
An Algebraic Algorithm for
Weighted Linear Matroid Intersection

Nicholas J. A. Harvey∗

Massachusetts Institute of Technology
nickh@mit.edu

Abstract

We present a new algebraic algorithm for the classical
problem of weighted matroid intersection. This problem
generalizes numerous well-known problems, such as
bipartite matching, network flow, etc. Our algorithm
has running time Õ(nrω−1W 1+ε) for linear matroids
with n elements and rank r, where ω is the matrix
multiplication exponent, and W denotes the maximum
weight of any element. This algorithm is the fastest
known when W is small. Our approach builds on the
recent work of Sankowski (2006) for Weighted Bipartite
Matching and Harvey (2006) for Unweighted Linear
Matroid Intersection.

1 Introduction

The matroid intersection problem — finding a maxi-
mum cardinality (or maximum weight) independent set
in two given matroids — is a classical optimization prob-
lem initially studied in the early 1970s by several au-
thors [1, 5, 7, 21]. This work led to significant develop-
ments concerning integral polyhedra [28], submodular
functions [10], electrical networks [17], convex analysis
[25], etc. The matroid intersection problem generalizes
numerous well-known problems, such as weighted bipar-
tite matching, min-cost network flow, packing spanning
trees, etc. Efficient algorithms are known for solving
matroid intersection, and these algorithms have found
applications in areas such as approximation algorithms
[3, 13, 16], mixed matrix theory [24], and network cod-
ing [15].

The efficiency of matroid algorithms is often mea-
sured relative to an oracle which answers queries about
the matroids. The weighted matroid intersection prob-
lem can be solved in strongly polynomial time, even
in an oracle model. The most efficient strongly poly-
nomial algorithm is due to Brezovec et al. [2]; it uses
O(nr) oracle calls and has running time Õ(nr2), where
n is the size of the ground set, and the matroids have
rank r. (These terms are defined in Section 2.) For an

∗Supported by a Natural Sciences and Engineering Research
Council of Canada PGS Scholarship, by NSF contract CCF-
0515221 and by ONR grant N00014-05-1-0148. This work was
performed while visiting the University of Waterloo and Microsoft
Research.

important class of matroids, known as linear matroids,
one can devise more efficient algorithms that work di-
rectly on a matrix rather than via an oracle. Gabow and
Xu [12] devised an algorithm for linear matroids which
uses fast matrix multiplication and obtains a running
time of Õ(nr1.77 log W). The exponent 1.77 is due to
a parameter-balancing step in their analysis, and one is
tempted to conjecture that it could be improved. For
example, if n = r, their bound is Õ(n2.77 log W), al-
though O(nω log W) seems to be a more natural bound.
Throughout this paper, ω < 2.38 denotes a value such
that two n×n matrices can be multiplied in time O(nω).

For the unweighted linear matroid intersection
problem, somewhat faster algorithms are known.
Gabow and Xu show that the unweighted version of
their algorithm has runtime O(nr1.62). The present au-
thor recently obtained [14] an algorithm1 that has run-
time Õ(nrω−1) = Õ(nr1.38). The latter algorithm uses
randomized algebraic techniques that have been fruit-
ful in other recent work [22, 26, 27]. Until recently,
it was not known how to apply these algebraic tech-
niques efficiently to weighted problems. The difficulty
can be understood by considering two classical methods
for weighted combinatorial optimization problems.

• Primal-dual methods. These typically intersperse
primal updates with dual updates. In contrast, al-
gebraic methods tend to be efficient when many
primal updates can be performed in a large batch.
Thus primal-dual and algebraic methods seem
largely incompatible.

• Primal augmentation methods. These methods
typically guarantee optimality of the primal solu-
tion while carefully increasing its size (e.g., using
shortest augmenting paths). It is difficult2 to aug-
ment the primal in large batches while maintaining
optimality, and thus it is difficult to apply algebraic
techniques.

1Our unweighted algorithm [14] requires an addition technical
assumption: the two given matroids must be represented over the
same field. This assumption cannot be satisfied for all matroids,
but it is satisfied for the large classes of matroids that typically
arise in applications.

2The notion of 1-optimality has been useful for this task [11].

Traditionally, the most successful way to use alge-
braic methods for weighted optimization problems is to
represent the weights using polynomials. This method
has been used in classical papers, e.g., the work of Karp
et al. [19] and Mulmuley et al. [23] on parallel matching
algorithms. Working with large polynomials is very effi-
cient in a parallel setting because the polynomial manip-
ulations are easily parallelized. It is significantly more
challenging to manipulate polynomials efficiently in a
sequential setting. Naively extending an algorithm to
work with univariate polynomials instead of numbers
typically decreases its performance by a factor linear in
the polynomials’ degree. This increase in running time
is usually prohibitive.

Fortunately, a powerful algorithmic tool was re-
cently developed for computing with matrices whose
entries are univariate polynomials. This tool, due to
Storjohann [29], allows one to compute the determinant
of an n×n matrix A whose entries are univariate polyno-
mials of degree W in time Õ(nωW 1+ε). In fact, Storjo-
hann shows that the same running time suffices to solve
a linear system Ax = b for x. (We will use this more
general algorithm crucially in Section 6.2.)

While Storjohann’s tool is certainly powerful, it is
not immediately clear how it can be used in algebraic
algorithms for combinatorial optimization problems.
For example, the recent unweighted algorithms [22, 14]
must compute a matrix inverse (which is more difficult
than solving a linear system), and furthermore must
sequentially apply numerous updates to this inverse
matrix. So it is not obvious whether Storjohann’s tool
can be applied in this setting.

1.1 Sankowski’s Approach Sankowski [27] re-
cently showed that Storjohann’s tool can indeed be used
to solve the weighted bipartite matching problem effi-
ciently. His method relies on some nice insights con-
cerning the dual problem (weighted vertex cover). We
now briefly summarize his method.

