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Abstract— We give a method for estimating the empirical
Shannon entropy of a distribution in the streaming model of
computation. Our approach reduces this problem to the well-
studied problem of estimating frequency moments. The analysis
of our approach is based on new results which establish quantita-
tive bounds on the rate of convergence of Rényi entropy towards
Shannon entropy.

I. INTRODUCTION

The Problem. This work considers the following technical
problem. There is a vector A = (A1, . . . , An) ∈ Zn, initially
zero. We see a sequence of updates to this vector, each update
of the form “increment Ai by j”, where j = ±1. We see
m such updates, one-by-one, in a fixed order. After seeing
all updates, we wish to compute the empirical entropy of the
distribution A/ ‖A‖1. Assume for simplicity that A ≥ 0 at all
times.

This is a trivial problem, if we can afford to store the
entire vector A or the entire sequence of updates. The problem
becomes non-trivial if we allow ourselves significantly less
space. Can one estimate the entropy to within ε, using only
poly(1/ε, log n, log m) bits of space?

The Motivation. Why does this problem deserve study? One
application arises in the field of network anomaly detection.
Internet service providers’ business depends on providing good
quality of service to their users; they need to detect a wide
range of anomolous conditions quickly, so that corrective
action can be taken. The volume of traffic that ISPs process is
enormous, too much to be subjected to thorough scrutiny. In-
stead, lightweight methods are needed to give broad statistical
summaries of the general traffic distribution.

Let us consider a concrete example. One form of malicious
activity on the internet is port scanning, in which attackers
probe target machines, trying to find open ports which could
be leveraged for further attacks. In contrast, typical internet
traffic is directed to a small number of heavily used ports
for web traffic, email delivery, etc. Consequently, when a port
scanning attack is underway, there is a significant change in
the distribution of port numbers in the packets being delivered.
Such attacks can be detected by measuring the entropy of the
distribution of port numbers. See Lakhina et al. [12] and Xu
et al. [17] for further information about such problems and
methods for their solution.

The Model. The problem described above is based on a
model of computation in which algorithms see a sequence
of updates to an object and must estimate properties of that

object while using a very small amount of space. This model
of computation has become known as the streaming model of
computation. It has received much attention since the seminal
work of Alon, Matias and Szegedy [1]; Muthukrishnan [14]
gives a comprehensive survey. Our assumption that A ≥ 0 at
all times is known as the strict turnstile model.

The work of Alon et al. focuses on approximating the
αth frequency moment, defined to be ‖A‖α

α =
∑n

i=1 Aα
i , for

α ≥ 0. A sequence of papers [2], [10], [11], [16] established
a remarkable result: if ε > 0 is constant, then a (1 + ε)-
multiplicative approximation can be computed in poly(log n)
bits of space if 0 ≤ α ≤ 2, but Ω(n1−2/α−o(1)) space is
necessary for all α > 2.

Many other problems have been studied in the streaming
model, but estimating frequency moments remains the central,
and best-understood problem. It is worth pointing out that the
space lower bounds for computing frequency moments [2],
[16] are proven using information theoretic techniques. This is
a common approach for lower bounds in the streaming model.

The Precursors. Estimating empirical entropy in the stream-
ing model is a problem that has been studied in the recent
literature [3], [5], [6], [9], [18]. Two sorts of estimates are
typically of interest: multiplicative (1+ε) approximations, and
additive ε approximations. An attractive feature of additive
approximations is that they can be used to give additive
approximations of conditional entropy and mutual information.
For simplicity, this paper focuses on additive approximations;
the full version of this paper extends our techniques to give
multiplicative approximations as well.

The work of Chakrabarti et al. [5] yields an algorithm
using O(ε−2 log3 m) words1 of space to give an additive ε
approximation. However, their algorithm cannot handle dele-
tions: all updates must increment the value of some coordinate
Ai. In contrast, the algorithm of Bhuvanagiri and Ganguly
[3] can handle deletions, but the space required is roughly
O(ε−3 log7 m) words. Zhao et al. [18] give practical methods
for estimating the so-called entropy norm of a stream, defined
to be

∑n
i=1 Ai log Ai, where A is not normalized to be a

distribution.
Our Contributions. In this work, we give a clean reduction

from the entropy estimation problem to the problem of es-
timating frequency moments. Our algorithm is very simple,
and it gives an additive ε approximation of entropy using
Õ(ε−4 log4 m) words of space. Our algorithm works in the

1A word is a unit of storage containing log(n + m) bits of data.



strict turnstile model, or even the more general model in which
we only require that A ≥ 0 at the end of the stream. This is
the strongest model in which entropy estimation makes sense.
Thus, our algorithm improves on the result of Bhuvanagiri and
Ganguly, if ε is not too small. The full version of this paper
gives a more involved algorithm which further improves the
space requirements.

