Deterministic SkipNet

Nicholas J. A. Harvey® J. Ian Munro®

& Microsoft Research, Redmond, WA, USA.

nickhar@microsoft.com

bSchool of Computer Science, University of Waterloo, Waterloo, Ontario, Canada.
imunroQ@cs.uwaterloo. ca

Abstract

We present a deterministic scalable overlay network. In contrast, most previous over-
lay networks use randomness or hashing (pseudo-randomness) to achieve a uniform
distribution of data and routing traffic.

Key words: Data Structures, Distributed Computing, Overlay Networks

1 Introduction

Overlay networks are a useful technique for organizing nodes in a distributed
system. For most existing overlays, their primary purpose is to form a dis-
tributed hash table; examples include CAN [6], Chord [8], Pastry [7], and
Tapestry [9]. Support for locality in overlay networks has been shown to yield
improved efficiency and reliability. SkipNet [3] is an overlay, based on Skip
Lists [5], that incorporates locality. SkipNet differs from most other overlays
in that, like its Skip List predecessor, it organizes nodes and data objects pri-
marily by their string names, rather than by hashes of those names. The same
basic structure underlying SkipNet was independently invented by Aspnes and
Shah [2].

While SkipNet avoids the reliance on hashing that is common in most other
overlay networks, it is a randomized data structure, as Skip Lists are. Indeed,
most existing overlays depend on hashing or randomness for their construc-
tion. A natural extension of this existing work is to consider deterministic
overlays. This paper describes Deterministic SkipNet, a variant of the Skip-
Net overlay network that attains absolute bounds on routing performance,
node insertion/departure cost, and the number of routing pointers per node.

Preprint submitted to Elsevier Science 16 June 2003



Ring Ring Ring Ring Ring Ring Ring
0 1

000 001 010

Fig. 1. A SkipNet structure with k = 2.

The only other deterministic scalable overlay network that we know of is pre-
sented in [1]. Our work builds on, but is not an immediate consequence of, the
Deterministic Skip Lists due to Munro et al. [4].

2 Skip Lists and SkipNet

A Skip List [5] is an in-memory, sorted linked list in which some nodes are
augmented with higher-level pointers that skip over many list elements. Each
node chooses a height so that the probability of choosing height h is 1/2".
A pointer at level h points to the closest node to the right whose height is
at least h, and thus skips over 2" nodes in expectation. Skip Lists support
O(log N) searches, insertions and deletions with high probability, where N is
the number of list elements. Munro et al. [4] designed a deterministic variant
of Skip Lists by observing a correspondence between Skip Lists and 2-3 trees.

In SkipNet, every node has two IDs: a string name ID and a sequence of
random digits called a numeric ID. Each numeric ID digit is an integer in [0, k—
1], where k is a fixed parameter. As shown in Figure 1, all nodes are connected
at level 0 by a “root ring” that is sorted by the nodes’ name IDs. Additionally,
all nodes are members of higher level rings in which the routing pointers skip
over many nodes; these rings are also sorted by the nodes’ name IDs. All
nodes sharing a common numeric ID prefix of length h are members of the
same level h ring, which is labeled with their common prefix. Nodes maintain
routing pointers to their two neighbours in each ring. All SkipNet nodes have
O(log N) routing pointers with high probability, where N is the total number
of nodes. Furthermore searching by name ID, searching by numeric ID, and
node insertion all require O(log N) time, with high probability.



3 Deterministic SkipNet

In SkipNet, nodes’ numeric IDs are randomly chosen and are immutable. Since
the nodes” name IDs and numeric IDs determine the SkipNet structure, all
bounds on SkipNet operations are probabilistic. In contrast, Deterministic
SkipNet nodes” numeric IDs are deterministically chosen and adjusted during
node insertion/departure, as described in the following sections. Adjustments
to the numeric IDs are necessary in order to maintain the balanced properties
of the routing structure. Whereas SkipNet allows the numeric ID parameter
k to be arbitrary, Deterministic SkipNet fixes k& = 3. We leave generalization
of Deterministic SkipNet to arbitrary values of k for future work.

