
Deterministic Network Coding by Matrix Completion

by

Nicholas James Alexander Harvey
Bachelor of Mathematics, University of Waterloo, 2000

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2005

c© Massachusetts Institute of Technology 2005. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 06, 2005

Certified by .
David R. Karger

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Deterministic Network Coding by Matrix Completion

by

Nicholas James Alexander Harvey

Bachelor of Mathematics, University of Waterloo, 2000

Submitted to the Department of Electrical Engineering and Computer Science
on May 06, 2005, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

Network coding is a new field of research that addresses problems of transmit-
ting data through networks. Multicast problems are an important class of network
coding problems where there is a single sender and all data must be transmitted to
a set of receivers. In this thesis, we present a new deterministic algorithm to con-
struct solutions for multicast problems that transmit data at the maximum possible
rate. Our algorithm easily generalizes to several variants of multicast problems.

Our approach is based on a new algorithm for maximum-rank completion of mixed
matrices—taking a matrix whose entries are a mixture of numeric values and sym-
bolic variables, and assigning values to the variables so as to maximize the result-
ing matrix rank. Our algorithm is faster than existing deterministic algorithms and
can operate over smaller fields. This algorithm is extended to handle collections of
matrices that can share variables. Over sufficiently large fields, the algorithm can
compute a completion that simultaneously maximizes the rank of all matrices in
the collection.

Our simultaneous matrix completion algorithm requires working over a field
whose size exceeds the number of matrices in the collection. We show that this
algorithm is best-possible, in the sense that no efficient algorithm can operate over
a smaller field unless P=NP.

Thesis Supervisor: David R. Karger
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

The material of this thesis is primarily joint work with David Karger and Kazuo
Murota. A preliminary version of this work was presented at the SODA ’05 confer-
ence [17]. I would like to thank David Karger for introducing me to the field of net-
work coding, and posing the problem which is addressed in this thesis. This thesis
would not have been possible without his advice, support, and endless stream of
research ideas. I am also very grateful to Kazuo Murota for corresponding with
me about the field of mixed matrices. His mathematical virtuosity was crucial for
many of the ideas in Chapter 3, particularly Section 3.6.

I would also like to thank my friends here at MIT. My collaborations with Kevin
Zatloukal, April Lehman and Bobby Kleinberg were thoroughly enjoyable and I
learned much from them. I am deeply indebted to April for painstakingly reading
a draft of this thesis and providing substantial amounts of helpful feedback. A
valuable conversation with Sergey Yekhanin and David Woodruff catalyzed the
results in Section 4.2.

Finally, I am grateful to my family for their love and support. My wife Junko
has been an unwavering source of encouragement, emotional support and happi-
ness throughout the years. None of this would have been possible without her.

This thesis is dedicated to the memory of my mother, Gail Harvey.

5

6

Contents

1 Introduction 9

1.1 Network Coding . 10

1.2 Matrix Completion . 12

1.3 Our Results . 14

2 Multicast Network Coding 17

2.1 Preliminary Definitions . 17

2.2 Related Work . 18

2.3 Koetter and Médard’s Algebraic Framework 22

2.4 The Expanded Transfer Matrix . 24

2.5 An Algorithm for Multicast Problems 25

2.6 Variants of Multicast Problems . 27

3 Matrix Completion 31

3.1 Related Work . 31

3.2 Mixed Matrices . 33

3.3 Computing the Rank of an LM-matrix 36

3.4 Single Matrix Completion . 39

3.4.1 A Simple Algorithm . 39

3.4.2 A Better Algorithm . 40

3.4.3 Efficiency of the Better Algorithm 45

3.5 Simultaneous Matrix Completion . 49

3.5.1 Column Compatibility . 52

3.6 Single Matrix Completion, Revisited 52

7

4 Hardness of Matrix Completion 55
4.1 Simultaneous Completion when q < d 55
4.2 Simultaneous Completion when q = d 60
4.3 Deciding Non-Singularity . 63

A Preliminaries on Linear Algebra 67

B Preliminaries on Matroids 73
B.1 Definitions . 73
B.2 Bipartite Matchings and Transversal Matroids 76
B.3 Algorithms . 77

Bibliography 80

8

Chapter 1

Introduction

Sending data through a network is a task that pervades much of our modern lives.
The question of how to send data efficiently remains a central question in several
fields of research, from information theory to computer networking. Despite the
considerable amount of research that has focused on this question, many aspects
of it remain poorly understood.

Even choosing an appropriate mathematical model for data transmission prob-
lems is difficult. For a computer scientist, a natural approach would be to model
the problem using network flows or some other combinatorial packing problem.
However, such models are often completely inappropriate.

The theory of information flow in networks does not have the same simple
answers as the theory of flow of water in pipes.

Cover and Thomas, Elements of Information Theory [7]

Why is information different from water? One key difference is that data can
be manipulated in ways that water and other physical commodities cannot. For
example, data is often redundant and can therefore be compressed. Even incom-
pressible data streams can be manipulated in interesting ways, such as coding
several streams together. For example, analog signals can be combined using
frequency-division multiplexing, and digital signals can be combined by algebraic
operations, such as computing their XOR (exclusive-or). We will show shortly that
coding data streams together can offer significant benefits in certain cases.

The area of information theory that addresses data communication in networks
is called network information theory. The problems in this area often involve ex-

9

tremely complex issues, such as dealing with noise in the network, interference
between signals, and correlation between data sources. As a result, many prob-
lems in the area that superficially appear quite simple have remained unsolved for
decades.

The seminal paper of Ahlswede et al. [1] suggested a way around the difficul-
ties of network information theory. Their work begins with the simple observation
that noise and interference can be avoided in practice through the use of appropri-
ate protocols at the physical layer. They then turn to the question of whether cod-
ing data streams together still provides any benefit, even in the absence of noise.
The surprising result is that coding does indeed provide a benefit. This observation
generated considerable interest and lead to a new area of research called network
coding, which we describe in the following section.

This thesis focuses on a class of network coding problems called multicast
problems, where a single sender must transmit all its data to a set of receivers.
A network coding solution to multicast problems can be found by completing the
entries in a set of partially specified matrices so that the resulting matrices have
full rank. This approach was previously used to obtain a randomized algorithm
for solving multicast problems [19]. We show that this matrix problem can also be
solved deterministically, thereby implying a new deterministic algorithm for solv-
ing multicast problems. Our algorithm has the restriction that it must operate over
a sufficiently large field. We show that this restriction is optimal — no efficient
algorithm can operate over a smaller field unless P=NP.