(S1): Given an optimum dual solution, one can
compute an optimum primal solution using an
unweighted matching algorithm in O(nω) time [22].

(S2): Finding an optimum dual amounts to solving a
sequence of shortest path computations.

(S3): Each shortest path computation can be per-
formed by solving a weighted bipartite matching
problem on a certain perturbed graph, which is
slightly different than the original graph. Here,
one need not construct an optimum solution to the
matching problems, only the optimum weight.

(S4): Storjohann’s determinant algorithm easily allows
one to compute the weight of an optimum solu-
tion. In fact, Storjohann’s algorithm can simulta-

neously compute the optimum weight for numerous
perturbed graphs.

Using these ideas, Sankowski shows that Õ(nωW 1+ε)
time suffices to compute a maximum weight bipartite
matching on a graph with n vertices.

1.2 Our Results While Sankowski’s approach is
quite clever, it is unfortunately difficult to apply to other
problems. For example, it is still unknown whether the
approach can be applied to non-bipartite matching, a
natural extension of bipartite matching.

This paper extends Sankowski’s approach in a dif-
ferent direction: we consider the matroid intersection
problem, which is another natural extension of bipar-
tite matching. We give a new algorithm which solves
weighted matroid intersection in time Õ(nrω−1W 1+ε),
where n is the size of the ground set, r is the maximum
rank of the two matroids, the weights are non-negative
integers, and W is their maximum value. The matroids
must be linear and represented over the same field. Our
result gives the first improvement of the Õ(nr1.77 log W)
bound of Gabow and Xu mentioned above, assuming
that W is small, say W = O(r0.38).

Our algorithm is based on Sankowski’s method
mentioned in Section 1.1. Applying this method to the
matroid intersection problem is non-trivial, and there
are several technical obstacles that we must overcome.
(S1): Given an optimum dual solution, how can one

construct an optimum primal solution? This step is
more difficult for matroid intersection than for bi-
partite matching because the duality framework for
matroid intersection is much more complicated. We
resolve this difficulty using some classical matroid
lemmas, and give an efficient algorithm based on
fast matrix multiplication techniques.

(S3): How can one construct an optimum dual solution
using perturbed instances? This step is more
difficult for matroid intersection than for bipartite
matching because when one augments or modifies
a matroid intersection solution, one must take care
to ensure than independence is not violated. We
resolve this difficulty with a mixture of new and
classical technical lemmas.

(Sparsity): The algebraic approach for matroid inter-
section described in [14] involves computations on
certain sparse matrices. However, Storjohann’s tool
assumes that matrices are dense, so it is unclear
whether this tool can yield the desired level of ef-
ficiency. We resolve this difficulty first by reformu-
lating the matroid intersection problem as an “in-
dependent assignment problem”, then by employing
some linear algebra tricks which enable the use of
Storjohann’s tool.

2 Preliminaries

If S is a set, S + t denotes S ∪ {t}. If M is a matrix, a
submatrix containing rows S and columns T is denoted
M [S, T]. A submatrix containing all rows is denoted
M [∗, T]. The ith row (column) of M is denoted Mi,∗
(M∗,i). An entry of M is denoted Mi,j . If x is a vector,
its ith component is denoted xi or x(i). If w is a vector
indexed by S and T ⊆ S then w(T) :=

∑
s∈T w(s).

2.1 Matroids A matroid is a combinatorial object
defined on a ground set S. There are several important
ancillary objects relating to matroids, any one of which
suffices to characterize matroids. Below we list those
objects that play a role in this paper, and we use “base
families” to define matroids. For further details, see
Schrijver [28] or Murota [24].

Base family. This non-empty family B ⊆ 2S satisfies
the axiom:

Let B1, B2 ∈ B. For each x ∈ B1 \ B2,
there exists y ∈ B2 \ B1 such that B1 −
x + y ∈ B.

A matroid can be defined as a pair M = (S,B),
where B is a base family over S. A member of B is
called a base. It follows from the axiom above that
all bases are equicardinal. This cardinality is called
the rank of the matroid M.

Independent set family. This family I ⊆ 2S is defined
as I = { I : I ⊆ B for some B ∈ B }. A member
of I is called an independent set. Any subset of
an independent set is clearly also independent, and
a maximum-cardinality independent set is clearly a
base.

Rank function. This function, rank : 2S → N, is
defined rank(T) = maxI∈I, I⊆T |I|. A maximizer
of this expression is called a base for T in M. A set
I is independent iff rank(I) = |I|.

Since all of the objects listed above can be used to
characterize matroids, we sometimes write M = (S, I),
or M = (S, I,B), etc. To emphasize the matroid
associated to one of these objects, we often write BM,
rankM, etc.

A linear representation over F of a matroid M =
(S, I) is a matrix Q over F with columns indexed by
S, satisfying the condition that Q[∗, I] has full column-
rank iff I ∈ I. There do exist matroids which do not
have a linear representation over any field. However,
many interesting matroids can be represented over some
field; such matroids are called linear matroids.

Given a matroid M = (S, I,B), there are several
interesting ways to construct new matroids.

Restriction. The matroid M|T has ground set T and
independent sets { I : I ∈ IM and I ⊆ T } .

Direct Sum. Let M1 = (S1, I1) and M2 = (S2, I2)
be two matroids where S1 ∩ S2 = ∅. Their direct
sum, denoted M1⊕M2, has ground set S1∪S2 and
independent sets

IM1⊕M2 = { I1 ∪ I2 : I1 ∈ I1 & I2 ∈ I2 } .