We first define some notation. Let Dj(n) denote the h'" digit of node n’s
numeric ID. Let L(n) denote the distance at level A — 1 from node n to its
left neighbour at level A (i.e., the closest node n' to the left at level h — 1 with
Dy(n') = Dp(n)). Ru(n) is defined symmetrically to the right. In SkipNet,
Ly(n) and Rp(n) are both O(k) in expectation, for all ~ and n. In contrast,
the fundamental invariant of Deterministic SkipNet is that 2 < Ly (n) < 5 and
2 < Ry(n) <5, for all h and n.

Consequently, a Deterministic SkipNet ring at height A has at most | N/2" |
nodes, the maximum height of any ring is |log, N |, and each node has at most
2-|log, V| routing pointers. Searching by name ID in Deterministic SkipNet is
performed in an identical manner to SkipNet: Follow the pointer that travels
closest to the destination without going beyond it. This operation requires
O(log N) time in Deterministic SkipNet.

3.1 Node Insertion

Node insertion consists of two steps: (1) inserting the newcomer into the root
ring, and (2) inserting the newcomer into higher level rings. In the first step,
the newcomer searches for its own name ID, thereby finding its neighbours in
the root ring. Bidirectional pointers are then formed between the newcomer
and its neighbours.

For the second step, assume that the newcomer has inserted itself at levels
0 through h — 1, and must now insert itself at level h, without violating
the Deterministic SkipNet invariant. We prove that this operation requires
at most two rotations, and that exactly one node must recursively insert itself
into higher level rings.

A rotation consists of two nodes swapping all of their pointers at levels h
and above, and requires O(log N) time. The destination nodes of all affected



pointers must also adjust their corresponding pointers since pointers are bidi-
rectional. The nodes performing the rotation must also swap their numeric
ID suffixes from the A" digit onwards, since numeric IDs correspond to ring
membership.

We consider the numeric IDs of the nodes near the newcomer’s insertion point
in the relevant ring at level h — 1. Note that these numeric IDs are identical up
to the (h—1)™ digit but differ in the h" digit. We focus on the A" digit of these
nearby nodes in order to choose the newcomer’s A" digit and to determine if
any rotations are necessary.

Case 1: If there exists a digit o such that none of the three nearest nodes to
the left and to the right of the insertion point has their A** digit equal to «
then we may choose the newcomer’s h* digit to be o. This case may occur if
the ring under consideration at level h — 1 contains only a few nodes.

Case 2: We assume that there is at least one node to the left and to the right
of the insertion point, and furthermore that Case 1 did not apply. Let n;_;
denote the node immediately to the left of the insertion point at level h, let n;
denote the newcomer, and let n;; denote the node immediately to the right
of the insertion point. Without loss of generality, assume that Dy (n;_1) = «
and Dp(n;41) = B, where o, 5 € [0,2] and a # (. Let x = Rp(n;—1) and let
Y = Ln(nit1).

Inserting the new node n; causes z and y to increase by 1. If x < 5 then
inserting n; does not violate the invariant that x < 5. Similarly, if y < 5 then
inserting n; does not violate the invariant that y < 5. Thus, if both x < 5 and
y < 5 then we set Dp(n;) to be ~, the one remaining digit that is neither «
nor (3, and the invariants on z and y will continue to hold. However, if x =5
or y = 5 then rotations are necessary in order to insert n; while maintaining
the invariant. Without loss of generality assume that x = 5. The A" digits of
the nodes from n;_; to the right must have the following configuration:

La?fByfBya...

where ? denotes the as yet undetermined value of Dj(n;). One may verify that
the following operations:

(1)

(2)

(3) Set Dp(njio) to «

(4) Recursively insert n;, o at level h + 1

achieve the following legal configuration:

LafByafBya...



The case in which # = y = 5 is also handled by this same sequence of opera-
tions.

Node insertion requires O(1) time per level if no rotations are required, and re-
quires O(log N) time per level if rotations are required. In total, node insertion
requires O(log? N) time.