1.1 Network Coding

The paper of Ahlswede et al. contained a simple but compelling example which
shows the power of network coding. This example, shown in Figure 1-1 (a), has
come to be called the Butterfly Graph1. Each edge represents a communication link
with one-bit capacity. The source s wants to send two bits b1 and b2 simultaneously
to both of the sinks t1 and t2. Without network coding, one can show that this is
impossible. (We will forgo this argument and present an even simpler example
in Figure 1-2.) In the network coding model, the internal nodes of the network

1This is unrelated to the butterfly network that is studied in the field of parallel computing [28].

10

s

t1 t2

u v
w

x

(a)

b1 b2

b1�b2

b1�b2

s

t1

b2b1

b1 b2

t2

b1�b2

(b)

Figure 1-1: (a) The Butterfly Graph. (b) The network coding solution.

s t

(a)

b1 b2

b1�b2

b1�b2b1�b2

s t

(b)

Figure 1-2: (a) The Wheatstone Bridge. (b) The network coding solution.

are allowed to perform arithmetic operations on the bits, and thus a solution is
possible. Figure 1-1 (b) illustrates this solution, where ⊕ denote the binary XOR

operation.

We present a simple variant of the Butterfly Graph in Figure 1-2 (a). This graph
is often called the Wheatstone bridge, due to its similarity with the famous electri-
cal network [48]. In this example, we wish to send the bit b1 from node s to node
t, and simultaneously send the bit b2 from node t to node s. Without network cod-
ing, this is clearly impossible since there does not exist a disjoint pair of s-t and t-s
paths. In the network coding model, Figure 1-2 (b) shows that it is possible to send
the XOR b1 ⊕ b2 to both nodes simultaneously. Node s already knows the value of

11

b1 so it can recover the value of b2 by computing b1 ⊕ (b1 ⊕ b2). Node t can similarly
recover the value of b1.

These examples suggest that the network coding model is an intriguing frame-
work with many surprising implications for data transmission problems. Much
of the existing network coding literature has focused on special classes of net-
work coding problems, particularly multicast problems on directed acyclic graphs
(DAGs). A multicast problem is an instance with a single commodity, a single
source node, and an arbitrary set of sink nodes. The objective is to transmit all the
information available at the source to all of the sinks. We have already shown an
example of a multicast problem, namely the Butterfly Graph.

Given an instance of a multicast problem on a DAG, a natural question is:
How can one transmit data from the sources to the sinks at the maximum pos-
sible rate? This is one of the central questions addressed by this thesis. Koetter
and Médard [23] showed that multicast problems can be recast in an algebraic
framework involving matrices of indeterminates2. Using their framework, we can
recast the multicast network coding question as the problem of finding a “matrix
completion”. We elaborate on the latter problem in the next section.

1.2 Matrix Completion

Suppose one is given a matrix M whose entries are a mixture of numbers and
distinct indeterminates. Such a matrix is called a mixed matrix. Sometimes it is
inconvenient to deal with mixed matrices, so one might want to plug in particular
values for the indeterminates. Such an assignment of values to the indeterminates
is called a completion. One might imagine looking for completions that satisfy
a variety of properties, such as maximum rank, positive definiteness, a desired
spectrum, etc. A comprehensive survey of these completion problems is given by
Laurent [25].

Example 1.1. Consider the following mixed matrix.

M =

(

1 x

y 1

)

2We use the term “indeterminate” to mean an independent variable.

12

Assigning the values x = 1 and y = 1 gives a completion of the matrix. However,
this is not a maximum rank completion since the resulting matrix has rank 1. The
assignment x = 0 and y = 0 is a maximum rank completion since the resulting
matrix is the identity. �

This thesis considers only the problem of finding completions with maximum
rank. For brevity we will henceforth use the term “completion” to mean one with
maximum rank. The problem of finding a completion has been considered for
many years and has a surprising number of important applications. For exam-
ple, completions are a key ingredient in parallel algorithms for finding maximum
matchings [34], sequential algorithms for finding maximum matchings [33], and
dynamic algorithms for transitive closure [42].

How can one find a completion? Lovász [30] pointed out that simply choos-
ing values at random from a sufficiently large field gives a completion with high
probability. This algorithm takes only O(n2) time to find the completion and O(n3)

time if one must verify the rank of the resulting matrix. It can operate over a field
of size cn for any c > 1.

Lovász’s work left open the question of finding an efficient deterministic algo-
rithm for constructing matrix completions. This question was solved some twenty
years later by Geelen [15]. He devised an elegant algorithm that blends ideas from
combinatorics, matroid theory and linear algebra, but unfortunately requires O(n9)

time. Some later improvements [16, 3] reduced the running time to O(n4) . Gee-
len’s algorithm also requires working over a field of size at least n.

The connection to network coding involves a generalization of the maximum-
rank matrix completion problem. Suppose one is given a set of mixed matrices,
each of which contains a mixture of numbers and indeterminates. Each particular
indeterminate can only appear once per matrix but may appear in several matri-
ces. The objective is to find values for these indeterminates that simultaneously
maximize the rank of all matrices. We call this a simultaneous matrix completion
problem. Lovász’s randomized approach trivially extends to handle this problem
by simply working over a larger field. This approach was used by Ho et al. [19]
to obtain a randomized algorithm for multicast network coding problems. Gee-
len’s deterministic algorithm can also be extended to compute simultaneous ma-
trix completions, with a corresponding increase in field size and runtime.

13

1.3 Our Results

This thesis addresses the separate, but related problems of multicast network cod-
ing and matrix completion. The former problem is addressed in Chapter 2 and the
latter problem is discussed in Chapters 3 and 4. We discuss the background and
previous work for each problem in the corresponding chapters.

Chapter 2 begins with a more detailed discussion of multicast network coding.
We then explain how our theorems on matrix completion lead to a new determin-
istic algorithm for constructing coding functions that allow communication at the
maximum rate. This algorithm requires time O(dm3 log m), where m is the number
of edges in the graph and d is the number of sinks. This algorithm also shows that
every multicast problem has a solution over any field of size q where q > d. We
conclude this chapter by describing how this algorithm can be applied to several
variants of the multicast problem.

Chapter 3 contains our algorithms for matrix completion problems. We begin
with a discussion of existing work. Then we describe mathematical tools that we
will need from the theory of mixed matrices. We then use these tools to obtain a
new deterministic algorithm for computing a matrix completion. This algorithm
yields the following theorem.