Coloop addition. For any t 6∈ S, we define a new
matroid M′ = (S + t,B′) such that B′ =
{ B + t : B ∈ B }. The element t is called a coloop
in M′. More generally, an element is a coloop of a
matroid if it is contained in every base.

Parallel addition. For any s ∈ S and t 6∈ S, we define
a new matroid M′ = (S + t, I ′) in which t and s are
parallel. That is, I ⊆ I ′ and whenever I ∈ I and
I 3 s, we also have I − s + t ∈ I ′. Every I ∈ I ′
contains at most one of s and t.

Contraction. The contracted matroid M/T has ground
set S \T . To define this matroid, first fix a base BT

of T in M. (So rankM(T) = rankM(BT).) The
base family of M/T is defined as: B ∈ BM/T iff
B ∪BT ∈ BM. The rank function of M/T satisfies:
rankM/T (X) = rankM(X ∪ T)− rankM(T).

The class of linear matroids is closed under all of
these operations.

2.2 Matroid Intersection Suppose we are given
two matroids M1 = (S,BM1) and M2 = (S,BM2) which
have the same rank r, and a vector w ∈ NS specifying
weights on the ground set. A set B ⊆ S is called a
common base if B ∈ BM1∩BM2 . A common independent
set is a set I ∈ IM1 ∩ IM2 . A common independent set
I is called extreme if it has maximum weight amongst
all common independent sets of cardinality |I|.

The matroid intersection problem3 is to find an ex-
treme common base B. In the context of the matroid
intersection problem, it is convenient to use the short-
hand B1 instead of BM1 , and rank1 instead of rankM1 ,
etc.

2.3 Duality We now consider the intersection
problem for two matroids M1 and M2 which have a
common base. As before, let w be a weighting of the
ground set. There are several duality notions for the
matroid intersection problem. A weight splitting [8] is

3The problem is usually defined as finding a common indepen-
dent set rather than a common base, although the two problems
are equivalent. The distinction is similar to maximum matching
vs. perfect matching. For the purposes of this paper, the formu-
lation in terms of bases is more convenient.

a pair of vectors (w1, w2) such that w = w1 + w2. An
optimum weight splitting is one satisfying the following
property: B is an extreme common base iff, for both
i ∈ {1, 2}, B is a maximum weight base for Mi with re-
spect to weight vector wi. An optimum weight splitting
(w1, w2) necessarily exists; furthermore, if w is integer,
then an optimum weight splitting exists with both w1

and w2 integer.

3 Algorithm Overview

A high-level overview of our algorithm is given below.
Each step is explained further in a later section of the
paper. The steps are best understood as a sequence of
reductions, so the subsequent sections explain them in
reverse order.
Input: Two linear matroids M1 and M2 and a weight

vector w. The matroids are represented as r × n
matrices Q1 and Q2 over the same field F.

Step A: Define a certain family of perturbed matroid
intersection instances. Compute the maximum
weight of a common base for all perturbed instances
in Õ(nrω−1W 1+ε) time. (Section 6)

Step B: Using the maximum weights for these per-
turbed instances, compute an optimum weight split-
ting (w1, w2) for the original problem. (Section 5)

Step C: Given an optimum weight splitting, compute
an optimum primal solution (i.e., an extreme com-
mon base B) in Õ(nrω−1) time. (Section 4)

4 Step C: Optimum Primal from Optimum
Weight Splitting

Suppose that we are given an optimum weight splitting
(w1, w2). We wish to find an extreme common base for
M1 and M2. From the definition of an optimum weight
splitting, we know that it suffices to find a set B ⊆ S
such that

• B is a common base for M1 with maximum weight
with respect to w1, and

• B is a common base for M2 with maximum weight
with respect to w2.

How can we find such a set B? This task is made quite
easy by the following useful lemma.

Lemma 1. Let M = (S,B) be a matroid and let w ∈ RS

be a weighting of S. Define Bw to be the set of maximum
weight bases, i.e., Bw := arg maxB∈B w(B). Then
Mw := (S,Bw) is also a matroid.

Proof. Edmonds [6, p130] or Cook et al. [4, p287]. ¤
So to find our desired set B, it suffices to find any

common base of Mw1

1 and Mw2

2 . This is an unweighted

matroid intersection problem, which can be solved in
O(nrω−1) time [14]. Now the question remains: how is
Mw constructed, and can this be done efficiently?

The length of w is n = |S|, but suppose that it has
only k distinct weights w1 > · · · > wk. Define a nested
sequence of sets ∅ = W0 ⊂ W1 ⊂ · · · ⊂ Wk = S as
follows: Wi := { s ∈ S : w(s) ≥ wi }. Define MWi

:=
(M/Wi−1)|Wi. It can be shown that Mw is precisely the
direct sum

⊕k
i=1 MWi . As remarked earlier, the class of

linear matroids is closed under contraction, truncation,
and direct sums. Thus Mw is actually linear.

The remainder of this section shows that a linear
representation of Mw can be efficiently computed. We
begin with some facts concerning representations.

Fact 2. Let M be a matroid and let Q be a representa-
tion of M. Any matrix obtained from Q by elementary
row operations is also a representation of M.

Fact 3. Let M = (S, I) be a matroid and let Q be a
representation of M. Let T ⊆ S be arbitrary. Then
Q[∗, T] is a representation of M |T .

Fact 4. Let M = (S, I) and M′ = (S′, I ′) be matroids
on disjoint ground sets. Let Q and Q′ respectively be
representations of M and M′ over the same field. Then(

Q 0
0 Q′

)
is a representation of M⊕M′.

Lemma 5. Let M = (S, I) be a matroid represented
by a matrix Q with row-set R and column-set S. Let
T ⊆ S be arbitrary, and let Q[RT , BT] be a maximum-
rank square submatrix of Q[∗, T]. Then

Q̂ := Q[RT , T]−Q[RT , BT] ·Q[RT , BT]−1 ·Q[RT , T]

is a representation of M/T .