The basic idea of our algorithm is to estimate Rényi α-
entropy, for α ≈ 1, then to use this as an estimate of Shannon
entropy. The accuracy of this estimate is guaranteed by lemmas
that we prove which analyze the rate of convergence of Rényi
entropy towards Shannon entropy.

To our knowledge, no results on this rate of convergence
were previously known. Budimir et al. [4] and Dragomir [8]
give inequalities bounding the difference between Shannon
entropy and Rényi α-entropy, but these bounds diverge as
α → 1. Życzkowski [19] also states bounds relating Shannon
entropy to Rényi entropies, but some gaps in the proofs were
later discovered.

We remark that the algorithm of Zhao et al. [18] also
uses frequency moment estimation, although their algorithm
is intended for estimating the entropy norm, and seems to
only work for certain ranges of parameters.

II. INFORMATION THEORETIC RESULTS

Let x be a distribution on n elements. For convenience, we
will assume that all logarithms are natural (i.e., we measure
entropy in nats). For 0 ≤ α and α 6= 1, the Rényi α-entropy
is defined

Hα(x) =
1

1− α
log

( n∑

i=1

xα
i

)
.

When x is understood, we will simply write Hα. We also
define H1 = limα→1 Hα.

It is known that H1 equals Shannon entropy, which we
denote H(x) = −∑n

i=1 xi log xi. Our main technical result
is an analysis of the rate of convergence of Hα towards H as
α → 1.

Theorem 2.1: Let x ∈ Rn be a probability distribution
whose smallest positive value is at least 1/m, where m ≥ n.
Let 0 < ε < 1 be arbitrary. Define µ = ε/(4 log m) and
α = 1 + µ/

(
16 log(1/µ)

)
. Then

1 ≤ H1

Hα
≤ 1 + ε. (1)

Define ν = ε/(4 log n log m) and α = 1 + ν/
(
16 log(1/ν)

)
.

Then
0 ≤ H1 −Hα ≤ ε. (2)

The same result holds if we measure entropy in bits rather
than nats. The following result shows that the multiplicative
bound (Eq. (1)) is nearly tight, so long as ε is not too small.

Theorem 2.2: There exists a distribution x whose smallest
positive value is 1/m such that, for 10

log m < ε < 1 and α =
1 + ε

log m , we have

H1

Hα
≥ 1 + Ω(ε).

III. ALGORITHM

The following pseudocode describes our algorithm for esti-
mating Shannon entropy.

Algorithm 1. Our algorithm for estimating the empirical
Shannon entropy of a stream to within an additive error of
ε. For simplicity, assume that m is known in advance.

Set ν = ε/(4 log n log m), α = 1+ν/
(
16 log(1/ν)

)
, and

ε̃ = ε · (α− 1)
Process the entire stream:

Compute F̃α, a (1 + ε̃)-approximation of ‖A‖α
α

Compute ‖A‖1
Return log(F̃α/ ‖A‖α

1 )/(1− α)

To compute the estimate F̃α, we use the algorithm of Li
[13], which requires only O(ε̃−2) words of space. Computing
‖A‖1 is trivial since we assume the strict turnstile model.
Since ε̃ = Ω̃

(
ε2/(log n log m)

)
, the total space required by

our algorithm is Õ(ε−2 log2 n log2 m) words.
The accuracy of our estimates is ensured by the following

argument. Let x be the distribution A/ ‖A‖1. With constant
probability, F̃α = (1± ε̃) ‖A‖α

α. Then

1
1− α

log

(
F̃α

‖A‖α
1

)
=

1
1− α

log
(
(1± ε̃)

n∑

i=1

xα
i

)

= Hα(x) ± O
( ε̃

1− α

)

= H(x) ± O(ε).

The last line follows from Theorem 2.1.

IV. PROOFS

A. Preliminaries

Claim 4.1: The following inequalities hold.
• Let y ∈ R. Then 1− y ≤ e−y .
• Let 0 < y < 1. Then 1− y + y2/3 ≤ e−y .
• Let y > 0. Then e−y < 1− y + y2/2.
• Let 0 < y ≤ 1. Then ey < 1 + 2y.
• Let y > 0. Then 1− y ≤ log(1/y).
• Let 0 ≤ y ≤ 1/2. Then 1/(1− y) ≤ 1 + 2y.