Theorem 1.2. Given a mixed matrix of size n × n over any field, a max-rank completion
can be deterministically computed in time O(n3 log n). Using fast matrix multiplication,
the time required is only O(n2.77).

This theorem shows that our algorithm can operate over smaller fields than
all existing algorithms (randomized or deterministic) and is asymptotically faster
than existing deterministic algorithms. We then generalize this algorithm to han-
dle simultaneous matrix completion problems. This yields the following theorem.

Theorem 1.3. Let A be a set of d mixed matrices of size n × n. Let k be the number
of indeterminates in these mixed matrices. A simultaneous completion for A necessarily
exists if the mixed matrices in A are over a field of size strictly greater than d. Furthermore,
such a completion can be deterministically computed in time

O(d (n3 log n + k n2)).

14

The runtime of the simultaneous matrix completion algorithm can be improved
somewhat for sets of matrices satisfying a certain technical condition. Suppose
that for any pair of indeterminates, whenever they appear in the same matrix,
they necessarily appear in the same column. Such matrices are called column-
compatible. We show that, for a set of column-compatible matrices, a simultaneous
completion can be found in time

O(d (n3 log n + k n)).

Theorem 1.3 may seem somewhat restrictive since it requires that the field size
exceed the number of matrices. Surprisingly, this restriction cannot be removed.
We show in Chapter 4 that the hardness of finding a simultaneous completion
crosses a sharp threshold when the field size equals the number of matrices.

Theorem 1.4. Let A be a set of d mixed matrices over a field of size q.

• If q > d then a simultaneous completion necessarily exists and one can be computed
in polynomial time.

• If q ≤ d then a simultaneous completion may not exist. Furthermore, deciding
whether a simultaneous completion exists is NP-complete.

The first claim of this theorem is simply a restatement of Theorem 1.3. The
second claim shows that the field size required by Theorem 1.3 is optimal, under
the assumption that P 6=NP.

15

16

Chapter 2

Multicast Network Coding

We begin this chapter by providing some preliminary definitions and then survey-
ing the existing work on multicast network coding problems. Next we give the
formal definitions that are needed to present our algorithm. Then we describe our
polynomial time algorithm for multicast problems. We finish by showing how the
algorithm can be applied to variants of the problem.

2.1 Preliminary Definitions

Definition 2.1. A multicast problem instance is a directed acyclic graph G = (V,E)

with a distinguished vertex s ∈ V and a distinguished set T = {t1, . . . , td} ⊂ V where
s 6∈ T . The vertex s is called the source and the vertices in T are called sinks.

The interpretation of a multicast problem is that the source s wishes to transmit
information to sinks through a communication network represented by the graph
G. We interpret the edges as communication channels with equal (unit) capac-
ity. We assume that the source has a large amount of information that it wishes
to transmit to the sinks. The information is divided into messages drawn from
some alphabet, and we assume that each edge can transmit one symbol from that
alphabet in each time step. We also assume that communication across edges is
instantaneous, i.e., the edges have zero-delay.

We must also explain how communication schemes in the network are mod-
eled. We give only informal definitions at the present time, and defer the formal
definitions to Section 2.3. The communication scheme is modeled by functions at

17

each node in the network that specify how the information received by that node
is to be coded together and sent on the node’s outgoing edges. A set of coding
functions that specify the information sent on each edge of the graph is called a
network code. If a network code allows each sink to decode all messages sent by
the source then it is called a network coding solution.

The following definition gives a simple class of network codes. As explained in
the following section, this class is particularly important for multicast problems.

Definition 2.2. A network code is called linear if the alphabet is treated as a finite field
and the message sent on every edge is a linear combination of the source messages.

In this chapter, we use the following notation. Let m := |E| be the number of
edges in the graph, d := |T | the number of sinks and r the capacity of the minimum
cut separating the source from any sink. Let Γin(v) and Γout(v) denote the inbound
and outbound edges at vertex v. For an edge e ∈ E, let Γin(e) denote the edges
inbound to the tail of e.

2.2 Related Work

The network coding model was first introduced in the seminar paper of Ahlswede
et al. [1]. The intriguing examples presented in their paper, such as the Butterfly
Graph (Figure 1-1), generated much interest in network coding. Curiously, the
Butterfly Graph was already known to Hopcroft in the mid 1980s [20]. This earlier
discovery arose from different motivations, and ultimately lead to the develop-
ment of superconcentrators [38].

A wide variety of communication problems can be considered within the net-
work coding model. For example, an instance of a general network coding prob-
lem can involve an arbitrary graph and an arbitrary number of commodities, each
with arbitrary sets of sources and sinks. Such general problems are quite difficult
to analyze and remain poorly understood. Some of the difficulties are founda-
tional: even defining network coding in cyclic graphs is non-trivial since one must
ensure that the coding functions do not satisfy any impossible cyclic relationships.
For a discussion of these issues see, for example, Harvey et al. [18].

Due to the difficulty of general network coding problems, much work has fo-
cused on the multicast problem, which was also introduced by Ahlswede et al.

18

They proved the following important theorem.

Theorem 2.3 (Ahlswede et al. [1]). The maximum rate of simultaneous communication
from the source to every sink equals the capacity of the minimum cut separating the source
from some sink.

The conclusion of this theorem is perhaps quite intuitive: it sounds very simi-
lar to the well-known max-flow min-cut theorem, due to Ford and Fulkerson [11]
and Elias, Feinstein and Shannon [9]. However, there are two surprising aspects to
Theorem 2.3. First, the conclusion of the theorem is false when coding is not per-
mitted, as the Butterfly Graph illustrates. Second, network coding solutions can
actually achieve the combinatorial min-cut bound, whereas combinatorial path-
packing solutions cannot. Theorem 2.3 may be informally summarized as saying
“max-flow min-cut is false for multicast problems, unless network coding is used”.

Since the min-cut separating a pair of vertices can be computed in polynomial
time, Theorem 2.3 implies that the maximum number of messages that can be mul-
ticast can also be computed in polynomial time. Although this theorem fully char-
acterizes the maximum communication rate, it does not tell us how to find a net-
work coding solution.

There is a potential obstacle to finding a network coding solution efficiently: the
description of the solution might be very large. First note that the alphabets used
by a network coding solution can be arbitrarily large, so there are in fact infinitely
many solutions. One might expect that it is sufficient to consider only exponential-
sized alphabets, but surprisingly this is not the case. Lehman and Lehman [27]
observed that an alphabet of doubly exponential size is necessary to achieve the
maximum rate in certain non-multicast network coding instances.