Let us restate this lemma more visually. Initially,
the matrix Q has the form

D?B

C?A

BT

T

RT

T

Now suppose that we use the submatrix A to eliminate
the entries beneath it. We obtain the matrix

D-BA-1C

C?A

BT

T

RT

T

The lemma asserts that D−BA−1C is a representation
of M/T . Stated differently, suppose that we perform
Gaussian elimination on Q, where the columns in T are
used for pivoting before the columns in T . The resulting
matrix has the form

Q2

CQ1

BT

T

RT

T

But by Fact 2 and Lemma 5, Q1 and Q2 are represen-
tations for M |T and M/T respectively.

Now consider our earlier problem in which we have
a matroid M = (S, I) and a nested sequence of sets
W1 ⊂ · · ·Wk = S. We have a linear representation
Q for M and we wish to compute a representation of
Mw. Suppose we perform Gaussian elimination on Q,
ensuring that we pivot on columns in Wi before any
columns in Wj \Wi if j > i. The resulting matrix has
the form

Q2

?
?
?
Qk

?Q1

W1

W2

Wk

An inductive argument shows that Qi represents
(M/Wi−1)|Wi = MWi for all 1 ≤ i ≤ k. Moreover,
these matrices Q1, . . . , Qk can all be constructed in time
O(nrω−1), since this is the time required by Gaussian
elimination. Finally, let Qw be the matrix

Q2

Qk

Q1

By Fact 4, this is a representation of
⊕k

i=1 MWi , which
is precisely Mw. Thus we have shown that computing
Qw requires only O(nrω−1) time.

5 Step B: Optimum Weight Splitting from
Perturbed Instances

In this section, we describe a family of “perturbed
instances” for which the weights of their respective
optimum solutions yield an optimum weight splitting
for the original instance.

1
0

1
0

0
1M1

a b c

1 1 1
1
0

1
0

10
01

S S'
z

f

M1(f)

a b c a' b' c'

0
1

1
0

0
1M2

a b c
0
1

0
1

1
0

0
1

1
0

0
1

1
M2*

S S'
za b c a' b' c'

Figure 1: An example of the perturbed matroids con-
structed in Section 5. Linear representations of M1 and M2

are shown, together with representations of a matroid M1(f)
and M∗

2. Note that {a, c} is a common base of M1 and M2,
and that {a, c′, z} is a common base of M1(c) and M∗

2,

There are n perturbed versions of M1, denoted
{ M1(f) : f ∈ S }, and there is one perturbed version
of M2, denoted M∗

2. All perturbed matroids have the
ground set S ∪ S′ + z, where S′ is a copy of S and z
is a single new element. The original weight vector w
on the ground set S is extended to a weight vector on
S ∪ S′ + z by giving all new elements weight zero.

The matroid M1(f) has the base family

{ B+s′ : ∀B ∈ BM1 and ∀s′ ∈ S′ } ∪
{ B−f+z+s′ : ∀s′ ∈ S′ and ∀B s.t. f ∈ B ∈ BM1 } .

In other words, a base of M1(f) is simply a base of M1

which must additionally contain exactly one element of
S′, and which can contain either f or z but not both.
This is indeed a matroid since it can be constructed
by the coloop addition and parallel addition operations
mentioned in Section 2.

The matroid M∗
2 has bases defined as follows. Given

any base B of M2, we must add the element z, and we
may replace any s ∈ B with its primed-counterpart s′.
In other words, the element z is a new coloop, and each
element s′ is chosen to be parallel to s.

For convenience, let w(M1 ∩ M2) now denote the
maximum weight of a common base in M1 and M2

under weight function w. The key property of the
perturbed matroids lies in the following theorem.

Theorem 6. Define a vector w1 ∈ ZS as follows:
w1(f) = w(M1 ∩ M2) − w(M1(f) ∩ M∗

2). Define
w2 = w − w1. Then (w1, w2) constitute an optimum
weight splitting for M1 and M2 with weight vector w.

6 Step A: Solving the Perturbed Instances

The preceding section showed that we can construct an
optimum dual solution by computing the values w(M1∩
M2) and w(M1(f) ∩M∗

2) for each f ∈ S. The purpose
of this section is to show that these computations can be
done efficiently. We will do so by viewing the matroid
intersection problem in the context of a somewhat more
general problem, known as the independent assignment
problem [18].

An instance of the independent assignment problem
is a tuple G = (S1∪S2, E, w,M1,M2) where (S1∪S2, E)
is a bipartite graph with E ⊆ S1 × S2; w ∈ NE is a
weight vector on the edges; and M1 = (S1,B1) and
M2 = (S2,B2) are matroids. For M ⊆ E, let ∂1M
denote the subset of S1 covered by M , and define ∂2M
similarly. A basic matching is one in which ∂1M ∈
B1 and ∂2 ∈ B2. The objective is to find a basic
matching such that the weight w(M) is maximized. The
maximum weight of a basic matching is denoted w(G).

Note that any weighted matroid intersection prob-
lem can be viewed as an instance of the independent
assignment problem. (Just ensure that each vertex of G
has degree 1.)

Given G = (S1 ∪ S2, E, w,M1,M2) and an edge
(u, v) in G, the contracted problem G/(u, v) is obtained
by deleting the vertices u and v (and their incident
edges), truncating w appropriately, contracting u in M1

and contracting v in M2.

6.1 The Independent Assignment Problem G
for Perturbed Instances
We now define a specific instance G of the independent
assignment problem which captures the intersection
problem for matroids M1(f) and M∗

2. Let S1 and S2 be
disjoint copies of S, i.e., each s ∈ S appears as s1 ∈ S1

and s2 ∈ S2. The underlying bipartite graph has left-
vertices S1 + r and right-vertices S2 + z. The edges of
this graph are as follows.