3.2  Node Departure

Node departure involves iteratively removing a node from all of its rings, from
the highest level down to level 0. As with node insertions, we must ensure that
this node’s departure does not cause violations of the Deterministic SkipNet
invariant at other nodes. We prove that at most two rotations per level suffice
to maintain the invariant during node departure.

Consider the departure of a node from level h — 1. By examining the h'"
digits of the nearby nodes we can determine what rotations, if any, are needed
to ensure that the invariant continues to hold. We first define the following
notation: let n; be the departing node, and let n;_; and n;.; be its immediate
left and right neighbours respectively at level h — 1. Also, let a = Dy(n;), let
x = Lp(n;) and y = Ry(n;).

Case 1: Suppose that Dy(n;_1) = Dp(niz1) = 0 # «a. If v is the remain-
ing digit that is neither o nor # then we must have either Dp(n;_2) = 7 or
Dy (niyo) = . Without loss of generality, assume Dy, (n;12) = 7. Our configu-
ration is then

LB a By,

where « corresponds to the departing node n;. If Ry (n;41) < 5, one may verify
that Rotation(n;, n,y1) followed by departure of n; is sufficient to maintain
the invariant. If Rj(n;11) = 5, the invariant is maintained by performing
Rotation(n; 1, n;e) followed by departure of n;.

Case 2: Suppose that Dp(n;,_1) = f # «, and Dy(n;11) = v, # v # 6. If
x4+ 1y < 6 then node n; may depart without any rotations. Otherwise, assume
without loss of generality that x > 3. To maintain the invariant, we perform
Rotation(n;_1, n;), and if Ry(n;—1) = 5 we additionally perform Rotation(n,,
n;+1). These rotations are followed by departure of n;.

In both cases, the node departure algorithm proceeds by iteratively removing
node n; from level h—2 and performing any necessary rotations, until h—2 < 0.
As was the case with node insertion, node departure requires O(log N) time
per level if rotations are required and O(1) otherwise. In total, node departure
requires O(log? N) time.



4 Conclusions

Deterministic SkipNet is a scalable overlay network that is both deterministic
and incorporates locality. Abraham et al. [1] also present a mechanism for
deterministic overlay construction but it is not clear whether their approach
can yield overlays that incorporate locality. Deterministic SkipNet supports
node insertions in O(log® N) time, node departure in O(log” N) time, searches
in O(log N) time, and O(log N) routing pointers per node. In future work,
we plan to investigate a generalization of Deterministic SkipNet where the
numeric ID parameter & may take arbitrary values.

References

[1] I. Abraham, B. Awerbuch, Y. Azar, Y. Bartal, D. Malkhi, E. Pavlov, A generic
scheme for building overlay networks in adversarial scenarios, in: International
Parallel and Distributed Processing Symposium (IPDPS), 2003.

[2] J. Aspnes, G. Shah, Skip Graphs, in: 14th ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2003, pp. 384-393.

[3] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, A. Wolman, SkipNet:
A Scalable Overlay Network with Practical Locality Properties, in: USENIX
Symposium on Internet Technologies and Systems (USITS), 2003, pp. 113-126.

[4] J. I. Munro, T. Papadakis, R. Sedgewick, Deterministic Skip Lists, in: 3rd ACM-
SIAM Symposium on Discrete Algorithms (SODA), 1992, pp. 367-375.

[5] W. Pugh, Skip Lists: A Probabilistic Alternative to Balanced Trees, in: Workshop
on Algorithms and Data Structures (WADS), 1989, pp. 437-449.

[6] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, A Scalable Content-
Addressable Network, in: Proceedings of ACM SIGCOMM, 2001, pp. 161-172.

[7] A. Rowstron, P. Druschel, Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems, in: IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware), 2001, pp. 329-350.

[8] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. Balakrishnan, Chord: A
scalable Peer-To-Peer lookup service for internet applications, in: Proceedings of
ACM SIGCOMM, 2001, pp. 149-160.

[9] B. Y. Zhao, J. D. Kubiatowicz, A. D. Joseph, Tapestry: An Infrastructure for
Fault-Resilient Wide-area Location and Routing, Tech. Rep. UCB//CSD-01-
1141, U. C. Berkeley (Apr. 2001).