Even if we restrict ourselves to very small alphabets, we can still run into dif-
ficulties. Consider a graph with n vertices and suppose we restrict ourselves to
alphabets of size 2. Suppose that there is a vertex v with Θ(n) inbound edges. The
coding function for any outbound edge of v is a map from a set of size N = 2Θ(n) to
a set of size 2. There are 2N such maps and hence there must be some map whose
representation requires at least N bits, which is exponential in the size of the in-
stance. Thus it is not even clear that we can write down a network coding solution
in polynomial time.

Fortunately, Li et al. [29] showed that we can restrict our attention to linear net-

19

work codes. As will be made clear in Section 2.3, the space required to represent
a linear network code is only polynomial in the size of the instance and the log-
arithm of the alphabet size. Furthermore, we will see that it is sufficient to work
with an alphabet whose size is polynomial in the size of the instance.

Theorem 2.4 (Li, Yeung and Cai [29]). Every multicast problem has a linear network
coding solution over some alphabet.

An elegant algebraic framework for dealing with linear network codes was
developed by Koetter and Médard [23]. We now give an informal discussion of
their framework and defer a detailed discussion to the following section. Notice
that when a linear network coding solution is used, the messages arriving at the
sinks are just linear functions of the source nodes’ messages. Koetter and Médard
show how these linear combinations at each sink can be explicitly described by
a so-called transfer matrix whose entries are determined by the linear functions
selected at each node. Intuitively, if the linear combinations received by each sink
have full rank then the sinks can invert the linear combinations and recover the
original source messages. The problem of selecting a network code thus reduces
to choosing appropriate entries for each transfer matrix. The challenge is to select
entries for the transfer matrices so that this full rank condition holds at each sink
simultaneously. This problem is made harder by the requirement that the entries
in different matrices must “match”.

The preceding discussion suggests that finding a network coding solution to a
multicast problem is closely related to the matrix completion problems described
in Section 1.2. The subsequent sections will elucidate this connection. Ho et al. [19]
used this reduction to matrix completion to develop an efficient randomized algo-
rithm for multicast problems. The basic idea of their work is to show that choosing
a random completion over a sufficiently large field gives a network coding solution
with high probability.

A deterministic polynomial time algorithm for finding network coding solu-
tions for multicast problems was concurrently developed by Sanders et al. [41]
and Jaggi et al. [21]. This algorithm is also described in a joint journal publica-
tion [22]. A brief description of their algorithm is as follows. First, it computes
maximum flows from the source to each sink. Next, it computes a coding scheme
such that for any source-sink cut, the messages sent across the cut are sufficient

20

to reconstruct the original source messages. Fortunately, their algorithm need not
consider all exponentially many cuts; it suffices to consider the cuts encountered
during a breadth-first search from the source towards the sinks.

One of the main contributions of this thesis is a new deterministic algorithm
for finding network coding solutions for multicast problems. We derive this algo-
rithm by derandomizing the randomized matrix completion approach of Ho et al.
Although the algorithm of Jaggi et al. is somewhat faster than ours, the generality
of our approach allows straightforward extensions to several variants of the prob-
lem. For example, we can construct one code that can be used unchanged regardless
of which node is the multicast source. We also give a deterministic construction of
network codes for the robust multicast problem [23], which seeks network coding
solutions that can handle unpredictable failures of some edges. These extensions
are discussed in Section 2.6.

An important benchmark for comparing network coding solutions is the size
of the alphabet used. A large alphabet provides more flexibility in choice of cod-
ing functions, but causes greater cost in storing and computing messages. Thus it
is desirable to work with an alphabet that is large enough to enable transmission
at the maximum rate, but not much larger. Recall that d denotes the number of
sinks in a multicast problem instance. For multicast problems, it is known that an
alphabet of size d + 1 is sufficient to transmit at the maximum rate [19] and that
Ω(

√
d) is necessary for some instances [26, 10]. The algorithm that we present also

works with an alphabet of size d + 1. Jaggi et al. [22] actually obtained a slightly
tighter bound: an alphabet of size d is sufficient. However, these algorithms men-
tioned above all work over a finite field, and hence they must round the field size
up to a prime power. Thus the distinction between alphabets of size d and d + 1 is
irrelevant unless d is a prime power.

21

2.3 Koetter and Médard’s Algebraic Framework

In this section we formally introduce Koetter and Médard’s algebraic framework
for multicast problems. We assume that the source has r messages M1, . . . ,Mr that
it wishes to transmit to the sink nodes, where r is the min-cut value as defined
earlier. The messages that are output by the ith sink are denoted by T (i, j) for
1 ≤ j ≤ r. Let fe denote the message transmitted by edge e. For any network code,
the message fe must be computable from the messages on the edges in Γin(e). Thus
for linear network codes we obtain the following system of linear equations, where
the α’s, β’s and γ’s are indeterminates.

Source edge e ∈ Γout(s): fe =
∑

1≤j≤r

αj,e Mi

Sink message T (i, j): T (i, j) =
∑

e′∈Γin(ti)

βe′,i,j fe′

Edge e ∈ E \ Γout(s): fe =
∑

e′∈Γin(e)

γe′,e fe′

The coefficients may be collected into matrices as follows. There is an r × m

matrix A := (αj,e). For 1 ≤ i ≤ d, there is an m × r matrix Bi := (βe′,i,j). Finally,
there is an m × m matrix F := (γe′,e).

We will now illustrate these definitions with an example.

22

Example 2.5. Consider again the Butterfly Graph. Here we have numbered its
edges from 1 through 9.

s

t1 t2

1 2

6

8

43

5 7

9

The corresponding matrices are as follows. An absent entry denotes a zero.

A =

(

α1,1 α1,2

α2,1 α2,2

)

F =

1 γ1,3 γ1,5

1 γ2,4 γ2,7

1 γ3,6

1 γ4,6

1

1 γ6,8 γ6,9

1

1

1

B1 =

β5,1,1 β5,1,2

β8,1,1 β8,1,2

B2 =

β7,2,1 β7,2,2

β9,2,1 β9,2,2

�

Koetter and Médard introduced the following definition.

Definition 2.6. The matrix Mi := A(I − F)−1Bi is called the transfer matrix for the
sink ti.