• For each s ∈ S, add edge (s1, s2) with weight ws.
• For each s ∈ S, add edge (r, s2) with weight zero.
• For each s ∈ S, add edge (s1, z) with weight zero.

The matroid associated with S1 + r is Mr
1, which is

obtained by adding r as a new coloop to M1. Similarly,
the matroid associated with S2 + z is Mz

2, obtained by
adding z as a new coloop to M2.

The motivation for constructing this instance G is
demonstrated by the following lemma — if we contract
an edge (f1, z) and then compute the optimum weight
of a basic matching in the resulting instance, this
determines w

(
M1(f) ∩M∗

2

)
.

Lemma 7. w
(
G/(f1, z)

)
= w

(
M1(f) ∩M∗

2

)
.

6.2 Connection to Linear Algebra

In this section, we show how to efficiently compute the
values w

(
G/(f1, z)

)
for each f ∈ S. The key idea

is to use a matrix introduced in previous work [14]
that relates to the unweighted independent assignment
problem, which is also known as the bipartite matroid
matching problem.

Let n now denote the number of vertices on each
side of G, and let r now denote the rank of the associated
matroids. That is, we now have n = |S| + 1 and
r = rankM1 + 1. For each edge (i, j) in G, associate
an indeterminate ti,j . Define an n× n matrix T where
Ti,j = ti,j if (i, j) is an edge, and Ti,j is zero otherwise.
Let Q1 be an r×n matrix whose columns represent M1

over a field F. Also, let Q2 be a n × r matrix whose
rows represent M2 over F. Define Z to be the following
matrix:

Z =

Q1

Q2 I
I T

 ,

where the submatrices I are the identity matrix of size
n × n. It is known that Z is non-singular iff G has
a basic matching [14]. Now define N = Q1TQ2 and
Q̃ = Q2N

−1Q1. It also follows from [14] that Q̃v,u 6= 0
iff there exists a basic matching containing the edge
(u, v).

These results can be generalized to include weights
by the standard polynomial technique. Let q be a new
indeterminate. We redefine T so that Ti,j = ti,j · qw(i,j)

if (i, j) is an edge. The determinant of Z is now
a polynomial in q, and the maximum degree of q in
this polynomial is the maximum weight of a basic
matching. Furthermore, assuming that Q̃v,u is non-
zero, w

(
G/(u, v)

)
is precisely the maximum degree of

q in the polynomial (detZ) · Q̃v,u. This fact is the key
to the algorithm: the desired polynomials w

(
G/(f1, z)

)

can all be computed from the zth row of Q̃.

6.3 Computing Q̃z,∗ The first step of our compu-
tation is to compute det Z. Standard manipulations
show that det Z = det N , so we turn our attention to
computing N efficiently. We show that this can be done
by a randomized algorithm in Õ(nrω−1W 1+ε) time. By
standard arguments, substituting random values for the
indeterminates ti,j does not affect the result of our com-
putation, with high probability. The resulting matrices
only involve the indeterminate q. We now claim that
computing TQ2 requires only O(nr) time. This follows
because T has only O(n) non-zero entries (since G has
only O(n) edges). Also, the entries of T and Q2 are all
monomials, so all polynomial manipulations are trivial
during this step.

Next, consider computing N = Q1(TQ2). We claim
that this requires only time Õ(nrω−1W). Suppose ini-
tially that Q1 and TQ2 have numeric entries. The
matrix Q1 has size r × n and the product TQ2 has
size n × r. Such matrices can be multiplied in time
O(n

r rω) = O(nrω−1), by working with r × r blocks.
Since the entries of Q1 and TQ2 are actually polyno-
mials of degree at most W , each arithmetic operation
during matrix multiplication actually takes time Õ(W)
(e.g., using the FFT). Therefore Õ(nrω−1W) time suf-
fices to compute N . The size of N is r × r, so Storjo-
hann’s subroutine can compute det N = det Z in time
Õ(rωW 1+ε). The highest degree of q in det Z is the
value of w(M1 ∩M2). As we recall, this value is also
needed by the algorithm (cf. Theorem 6).

The next step of our computation is to com-
pute the zth row of Q̃. This row can be written as(
(Q2)z,∗N−1

)
Q1 The vector v = (Q2)z,∗N−1 can be

computed in Õ(nrω−1W 1+ε) time using Storjohann’s al-
gorithm for solving linear systems. Note that the entries
of v are rational functions for which the numerators and
denominators are polynomials in q of degree at most
rW . At this point, we can eliminate the denominators:
we eventually need to multiply the entries of Q̃z,∗ by
det Z, and doing so now allows us to work with polyno-
mials rather than rational functions in the subsequent
steps. The time for this computation is only Õ(nrW)
since each entry of v is a polynomial of degree at most
rW (as is det Z), and v has n entries.

Let the resulting vector be denoted v′ = det Z ·v. It
remains to compute v′ ·Q1. Recall that v′ is a row vector
of length r and that Q1 has size r × n. Computing the
product v′ ·Q1 naively requires time O(nr2W), since the
entries of v′ have could have degree 2rW .

The following simple trick enables the use of fast
matrix multiplication to compute v′ · Q1 more quickly.
Let us write the ith entry of v′ more explicitly as
v′i =

∑2rW
j=0 αj,iq

j . Let A be the (2rW +1) × r matrix
defined by Aj,i = αj,i, and let ~q be the row vector
of length (2rW +1) defined by ~qj = qj . Then v′ =
~q · A. Now we observe that the product A · Q1 may
be computed in O(nrω−1W) time, working with r × r
blocks. Multiplying by ~q is clearly just a trivial syntactic
transformation. Thus, in total, Õ(nrω−1W 1+ε) time
suffices to compute ~q · A ·Q1 = v′ ·Q1 = (det Z) · Q̃z,∗.
By our preceding discussion, the maximum degree of
(det Z) · Q̃z,f is w

(
G/(f1, z)

)
, so we have shown that

these values can all be efficiently computed.