Claim 4.2: Given any c ∈ (0, 1), we have
log x ≥ (x− 1) log(c)/(c− 1) for all x ∈ [c, 1].

Claim 4.3: Let y > 1. Then log(1− 1
y ) ≥ − 1

y − 1
y(y−1) .

Proof. We have

log(1− 1/y) = log((y − 1)/y) ≥ 1− y

y − 1

= − 1
y − 1

= − 1
y
− 1

y(y − 1)
,

(3)

the inequality via Claim 4.1. ¥

Claim 4.4: Let y > 1 and z > 0. Then

1− z

y
− z

y(y − 1)
≤ (1− 1/y)z ≤ 1− z

y
+

(z

y

)2

/2.



Proof. By Claim 4.1 and Claim 4.3,

(1− 1/y)z = ez log(1−1/y) ≥ 1 + z log(1− 1/y)

≥ 1− z

y
− z

y(y − 1)
.

On the other hand, Claim 4.1 also shows

(1− 1/y)z ≤ e−z/y ≤ 1− z/y + (z/y)2/2,

as required. ¥

Claim 4.5: Let 1 ≤ a ≤ b and let x ∈ Rn. Then
‖x‖b ≤ ‖x‖a ≤ n1/a−1/b ‖x‖b.

Claim 4.6: If 0 ≤ α ≤ β then Hα ≥ Hβ

Claim 4.7: If α > 1 then log
(
1/ ‖x‖α

)
< (α− 1) ·H1.

Proof. log
(
1/ ‖x‖α

)
= α−1

α Hα(x) < (α − 1) · Hα(x) ≤
(α− 1) ·H1(x). ¥

Claim 4.8: Let y = (y1, . . . , yn) and z = (z1, . . . , zn) be
probability distributions such that ‖y − z‖1 ≤ 1/2. Then

|H1(y)−H1(z)| ≤ ‖y − z‖1 · log
( n

‖y − z‖1
)
.

Proof. See Cover and Thomas [7, 16.3.2]. ¥

B. Proof of Theorem 2.1

Recall that x ∈ Rn is a distribution whose smallest positive
value is at least 1/m.

Lemma 4.9: Let α > 1, let ξ = ξ(α) denote 4(α−1)H1(x),
and let

e(α) = 2
(
ξ log n + ξ log(1/ξ)

)
.

Assume that ξ(α) < 1/4. Then Hα ≤ H1 ≤ Hα + e(α).
Proof. The first inequality follows from Claim 4.6 so

we focus on the second one. Define f(α) = log ‖x‖α
α and

g(α) = 1− α, so that Hα = f(α)/g(α). The derivatives are

f ′(α) =
∑n

i=1x
α
i log xi

‖x‖α
α

and g′(α) = − 1,

so limα→1 f ′(α)/g′(α) exists and equals H(x). Since
limα→1 f(α) = limα→1 g(α) = 0, L’Hôpital’s rule implies
that limα→1 Hα = H(x). A stronger version of L’Hôpital’s
rule is as follows.

Claim 4.10: Let f : R → R and g : R → R be
differentiable functions such that the following limits exist

lim
α→1

f(α) = 0, lim
α→1

g(α) = 0, lim
α→1

f ′(α)/g′(α) = L.

Let ε and δ be such that |α−1| < δ implies that |f ′(α)/g′(α)−
L| < ε. Then |α−1| < δ also implies that |f(α)/g(α)−L| < ε.

Proof. See Rudin [15, p.109]. 2

Thus, to prove our lemma, it suffices to show that
|f ′(α)/g′(α) − H1| < e(α). (In fact, we actually need
|f ′(β)/g′(β)−H1| < e(α) for all β ∈ (1, α], but this follows
by monotonicity of e(β) for β ∈ (1, α].)

A key concept in this proof is the “perturbed” probability
distribution x(α), defined by x(α)i = xα

i / ‖x‖α
α. We have the

following relationship.

f ′(α)
g′(α)

=
∑n

i=1x
α
i log(1/xi)
‖x‖α

α

=
∑n

i=1x
α
i

(
log(1/xi) + log ‖x‖α − log ‖x‖α

)

‖x‖α
α

=

(∑n
i=1x

α
i log(‖x‖α /xi)

)
−

(∑n
i=1x

α
i log ‖x‖α

)

‖x‖α
α

=
1
α

n∑

i=1

xα
i

‖x‖α
α

log

(
‖x‖α

α

xα
i

)
− log ‖x‖α

=
H1

(
x(α)

)

α
+ log(1/ ‖x‖α)