This definition assumes that (I − F) is non-singular. Since the graph G is as-
sumed to be acyclic, we may assume that the edges are ordered in topological or-
der. Thus the matrix F is strictly upper-triangular, and hence the assumption that
(I − F) is non-singular is necessarily satisfied. The usefulness of transfer matrices
is shown by the following theorem.

23

Theorem 2.7 (Koetter and Médard [23]). A multicast problem has a network coding
solution if and only if each transfer matrix Mi is formally non-singular (i.e., det Mi is not
the zero polynomial). Moreover, an assignment of values to the coefficients causes all the
transfer matrices to be non-singular if and only if these values constitute a network coding
solution.

Transfer matrices are somewhat unwieldy since they involve the inverse of the
large symbolic matrix (I−F). Ho et al. [19] defined a convenient variant of transfer
matrices, which we have termed expanded transfer matrices. These are discussed
in the next section.

2.4 The Expanded Transfer Matrix

Definition 2.8. The expanded transfer matrix for sink ti is

Ni :=

(

A 0

I − F Bi

)

.

We remark that an expanded transfer matrix Ni is a mixed matrix in the inde-
terminates αj,e, βe′,i,j , γe′,e. Some entries of Ni contain numbers, namely the 1’s in
the identity matrix I . An important connection between transfer matrices and ex-
panded transfer matrices is given by the following lemma, which was observed by
Ho et al. [19].

Lemma 2.9. det Mi = ± det Ni.

We present a proof of this lemma that is substantially simpler than the original
proof of Ho et al. Our proof relies only on the basic properties of determinants
stated in Appendix A, such as the block determinant fact (Fact A.10). We remark
that this fact cannot immediately be applied to Ni because the submatrices A and
Bi are not necessarily square.

Proof. Block multiplication shows that the following equation holds.

(

A 0

I − F Bi

)

·
(

(I − F)−1Bi (I − F)−1

−I 0

)

=

(

Mi A(I − F)−1

0 I

)

.

24

Take the determinant of both sides and use the fact that det(XY) = det X det Y to
conclude that

det

(

A 0

I − F Bi

)

· det

(

(I − F)−1Bi (I − F)−1

−I 0

)

= det

(

Mi A(I − F)−1

0 I

)

.

Applying the block determinant fact (Fact A.10) to the second and third matrices,
we obtain

det Ni ·
(

± det−I · det (I − F)−1
)

= det Mi · det I.

Since F is assumed to be strictly upper-triangular, det (I − F) = 1. Using the fact
that det(I − F)−1 = (det(I − F))−1, we obtain that det Mi = ± det Ni. �

Although this lemma is simple, it is crucial to the approach of our algorithm.
We therefore indulge ourselves by presenting an alternative proof.

Proof. We perform the following computation.

det Ni = ± det

(

0 A

Bi I − F

)

= ± det(I − F) · det
(

− A(I − F)−1Bi

)

= ± det Mi.

The first equality follows because swapping columns of Ni only affects the sign of
the determinant. The second equality follows from the properties of Schur com-
plements (Fact A.11). The last equality holds since the matrix F is assumed to be
strictly upper-triangular and hence det(I − F) = 1. �

2.5 An Algorithm for Multicast Problems

In this section we explain how our matrix completion results stated in Chapter 1
yield a deterministic algorithm for finding a network coding solution.

The problem of finding a network coding solution for a multicast problem
reduces to the problem of finding a simultaneous completion for the set of ex-
panded transfer matrices, as is shown by Theorem 2.7 and Lemma 2.9. Given

25

an instance of the multicast problem, let the set of expanded transfer matrices be
N := {N1, . . . , Nd}. Let X be the set of all indeterminates αj,e, βe′,i,j , γe′,e that ap-
pear in the matrices in N . From the definition of an expanded transfer matrix it
is clear that the indeterminates in each individual matrix are distinct. The matri-
ces in N do share indeterminates, though: the αi,e’s and γe′,e’s appear in all of the
matrices. Thus the set N satisfies the criteria of Theorem 1.3, and hence the matrix
completion algorithm can produce a simultaneous completion in the field Fq, for
any q ≥ d + 1.

Let us now analyze the runtime of this algorithm. The dimension of each ex-
panded transfer matrix is n × n where n = m + r. Since the capacity r of the
minimum source-sink cut is at most the number of edges in the graph, we have
n = O(m). The number of indeterminates is |X | ≤ mr + mdr + m2 = O(mdr + m2).
Thus, Theorem 1.3 gives a runtime bound of

O(|N | (n3 log n + |X |n2)) = O(m3d(dr + m)).

This runtime can be improved by taking advantage of the structure of the
matrices. First, note that the matrices in N are very similar — only the last r

columns (consisting of the Bi submatrices) differ, and the indeterminates in these
last columns appear only in a single matrix. Thus the collection of matrices N sat-
isfies the column-compatible condition that was informally defined in Chapter 1.
(The formal definition is given in Section 3.5.1) This immediately implies that the
runtime may be improved to

O(|N | (n3 log n + |X |n)) = O(m2d(dr + m log m)).

Further improvements are possible. Since each βt,i,e′ appears only in one matrix,
these indeterminates do not even require simultaneous completion. Thus we may
find a completion of N in two steps. First, we remove the βt,i,e′ ’s from X and find
a simultaneous completion for the remaining indeterminates. Note that we do not
removing the βt,i,e′ ’s from the matrices, only from the set X of indeterminates that
require completion. The time required for this step is O(dm3 log m) since we now
have |X | = O(m2). Next, we complete the βt,i,e′ ’s by finding a completion of each
matrix separately. The total time required for this step is O(dm3 log m). Combining

26

these two steps solves the multicast problem in time O(dm3 log m).

This algorithm, as described above, requires knowing the value of r, the mini-
mum source-sink cut. We can invoke the algorithm multiple times and use binary
search to find the correct value of r, since the algorithm will fail if r is too large.
This binary search approach increases the running time by a logarithmic factor.
A preferable approach is to simply compute the value of r using d invocations of
the Ford-Fulkerson algorithm [6]. Doing so only requires O(dm2) time, which is
negligible.

To compare our algorithm with existing algorithms, we note that our algorithm
uses a field size that only one larger than the field size used by Jaggi et al. [22]. (The
same bound was proven by Ho et al. [19], although non-algorithmically.) The algo-
rithm of Jaggi et al. [22] requires O(mdr(r+d)) time, which is markedly faster when
r = o(m) and d = o(m). An advantage of our matrix completion approach is its
generality — the matrix completion approach provides a straightforward solution
to several variants of the multicast problem.