Acknowledgements

I would like to thank Joseph Cheriyan and Jim Geelen
for instigating the work on this project, and for con-
tributing several important ideas. I also thank Mohit
Singh for generously helping to work through some of
the more complicated technical steps.

References

[1] M. Aigner and T. A. Dowling. Matching theory for combi-
natorial geometries. Transactions of the American Mathe-
matical Society, 158(1):231–245, July 1971.

[2] C. Brezovec, G. Cornuéjols, and F. Glover. Two algorithms
for weighted matroid intersection. Mathematical Program-
ming, 36:39–53, 1986.

[3] P. Chalasani and R. Motwani. Approximating capacitated
routing and delivery problems. SIAM Journal on Comput-
ing, 26(6):2133–2149, 1999.

[4] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and
A. Schrijver. Combinatorial Optimization. Wiley, 1997.

[5] J. Edmonds. Submodular functions, matroids, and cer-
tain polyhedra. In R. Guy, H. Hanani, N. Sauer, and
J. Schönheim, editors, Combinatorial Structures and Their
Applications, pages 69–87. Gordon and Breach, 1970.

[6] J. Edmonds. Matroids and the greedy algorithm. Mathe-
matical Programming, 1:127–136, 1971.

[7] J. Edmonds. Matroid intersection. In P. L. Hammer, E. L.
Johnson, and B. H. Korte, editors, Discrete Optimization I,
volume 4 of Annals of Discrete Mathematics, pages 39–49.
North-Holland, 1979.

[8] A. Frank. A weighted matroid intersection algorithm.
Journal of Algorithms, 2(4):328–336, 1981.

[9] S. Fujishige. A primal approach to the independent assign-
ment problem. Journal of the Operations Research Society
of Japan, (20):1–15, 1977.

[10] S. Fujishige. Submodular Functions and Optimization,
volume 58 of Annals of Discrete Mathematics. Elsevier,
second edition, 2005.

[11] H. N. Gabow and R. E. Tarjan. Faster scaling algo-
rithms for network problems. SIAM Journal on Computing,
18(5):1013–1036, Oct. 1989.

[12] H. N. Gabow and Y. Xu. Efficient theoretic and practical
algorithms for linear matroid intersection problems. Journal
of Computer and System Sciences, 53(1):129–147, 1996.

[13] M. X. Goemans. Minimum bounded degree spanning trees.
In Proceedings of the 47th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), 2006.

[14] N. J. A. Harvey. Algebraic structures and algorithms for
matching and matroid problems. In Proceedings of the
47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 2006.

[15] N. J. A. Harvey, D. R. Karger, and K. Murota. Deterministic
network coding by matrix completion. In Proceedings of
the Sixteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 05), pages 489–498, 2005.

[16] R. Hassin and A. Levin. An efficient polynomial time ap-
proximation scheme for the constrained minimum spanning
tree problem using matroid intersection. SIAM Journal on
Computing, 33(2):261–268, 2004.

[17] M. Iri. Applications of matroid theory. In A. Bachem,
M. Grötschel, and B. Korte, editors, Mathematical Program-
ming: The State of the Art, pages 158–201. 1983.

[18] M. Iri and N. Tomizawa. An algorithm for finding an opti-
mal “independent assignment”. Journal of the Operations
Research Society of Japan, 19:32–57, 1976.

[19] R. M. Karp, E. Upfal, and A. Wigderson. Constructing a
perfect matching is in random NC. Combinatorica, 6(1):35–
48, 1986.

[20] S. Krogdahl. A combinatorial proof for a weighted matroid
intersection algorithm. Technical Report Computer Science
Report 17, Institute of Mathematical and Physical Sciences,
University of Tromsø, 1976.

[21] E. L. Lawler. Matroid intersection algorithms. Mathemati-
cal Programming, 9:31–56, 1975.

[22] M. Mucha and P. Sankowski. Maximum matchings via
Gaussian elimination. In Proceedings of the 45th Annual
IEEE Symposium on Foundations of Computer Science
(FOCS), pages 248–255, 2004.

[23] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani. Matching
is as easy as matrix inversion. Combinatorica, 7(1):105–113,
1987.

[24] K. Murota. Matrices and Matroids for Systems Analysis.
Springer-Verlag, 2000.

[25] K. Murota. Discrete Convex Analysis. SIAM, 2003.
[26] P. Sankowski. Processor efficient parallel matching. In

Proceedings of the 17th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 165–170, 2005.

[27] P. Sankowski. Weighted bipartite matching in matrix mul-
tiplication time. In Proceedings of the 33rd International
Colloquium on Automata, Languages and Programming
(ICALP), 2006.

[28] A. Schrijver. Combinatorial Optimization: Polyhedra and
Efficiency. Springer-Verlag, 2003.

[29] A. Storjohann. High-order lifting and integrality certifica-
tion. Journal of Symbolic Computation, 36:613–648, 2003.

A Proof of Lemma 5

Proof. Without loss of generality, we may assume that
the rank of M is |R|. It follows from the definition that
BT is a base for T in M. Thus,

B ∈ BM/T

⇐⇒ B ∪BT ∈ BM

⇐⇒ Q[∗, B ∪BT] is non-singular
⇐⇒ the Schur complement of Q[RT , BT]

in Q[∗, B ∪BT] is non-singular
(since Q[RT , BT] is itself non-singular)

This Schur complement is precisely the matrix

Q[RT , B]−Q[RT , BT] ·Q[RT , BT]−1 ·Q[RT , B],

which can be more conveniently written Q̂[∗, B]. Thus
we have shown that B ∈ BM/T iff Q̂[∗, B] is non-
singular. Thus Q̂ is a representation of M/T . ¤

B Proof of Theorem 6

Theorem 6 follows directly from the two lemmas given
in this section. Before starting the proofs, we need some
preliminary definitions and facts.