In summary, we have shown that∣∣∣∣∣
f ′(α)
g′(α)

− H1

(
x(α)

)

α

∣∣∣∣∣ ≤ log(1/ ‖x‖α) ≤ (α− 1) ·H1(x),

(4)
the last inequality following from Claim 4.7. To use this
bound, we observe that:∣∣∣∣

f ′(α)
g′(α)

−H1

(
x(α)

)∣∣∣∣

=

∣∣∣∣∣
f ′(α)
g′(α)

− H1

(
x(α)

)

α
+

(
1
α
− 1

)
H1

(
x(α)

)
∣∣∣∣∣

≤
∣∣∣∣∣
f ′(α)
g′(α)

− H1

(
x(α)

)

α

∣∣∣∣∣ + |1/α− 1| ·H1

(
x(α)

)

We substitute Eq. (4) into this expression, and use |1/α−1| ≤
α− 1 (valid since α ≥ 1). This yields:∣∣∣∣
f ′(α)
g′(α)

−H1

(
x(α)

)∣∣∣∣ ≤ (α−1) ·H1(x) + (α−1) ·H1

(
x(α)

)

(5)

Recall that our goal is to analyze |f ′(α)/g′(α) − H1(x)|.
We do this by showing that H1

(
x(α)

) ≈ H1(x), and that the
right-hand side of Eq. (5) is at most e(α). This is done using
Claim 4.8; the key step is bounding ‖x− x(α)‖1.

Claim 4.11: Suppose that 1 < α ≤ 1 + 1/(2 log n). Then
1/ ‖x‖α

α < 1 + 3(α− 1)H1(x).
Proof. From Claim 4.5 and ‖x‖1 = 1, we obtain 1/ ‖x‖α ≤

n1−1/α < nα−1. Our hypothesis on α implies that

α · log(1/ ‖x‖α) < α ·(α−1) log n < 2 ·(α−1) log n ≤ 1.
(6)

Thus
1

‖x‖α
α

= eα log(1/‖x‖α) < 1 + 2 · α log(1/ ‖x‖α)

< 1 + 3(α− 1)H1(x).

The first inequality is from Claim 4.1 and Eq. (6), and the
second from Claim 4.7. 2



Recall that ξ = 4(α− 1)H1(x).

Claim 4.12: ‖x− x(α)‖1 ≤ ξ.
Proof. To avoid the absolute values, we shall split the sum

defining ‖x− x(α)‖1 into two cases. For that purpose, let
S = { i : x(α)i ≥ xi }. Then

‖x− x(α)‖1
=

∑

i∈S

(
x(α)i − xi

)
+

∑

i 6∈S

(
xi − x(α)i

)

=
∑

i∈S

xi ·
(

xα−1
i

‖x‖α
α

− 1

)
+

∑

i 6∈S

xi ·
(

1− xα−1
i

‖x‖α
α

)

The first sum is upper-bounded using xα−1
i ≤ 1 and∑

i∈S xi ≤ 1. The second sum is upper-bounded using
‖x‖α

α ≤ 1 and 1− xα−1
i ≤ log

(
1/xα−1

i

)
(see Claim 4.1).

≤
(

1
‖x‖α

α

− 1

)
+ (α− 1)

∑

i6∈S

xi log(1/xi)

≤ 3(α− 1)H1(x) + (α− 1)H1(x),

using Claim 4.11. This completes the proof. 2

Thus, by our assumption that ξ(α) < 1/4, by Claim 4.8,
by Claim 4.12, and by the fact that x 7→ x log(1/x) is
monotonically increasing for x ∈ (0, 1/4), we obtain that

|H1(x)−H1(x(α))| ≤ ξ log n + ξ log(1/ξ).

Now we assemble the error bounds. Our result from Eq. (5)
yields

∣∣∣∣
f ′(α)
g′(α)

−H1(x)
∣∣∣∣

≤
∣∣∣∣
f ′(α)
g′(α)

−H1(x(α))
∣∣∣∣ + |H1(x)−H1(x(α))|

≤
(
(α− 1)H1(x) + (α− 1)H1(x(α))

)

+ |H1(x)−H1(x(α))|
≤ 2(α− 1)H1(x) + α · |H1(x)−H1(x(α))|
≤ 2

(
ξ log n + ξ log(1/ξ)

)

This completes the proof. ¥
We now use Lemma 4.9 to show that Hα ≈ H1, if α is

sufficiently small.