2.6 Variants of Multicast Problems

In this section we discuss two variants of the multicast problem. The generality
of our simultaneous matrix completion approach allows us to solve these variants
quite easily. The idea behind both of these variants is that we want nodes to be
oblivious to changes (e.g., failures) occurring in the network. The benefit is that
changes affect only nearby nodes, and that all other nodes behave in a very pre-
dictable manner. This could be useful in a scenario when the internal network
nodes are computationally limited.

One variant of multicast problems posed by Koetter and Médard [23] is the
problem of designing a robust network code. Formally, define a link failure pat-
tern to be a set F ⊆ E such that every edge in F fails during the operation of the
network. A failure of an edge can be modeled by having the failed edge trans-
mit the 0 message instead of the function specified by the network code. If the
min-cut between the source and each sink is still at least r after the edges in F

have been removed then the multicast problem on the remaining network is still
solvable. A network code that solves both the original multicast problem and the

27

multicast problem on the remaining network is desirable since the internal net-
work nodes could then operate identically regardless of whether the failure had
occurred. More generally, if F is a collection of link failure patterns that preserve
the min-cut between the source and each sink, we desire a network code that solves
the multicast problem under any failure pattern in F .

For example, suppose we wish to handle the failure of any two edges. There
are at most

(

|E|
2

)

such “failed graphs” that preserve the min-cut value. We desire a
single network coding solution that works for all of these failed graphs.

For any such set F where |F| is polynomial in m, the desired network code can
be computed deterministically in polynomial time as follows. For every F ∈ F ,
define Nt,F to be the transfer matrix for sink t where the coefficients αj,e, βe′,i,j , γe′,e

have been set to zero if edge e ∈ F . Let N := { Nt,F : t ∈ T, F ∈ F } be the collec-
tion of these matrices. Since each failure pattern essentially gives a new multicast
problem, a simultaneous max-rank completion for N yields a network coding so-
lution that works under any failure pattern in F . This solution requires an alphabet
size of at least d · |F| + 1.

This algorithm ensures that each sink’s transfer matrix is invertible under any
of the failure patterns in F . This alone is not enough for the sinks to decode the
source’s original messages. We must also ensure that each sink knows the actual
values in its transfer matrix so that it can invert the matrix. However, the values
in the transfer matrix will in general depend on which failure (if any) has actu-
ally occurred. Therefore, when a node transmits a message along an edge in the
network, it must also send the coefficients of the linear combination correspond-
ing to the transmitted message. With this scheme, each sink will always know
which linear combinations it is receiving, and therefore it will know how to invert
them. Naturally, we can minimize the bandwidth used by these linear combina-
tions by sending them only when they change. The preceding discussion shows
that it is not strictly necessary to model a failed edge as sending the 0 message.
Any other constant message would work equally well; the crucial point is that the
corresponding linear combinations must also be sent.

Our algorithm above is efficient only if |F| is polynomial in the size of the in-
stance. This leads to an interesting open question. Suppose that F contained the
set of all failure patterns that do not decrease the minimum source-sink cut value.
Note that |F| can be exponential in the size of the graph. Can one find a network

28

coding solution that works under all of these failure patterns? The approach of
Ho et al. [19] implies that a randomly chosen linear network code works with high
probability, assuming the alphabet size is Ω(d · |F|). Is it necessary for the alphabet
to be exponentially large, or can one find a network coding solution that uses an
alphabet of polynomial size?

For our second variant of the multicast problem, consider a directed acyclic
graph G with a set of sources S := {s1, s2, . . .} and a set of sinks T . Each source si

potentially has a set of messages {Mi,1,Mi,2, . . .} to transmit to the sinks in T . The
objective is for these sources to sequentially transmit their messages (if any) to the
sinks: first source s1 transmits its values, then source s2 transmits its values, and so
on. We call this the anysource multicast problem. Since the sources never transmit
simultaneously, the problem is essentially an ordinary multicast problem while
source si is transmitting. Rather than treating each multicast problem separately,
we desire a single network code that is a solution to each individual multicast
problem.

The anysource multicast problem can also be solved with a straightforward ap-
plication of simultaneous matrix completions. Define Nt,i to be the transfer matrix
for sink t when source si is transmitting and let N := { Nt,i : t ∈ T, 1 ≤ i ≤ |S| }
be the collection of these matrices. It is easy to see that a simultaneous max-rank
completion of the matrices in N yields a network code that solves the anysource
multicast problem over any field of size at least d · |S| + 1. As with the robust
multicast problem, each transmitted message must also contain the identity of the
source that is transmitting, and the coefficients of the linear combinations that are
being sent.

It is not clear that our solution to the anysource multicast problem is making
the most efficient use of bandwidth. Can several of the sources to transmit to the
sinks simultaneously? Unfortunately, allowing several sources to transmit mes-
sages takes us beyond the realm of multicast problems. No algorithms and very
few bounds on achievable rates are known for these more general network cod-
ing problems. Our algorithm for anysource multicast problems is not provably
efficient, but nothing better is currently known. Any progress on algorithms or
bounds for general network coding problems would be a significant development.

29

30

Chapter 3

Matrix Completion

In this chapter we describe an efficient algorithm for computing a simultaneous
matrix completion. This is based on an efficient algorithm for finding a comple-
tion for a single matrix. (Recall that “completion” implicitly means that we are
maximizing the rank.) Our approach for finding a completion is to partition the
indeterminates into two sets. Those in the first set are deemed “unimportant” in
the sense that they can immediately be assigned the value zero. For the second set
of “important” indeterminates, we will give a more careful approach for choosing
their values. Deciding which indeterminates are important amounts to solving a
related problem called the matroid matching problem. A brief introduction to the
field of matroids is given in Appendix B.

We begin this chapter by describing the previous work relating to matrix com-
pletions. Next, we give an introduction to the theory of mixed matrices and to
Murota’s rank computation algorithm. Building on these tools, we develop our
matrix completion algorithms.