B.1 Preliminaries

Definition. Let M = (S, I) be a matroid and let
I ∈ I. The augmentation graph DM(I) = (S,A) is a
directed graph defined as follows. For arbitrary u ∈ I
and v 6∈ I, the graph has arcs:

(u, v) ∈ A (if I + v 6∈ I and I − u + v ∈ I).

Definition. Let M1 = (S, I1) and M2 = (S, I2)
be matroids, let w be a weight function on S, and let
I ∈ I1 ∩I2. The auxiliary graph DM1,M2(I) = (S, A) is
a directed graph whose arcs are formed by the union of
DM1(I) and the reverse of DM2(I). In other words, for
arbitrary u ∈ I and v 6∈ I, the graph has arcs:

(u, v) ∈ A (if I + v 6∈ I1 and I − u + v ∈ I1)
(v, u) ∈ A (if I + v 6∈ I2 and I − u + v ∈ I2).

The auxiliary graph has lengths on its vertices. A vertex
u ∈ S has length l(u) = w(u) if u ∈ I and l(u) = −w(u)
otherwise. The length of a path is the sum of the lengths
of the vertices that it traverses, excluding the initial
vertex.

Definition. In this paper, we will also use a slight
modification of the auxiliary graph. Define Dr

M1,M2
(I)

by adding to DM1,M2(I) a vertex r with arcs (r, e) for
each e ∈ I.

Definition. A potential function is a function p : S →
R satisfying l(v) ≥ p(v)− p(u) for each arc (u, v) in the
auxiliary graph.

The following theorem combines several results due
to Krogdahl [20], Fujishige [9], and Brezovec et al. [2].

Theorem 8.

• If there exists a potential function for the auxiliary
graph DM1,M2(I), then it has no negative-length
cycles.

• If DM1,M2(I) has no negative-length cycles then I
is extreme.

• Conversely, suppose that I is an extreme common
independent set for M1 and M2.

– Then neither DM1,M2(I) nor Dr
M1,M2

(I) has
any negative-length cycles.

– Let p(f) be the shortest-path distance from r
to f in Dr

M1,M2
(I). Then p is a potential

function.
– Define w1(f) to be p(f) if f ∈ I and w(f) +

p(f) otherwise. Define w2 = w − w1. Then
(w1, w2) form an optimum weight splitting.

B.2 The Lemmas In the subsequent lemmas, we
will use the following notation. Let I be a maximum-
weight common base for M1 and M2. Let I(f) be
a maximum-weight common base for M1(f) and M∗

2.
Note that |I(f)| = |I|+1. For the reader’s convenience,
we will illustrate the arguments by continuing the
example of Figure 1 in Figure 2.

Lemma 9. For each f ∈ S, w1(f) ≤ w(M1 ∩ M2) −
w(M1(f) ∩M∗

2).

Proof. Consider augmenting M1(f) and M∗
2 by adding

a new element t which is parallel in M1(f) to all
elements in S′ and parallel in M∗

2 to z. The weight
of t is 0. Call the resulting matroids M̃1(f) and M̃∗

2.
Note that I(f) and I + t are both common bases for
M̃1(f) and M̃∗

2. See Figure 2 (a)-(b).
By a lemma of Brualdi [28, Corollary 39.12a],

DM̃1(f)(I +t) has a perfect matching M1 on the vertices
in the symmetric difference (I +t)4I(f). Furthermore,
if we reverse the directions of the arcs in M1, it becomes
a perfect matching in DM̃1(f)(I(f)). (This useful
property is not mentioned in [28], but the proof directly
shows that this property holds.) See Figure 2 (c).
Also, there is a perfect matching M2 on (I + t)4 I(f)
in DM̃∗

2
(I(f)) whose reversal is a perfect matching in

DM̃∗
2
(I + t). See Figure 2 (d). The union M1 ∪ M2

forms a collection of vertex-disjoint directed cycles in
DM̃1(f),M̃∗

2
(I + t). See Figure 2 (e). Furthermore,

the reversal of M1 ∪ M2 is a collection of cycles in
DM̃1(f),M̃∗

2
(I(f)). Note that the length l(M1 ∪M2) =

l(I + t)− l(I(f)) = w(M1 ∩M2)− w(M1(f) ∩M∗
2).

Consider any cycle C in M1 ∪ M2 which avoids
the element t. We claim that the length l(C) is zero.
The only inbound arcs to S′ in DM̃1(f),M̃∗

2
(I + t) are

from t and the only outbound arc from z is to t.
Therefore C is disjoint from S′ + z, and hence is also
a cycle in DM1,M2(I). Since I is extreme, Theorem 8
implies C cannot have negative length. Now consider
the reversal of C. By our preceding discussion, it is a
cycle in DM̃1(f),M̃∗

2
(I(f)), although its length becomes

negated. Since I(f) is extreme, this resulting cycle
cannot have negative length, and hence C cannot have
positive length. Therefore we have proven the claim
that l(C) = 0.