Proof (of Theorem 2.1). First we focus on Eq. (1). The lower
bound is immediate from Claim 4.6, so we show the upper-
bound. For an arbitrary µ ∈ (0, 1), we have

µ2 <
µ

2 log(1/µ)
< µ;

this follows since µ log(1/µ) < 1/2 for all µ. Let µ̃ =
µ/

(
2 log(1/µ)

)
. Then

µ̃ log(1/µ̃) < µ.

This follows since µ2 < µ̃ =⇒ 1/µ̃ < 1/µ2 =⇒
log(1/µ̃) < 2 log(1/µ).

The hypotheses of Theorem 2.1 give α = 1 + µ̃/8. Hence,

e(α) = 8(α− 1)H1

[
log n + log

(
1/

(
4(α− 1)H1

))]

≤ µ̃H1

[
log n + log

(
2/(µ̃H1)

)]

Since H1 ≥ (log m)/m for any distribution satisfying our
hypotheses, this is at most

≤ µ̃H1

(
log n + log(1/µ̃) + log m

)

≤ (log m)µH1 < (ε/2)H1,

since our hypotheses give µ = ε/(4 log m). Applying
Lemma 4.9, we obtain that

H1 −Hα ≤ (ε/2)H1

=⇒ (1− ε/2)H1 ≤ Hα

=⇒ H1

Hα
≤ 1

1− ε/2
≤ 1 + ε,

the last inequality following from Claim 4.1. This establishes
Eq. (1).

Let us now consider the above argument, replacing µ with
ν = ε/(4 log n log m). We obtain

e(α) ≤ (log m)νH1 ≤ ε/4,

since H1 ≤ log n. Thus, Eq. (2) follows directly. ¥

C. Proof of Theorem 2.2

We consider the very simple distribution with x1 := 1−1/m
and x2 := 1/m. The Shannon entropy is trivial to analyze.

H1(x) =
(

m−1
m

)
log

(
m

m−1

)
+ log m

m > log m
m (7)

Now recall that 10
log m < ε < 1 and α = 1 + ε

log m . We have

Hα = −
(

log m
ε

)
log

(
xα

1 + xα
2

)
.

To prove the theorem, the main task is to prove a lower bound
on log(xα

1 + xα
2 ). First, Claim 4.4 directly shows that

1− α

m
− α

m(m− 1)
≤ xα

1 ≤ 1− α

m
+

α2

2m2
. (8)

Next, by Claim 4.1, we have

xα
2 =

1
m1+ε/ log m

=
e−ε

m
≥ 1− ε + ε2/3

m
. (9)

Claim 4.13: log(xα
1 )/(xα

1 − 1) ≤ 1 + O(1/m).
Proof. Claim 4.3 implies that

log(xα
1 ) = α log(1− 1/m) ≥ − α

m
− α

m(m− 1)
.

On the other hand, Eq. (8) shows that

xα
1 − 1 ≤ − α

m
+

α2

2m2
.



We now upper bound log(xα
1 )/(xα

1 −1). (Note both numerator
and denominator are negative).

log(xα
1 )

xα
1 − 1

≤ −α/m− α/
(
m(m− 1)

)

−α/m + α2/(2m2)
=

1 + 1/(m− 1)
1− α/(2m)

≤ (
1 + 1/(m− 1)

)(
1 + α/m

)
,

as required. 2

Thus, by Eq. (8) and Eq. (9),

log(xα
1 + xα

2 )

≥ log

((
1− α

m
− α

m(m− 1)

)
+

(1− ε + ε2/3
m

))

≥ log

(
1 − ε− ε2/3

m
− ε

m log m
−O(1/m2)

)

We lower bound this using Claim 4.2, taking c = xα
1 and using

Claim 4.13 to lower bound log(c)/(c− 1).

≥
(
− ε− ε2/3

m
− ε

m log m
−O(1/m2)

)
(
1 + O(1/m)

)

≥ −ε

m

(
1− ε/3 +

1
log m

+ O
(
1/(εm)

))(
1 + O(1/m)

)

Thus

Hα(x) =
1

1− α
log(xα

1 + xα
2 )

= − log m

ε
· log(xα

1 + xα
2 )

≤ − log m

ε
·
(
−ε

m

(
1− ε

3
+

1
log m

+ O
(

1
εm

))

· (1 + O( 1
m )

)
)

=
log m

m

(
1− ε/3 +

1
log m

+ O
(
1/(εm)

))

· (1 + O(1/m)
)

=
log m

m

(
1− ε/3 +

1
log m

+ O
(
1/(εm)

))

Comparing this with Eq. (7) shows Hα(x) ≤ H1

(
1 − Ω(ε)

)
,

since ε > 10/ log(m).
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