3.1 Related Work

Let’s begin by considering matrices where every entry is either zero or a distinct
indeterminate. These matrices are much easier to deal with than general mixed
matrices. As explained in Appendix B, there are deep connections between match-
ings in bipartite graphs and matrices containing only zeros and indeterminates.
For example, suppose one is given such a square matrix A with row-set R and

31

column-set C and one must determine whether A is singular. Given A, construct
the corresponding bipartite graph

GA := (R ∪ C, {(i, j) : i ∈ R, j ∈ C,Aij 6= 0}), (3.1)

as in Definition B.3. It is well known (Theorem B.4) that there is a perfect matching
in GA if and only if A is non-singular, i.e., its determinant is the zero polynomial.
Such a matching can easily be found using standard algorithms. Moreover, given
a perfect matching, it is easy to give a completion for A: the indeterminates cor-
responding to edges in the matching are set to 1 and all others are set to 0. It is
important to note that this approach does not work if the matrix contains non-zero
numbers since some terms of the determinant might accidentally cancel each other
out.

The reduction between matrix completion and matchings presented above is
more commonly used in the reverse direction. Given a bipartite graph, deciding
whether it has a perfect matching reduces to deciding whether the correspond-
ing matrix of indeterminates is non-singular. The latter problem can be solved by
computing the determinant symbolically, but this approach is not efficient since
the determinant could have exponentially many terms. Alternatively, one could
test singularity by trying to find a completion; Lovász’s randomized algorithm
[30] does precisely this. Suppose that the given matrix has dimension n × n. The
basic idea is to view the determinant of the matrix as a multivariate polynomial
over a field of size at least cn for some constant c > 1. Using the Schwartz-Zippel
lemma [32], one can argue that most completions are not roots of this polynomial.

We remark that Lovász’s algorithm does not actually construct a perfect match-
ing, it only decides their existence. Mulmuley et al. [34] build on Lovász’s work and
give a parallel algorithm to construct a matching, but their algorithm is not terribly
efficient in a sequential setting. A much more efficient sequential algorithm was
given by Mucha and Sankowski [33].

Let’s now turn our attention to matrices whose entries contain a mixture of
numbers and distinct indeterminates. Such matrices are called mixed matrices.
Does the bipartite graph of equation (3.1) allow us to determine whether a mixed
matrix is singular? Unfortunately the answer is no, because the correspondence
between matrices and bipartite matchings requires algebraic independence of the

32

matrix entries. This condition will typically not hold if some entries are numeric.
Thus the problems of testing singularity or finding a completion for a mixed matrix
cannot directly be solved via matchings. However, these problems are efficiently
solvable. Lovász’s approach immediately gives a randomized algorithm for find-
ing a completion of a mixed matrix — the presence of numeric entries in the matrix
is inconsequential. More sophisticated combinatorial tools were used in develop-
ing deterministic algorithms. Murota [35, 36] showed that rank computation, and
hence testing singularity, can be solved deterministically by matroid intersection.
We explain this algorithm in Section 3.3. Geelen [15] developed a deterministic
algorithm for actually finding a completion using different techniques.

The main result of this chapter is a new deterministic algorithm for finding
completions of mixed matrices over any field in O(n3 log n) time. In contrast,
Lovász’s randomized algorithm requires O(n3) time to verify the rank of the re-
sulting matrix and, in order to have a reasonable probability of success, operates
over a field of size Ω(n). Using fast matrix multiplication techniques, these running
times can be improved to O(n2.77) and O(n2.38) respectively. Geelen’s deterministic
algorithm can be implemented in O(n4) time [3] and also operates over a field of
size Ω(n). Thus our algorithm is faster than existing deterministic algorithms, and
operates over smaller fields than any existing polynomial-time algorithms.

Our approach is to extend Murota’s framework from simply computing the
rank of a mixed matrix to actually finding a completion. We then extend this al-
gorithm to finding a simultaneous completion for a collection of mixed matrices.
This algorithm will complete the proof of Theorem 1.2 and Theorem 1.3.

3.2 Mixed Matrices

In this section we give a brief introduction to the theory of mixed matrices. This
theory was largely developed by Murota, and a more thorough introduction can
be found in his monograph [36].

The study of mixed matrices was initiated by Murota and Iri [37] as a tool for
systems analysis. One of their key observations is that systems of equations de-
scribing physical systems often contain two types of numbers: “accurate num-
bers”, which indicate topological relationships in the object being studied (such as

33

Kirchhoff’s electrical laws), and “inaccurate numbers”, which are physical quanti-
ties whose values may be imprecise or subject to random noise (such as values of
resistors). Their work treats the inaccurate numbers as algebraically independent,
since any dependency between their values would surely be eliminated by their
inherent inaccuracy. In order to analyze such systems of equations, Murota and
Iri introduced the notion of mixed matrices. On the theoretical side, much work
has gone into understanding the combinatorial and structural properties of mixed
matrices. On the practical side, mixed matrices have been used to solve problems
in various fields, such as electrical and chemical engineering [36].

Definition 3.1. Let F and K be fields such that F is a subfield of K. A matrix A over K is
called a mixed matrix if A = Q + T where Q is a matrix over F and T is a matrix over K

such that the set of T ’s non-zero entries is algebraically independent over F.

For the purposes of this thesis, F will be a finite field of numbers. Informally,
we may view K as the same field as F except we have introduced indeterminates
that are able to take any value in F. We may think of each entry of T as being either
zero or a single indeterminate in K.

It is often easier to deal with mixed matrices where the numbers and indetermi-
nates have been pulled into separate parts of the matrix. This leads to the following
restricted class of mixed matrices.

Definition 3.2. A layered mixed matrix (or LM-matrix) is a mixed matrix A = Q+T

where the non-zero rows of Q and the non-zero rows of T are disjoint. That is, A is an
LM-matrix if it can be put in the form

(

Q
T

)

.

The class of mixed matrices is equivalent to the class of LM-matrices in the
following sense. Let A = Q+T be an n×n mixed matrix. The system of equations

Ax = b (3.2)

is equivalent to the system of equations

(

I Q

Z T ′

)(

w

x

)

=

(

b

0

)

, (3.3)

where I denotes the n × n identity matrix, w is a new auxiliary vector, Z denotes

34

the diagonal matrix diag[z1, . . . , zn] containing new indeterminates z1, . . . , zn, and
T ′

i,j = −ziTi,j . The zi’s are only introduced so that the lower half contains no num-
bers. Equation (3.2) is equivalent to equation (3.3) because the latter forces that
w+Qx = b and (after canceling the zi’s) w−Tx = 0, so (Q+T) x = b. The non-zero
entries of T ′ are strictly speaking of the form −zixa but for notational simplicity
we will assume that they are of the form xa. This notational substitution does not
affect algebraic independence of the entries.