So consider the unique cycle which traverses ele-
ment t. (Such a cycle must exist since t ∈ I + t but
t 6∈ I(f). Uniqueness follows since the cycles in M1∪M2

are vertex disjoint.) Removing element t, we obtain a
path in Dr

M1(f),M∗
2
(I) which begins at an element in S′

and ends at element z. See Figure 2 (e). Furthermore,
this path is disjoint from S′ ∪ z except for its starting
and ending vertices. We now adjust this path to obtain

1
0

1 1 1
1
0

1
0

0
1

1

S S'
z

f

M1(f)

a b c a' b' c' t

~

(a)

1
0
1

0
1

1
0

0
1

1
0

0
1

1
M2*

S S'
za b c a' b' c' t

~

(b)

a a'
c b'
t c'

z

b

(I+t)∆ I(c)

DM1(c)(I+t)~

a a'
c' b'
z c

t

b
DM1(c)(I(c))~

(I+t)∆ I(c)
(c)

a a'
c b'
t c'

z

b

(I+t)∆ I(c)

DM2
(I+t)~*

a a'
c' b'
z c

t

b
DM2

(I(c))

(I+t)∆ I(c)

~*

(d)

a a'

c b'

t c'

z

b
DM1(c),M2

(I+t)~*~

a a'

c b'

c'

z

b
DM1(c),M2

(I)*
r

r

(e)

Figure 2: Examples for Lemma 9. (a)-(b) We will use
the bases I = {a, c} ∈ BM1 ∩ BM2 and I(c) = {a, c′, z} ∈
BM1(c) ∩BM∗

2
. (c) Augmentation graphs. In DM̃1(c)(I + t),

the bold edges are M1. In DM̃1(c)(I(c)), the bold edges are
the reversal of M1. (d) More augmentation graphs. In
DM̃1(c)(I + t), the bold edges are the reversal of M2. In
DM̃1(c)(I(c)), the bold edges are M2. (e) M1 ∪M2 forms a
cycle. Removing element t, it forms a path in Dr

M1(f),M∗
2
(I).

one starting at r and ending at f .
First, consider the starting vertex. The second

vertex on the path belongs to I by definition of the
auxiliary graph. Since r has outbound arcs to all
vertices in I, we may simply replace the initial vertex
with r. This does not affect the length since the initial
vertex of a path does not contribute to its length.
The path length is w(M1 ∩ M2) − w(M1(f) ∩ M∗

2),
since element l(t) = 0 and, as argued above, all cycles
avoiding t have length 0.

Next, consider the ending vertex, namely z, and
the penultimate vertex, which we call e. We necessarily
have e ∈ I. There are two cases.

Case 1: f ∈ I. We claim that the only arc inbound
to z is (f, z). To see this, note that the existence of an
arc (g, z) where f 6= g ∈ I implies that I − g + z ∈
IM1(f). But f and z are parallel and f ∈ I, which is
a contradiction. So the claim is proven, and therefore
e = f . We simply delete the last vertex (namely z)
and obtain a path ending at f ; this does not affect the
length since l(z) = 0. Thus the shortest-path distance
from r to f is at most w(M1 ∩M2)−w(M1(f)∩M∗

2).
Case 2: f 6∈ I. Note that (e, z) is an arc by

definition of e, and that f and z are parallel in M1(f),
implying that (e, f) is an arc. We remove z from
the path and replace it with f . This decreases the
length of the path by w(f). Therefore the shortest-
path distance from r to f is at most w(M1 ∩ M2) −
w(M1(f) ∩M∗

2) − w(f). In other words, the shortest-
path distance from r to f , plus w(f), is at most
w(M1 ∩M2)− w(M1(f) ∩M∗

2).
Having analyzed these shortest path distances, we

now define the optimum weight splitting vector w1. Fol-
lowing Theorem 8, w1(f) is the shortest path distance
from r to f if f ∈ I. If f /∈ I then w1(f) is the shortest
path distance from r to f plus w(f). In both cases, this
quantity is at most w(M1 ∩M2)−w(M1(f) ∩M∗

2), so
the lemma is proven. ¤

Lemma 10. For each f ∈ S, w1(f) ≥ w(M1 ∩M2) −
w(M1(f) ∩M∗

2).

Proof. Deferred to the full version of the paper. ¤

C Proof of Lemma 7

Proof. “≤” direction: Suppose that M is a basic
matching for G/(f1, z). Let (z, t2) be the unique arc
incident with z in M . Define

B := { s : (s1, s2) ∈ M }+ t′ + z.

(Here, t′ is the member of S′ corresponding to t2 ∈ S2.)
Note that w(B) = w(M). We now show that B ∈
BM1(f) ∩ BM∗

2
, establishing the desired inequality.

∂1M ∈ BMr
1/f1

=⇒ ∂1M − r + f ∈ BM1

=⇒ ∂1M − r + z + t′ ∈ BM1(f)

(since f and z are parallel in M1(f))

=⇒ B ∈ BM1(f)

∂2M ∈ BMz
2/z

=⇒ ∂2M ∈ BM2

=⇒ ∂2M − t + t′ + z ∈ BM∗
2

(since t and t′ are parallel in M∗
2)

=⇒ B ∈ BM∗
2

“≥” direction: Suppose that B is a common base for
M1(f) ∩M∗

2. Note that |B ∩ S′| = 1, by definition of
M1(f). Let t′ be the unique element in B ∩ S′. Define

M := { (s1, s2) : s ∈ B ∩ S }+ (r, t2).

(Here, t2 is the member of S2 corresponding to t′ ∈ S′.)
Note that w(M) = w(B). We now show that M is a
basic matching for G/(f1, z), establishing the desired
inequality.

B ∈ BM1(f)

=⇒ B − z + f ∈ BM1(f)

=⇒ B − z + f − t′ ∈ BM1

=⇒ B − z − t′ ∈ BM1/f

=⇒ ∂1M ∈ BMr
1/f1

B ∈ BM∗
2

=⇒ B − t′ + t− z ∈ BM2

=⇒ ∂2M ∈ BMz
2/z ¤

