y ∗→B

pttRtq →B ptq. Therefore, y is an end-to-end walk on ptq and must embed in ptq. By
arguments similar to those used in the proof of Lemma 1, we claim that xR and z embed in
the cycle C ′ corresponding to the linear chain ptq. We now have a cycle C ′ consistent with
w that is smaller than the minimum consistent cycle C, a contradiction.

Consider the following algorithm: On input w, let s ∈ Σ+ be a substring of w, and let
p, q ∈ Σ∗ be strings such that w = psq. Compute ŝ, the B-normal-form of s and consider
the cycle K such that K1 = ŝ. If pR and q embed in K starting at vertex 1, consider this
cycle a success. Repeat for all possible substrings s and output the smallest success.

Clearly, w is a walk on each cycle that is a success, and the minimum consistent cycle C
is among the successes. Thus, the output of this algorithm is the minimum consistent cycle
C.

On input w (where |w| = n), the algorithm requires O(n2) iterations, one for each possible
substring s. Each iteration requires O(n3) time to calculate ŝ and O(n2) time to check if pR

and q embed in K (by calculating the “reachable” vertex set for successive prefixes of the
string in question). Thus, the algorithm runs in polynomial time.

6 Confluence Results

In this section we give proof sketches for the confluence results used above. Since each of
the binary relations used is strictly decreasing, to prove confluence we need only show local
confluence.

6.1 B Is Confluent

We have defined →B = {(pxxRxq, pxq) | p, q ∈ Σ∗, x ∈ Σ+}. For →B to be locally confluent,
we must have that ∀w, u, v w →B u & w →B v ⇒ ∃z, u ∗→B z & v ∗→B z. If w → u, then
w = p1xxRxq1 and u = p1xq1. If w → v, then w = p2yyRyq2 and v = p2yq2. Notice that w
contains both an xxRx substring and a yyRy substring. If these substrings do not overlap,
then there trivially exists a z where u →B z and v →B z. The cases where the xxRx and
yyRy substrings do overlap are somewhat more difficult.

10

Let →i
B = {(pxxRxq, pxq) | p, q ∈ Σ∗, x ∈ Σ+, |x| ≤ i}. To show that →B is locally

confluent, we show that →i
B is locally confluent for all i by induction. The base case →1

B is
trivial. We now assume that →n−1

B is locally confluent (hence confluent) and show that this
implies that →n

B is locally confluent. Consider xxRx and yyRy substrings within w which
overlap. By examining the various ways in which these two substrings can overlap, it can be
shown that the non-trivial cases always have the following property: if w →n

B u and w →n
B v,

then w
∗→n−1

B u and w
∗→n−1

B v. Since →n−1
B is confluent, this implies that ∃z such that

u ∗→n−1

B z and v ∗→n−1

B z. But →n−1
B ⊂→n

B which implies that u ∗→n

B z and v ∗→n

B z. Therefore,
→n

B is locally confluent. Thus, →i
B is locally confluent for all i which implies that →B is

locally confluent.

6.2 HBT Is Confluent

Given the union of a number of strictly decreasing binary relations, to prove that this union
is locally confluent it is sufficient (though not necessary) to show that each of the relations is
locally confluent and that they are pairwise locally confluent. We have already shown that
→B is locally confluent. By using methods similar to those above, we can show that →H

is locally confluent (and hence →T by symmetry). Again, by employing methods similar to
those above we can also show that →B ∪ →H (and hence →B ∪ →T by symmetry) as well as
→H ∪ →T are locally confluent. This yields the desired result.

7 Conclusion

We have shown that it is possible to efficiently infer minimum consistent degree-bound 2
graphs from walks. Our algorithms run in polynomial time, and their correctness is based
on some surprising properties of various sets of rewrite rules . It is an open question whether
the minimum consistent inference of degree-bound k graphs for k > 2 is tractable or NP-
complete.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Code optimization and finite Church-Rosser
theorems. In R. Rustin, editor, Design and Optimization of Compilers, pages 89–105.
Prentice-Hall, 1972.

[2] A. V. Aho and J. D. Ullman. Transformations on straight line programs. In Conference
Record Second Annual ACM Symposium on Theory of Computing, pages 136–148, 1970.

[3] Dana Angluin. An application of the theory of computational complexity to the study of
inductive inference. PhD thesis, University of California, Berkeley, 1976.

11

[4] Henk P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of
Studies in Logic. North-Holland, 1981. Revised Edition, 1984.

[5] A. Church and J. B. Rosser. Some properties of conversion. Transaction of AMS, 39:472–
482, 1936.

[6] E. Mark Gold. Complexity of automaton identification from given data. Information
and Control, 37:302–320, 1978.

[7] G. Huet and D. C. Oppen. Equations and rewrite rules: a survey. In R. Book, editor,
Formal Language Theory, pages 349–393. Academic Press, 1980.

[8] Gérard Huet. Confluent reductions: abstract properties and applications to term rewrit-
ing systems. In Proceedings of the 18th Annual Symposium on Foundations of Computer
Science, pages 30–45. IEEE, 1977.

[9] Steven Rudich. Inferring the structure of a Markov chain from its output. In Proceedings
of the 26th Annual Symposium on Foundations of Computer Science, pages 321–326.
IEEE, 1985.

12