Definition 3.3. If A is a mixed matrix, let Ã be the transformation of A used in equation
(3.3). We refer to Ã as the separated matrix associated with A. The class of separated
matrices is a restricted class of LM-matrices.

We will henceforth use the notation (U
L) to denote an LM-matrix. We refer to

U as the upper submatrix and L as the lower submatrix. A separated matrix is
denoted

(

I Q
Z T

)

, where (I Q) is the upper submatrix and (Z T) is the lower subma-
trix. Since we view Q and T both as individual matrices and as submatrices of Ã,
discussing their row indices and column indices can be a bit confusing. Hence-
forth, we will say that the row indices of Q are {1, . . . , n} and the row indices of T

are {n + 1, . . . , 2n}. The column indices of both Q and T are {n + 1, . . . , 2n}. Thus
when we say that A = Q + T , we actually have Ai,j = Qi,n+j + Tn+i,n+j and we are
implicitly translating the row and column indices.

Since we showed that the systems of equations (3.2) and (3.3) are equivalent,
it follows that the nullspaces of A and Ã have the same dimension. Hence, the
matrices A and Ã satisfy the relation rank Ã = rank A + n. Thus, to compute the
rank of a mixed matrix, it suffices to compute the rank of its separated matrix. To
solve the latter problem, we will use the following theorem. It is phrased in terms
of the larger class of LM-matrices. As defined in Appendix A, let A[X,Y] denote
the submatrix of A with row-set X and column-set Y .

Theorem 3.4 (Murota [36]). Let A = (U
L) be an LM-matrix. Let C be the set of columns,

RU be the rows of the upper submatrix and RL be the rows of the lower submatrix. Then,

rank A = max
J⊆C

rank U [RU , J] + rank L[RL, C \ J]. (3.4)

Proof. We prove the result for the case that A has full rank. The more general
statement follows by focusing on submatrices of A. The idea is to apply the Laplace

35

expansion (Fact A.9) with I = RL to det A. We obtain that

det A =
∑

J⊂C
|J |=n

± det L[RL, J] · det U [RU , J]. (3.5)

Each term of det L[RL, J] consists of a sum of monomials that are products of vari-
ables in X . Since each indeterminate appears only once in A, each monomial in
this expansion of det A is unique. Thus there is no cancellation amongst terms of
det A. It follows that A has full rank whenever a pair of submatrices L[RL, J] and
U [RU , J] do. �

The maximization performed in equation (3.4) is non-trivial, but it can be solved
using matroid-theoretic algorithms. The matrix U is treated as a linear matroid MU

over the field F. The matrix L is treated as the transversal matroid ML for the bi-
partite graph corresponding to L (see equation (3.1) and Appendix B). With this
formulation in terms of matroids, equation (3.4) seeks disjoint sets JU , JL ⊆ C

such that JU is an independent set for MU , JL is an independent set for ML, and
|JU | + |JL| is maximum. This is precisely the matroid union problem (Section B.3).
Thus, the rank of a separated matrix can be computed in polynomial time using a
standard algorithm for matroid union. The next section presents a refinement of
this approach due to Murota [36].

3.3 Computing the Rank of an LM-matrix

We have shown that computing the rank of an LM-matrix reduces to the matroid
union problem for MU and ML. This implies an algorithm for computing the rank
for any mixed matrix because every mixed matrix A is related to a separated matrix
Ã, which is a particular type of LM-matrix.

The matroid union problem resulting from the reduction relates to matchings in
two distinct ways. First, the matroid union problem can be reformulated as a ma-
troid matching problem (see Section B.3). Second, since the matrix L contains only
indeterminates and zeros, the independence oracle for ML operates by computing
a matching in the bipartite graph corresponding to matrix L. In this section, we
will combine these two matching problems and thereby obtain a more streamlined
algorithm for computing the rank of a separated matrix.

36

U

L

1
1

1

z1
z2

z3

1 1
1

1

x1 x2
x3

C
RL

Ĉ

(a)

EU

EL

RL
C

Ĉ

(b)

Figure 3-1: (a) A separated matrix A =
(

I Q
Z T

)

=
(

U
L

)

and the vertices of the corresponding
matroid matching problem G. (b) The bipartite graph G for the matroid matching problem.
Note that the edges EL correspond to the non-zero entries of the lower submatrix (Z T).
The bold edges are an independent matching because columns 2, 3, and 4 of the upper
submatrix are linearly independent. The light-grey vertices denote the set of columns JU

and the dark-grey vertices denote the set of columns JL.

Given an LM-matrix A = (U
L), we now describe the reduction to the matroid

matching problem. An example of this reduction is shown in Figure 3-1. As before,
let C be the columns of A, and let RU and RL be the rows of U and L. Define Ĉ to
be a copy of the set C where each c ∈ C is represented as an element ĉ ∈ Ĉ. The
matroid matching problem instance is based on the bipartite graph G := (V + ∪
V −, EU ∪ EL), where

V + := RL ∪ Ĉ,

V − := C,

EU := { (ĉ, c) : c ∈ C } ,

EL := { (r, c) : r ∈ RL, c ∈ C,Lr,c 6= 0 } .

The edge-set EU simply connects corresponding columns in C and Ĉ and the
edge-set EL is precisely the bipartite matching problem associated with the ma-
trix L. Our goal is to find a maximum cardinality matching M in G such that the
columns in C covered by M ∩ EU are independent in U and the columns covered
by M ∩ EL are independent in L. Since the matrix L contains only zeros and in-

37

determinates, a set of columns is independent in L precisely when the vertices
corresponding to those columns are matchable in the graph GL = (RL∪C,EL) (see
Section B.2). The columns covered by M ∩EL are clearly matchable (since they are
covered by M) and hence independent in L.

To ensure that the columns covered by M ∩EU are independent in U , the edges
EU are of no use at all. However, the matroid matching problem allows us to
enforce conditions on the matching M by defining matroids on the vertices of the
graph. We can enforce our desired condition by defining a matroid on the vertex
set Ĉ. Let MU be the linear matroid corresponding to the matrix U on the ground
set Ĉ. No additional conditions are necessary for vertex sets RL or C, so we define
MRL

and MC to be free matroids on these ground sets. To complete the definition
of our matroid matching instance, we must assemble these matroids into a matroid
M

+ defined on V + and a matroid M
− defined on C. We set

M
+ := MRL

⊕ MU and M
− := MC .

Stated simply, a matching M in the graph G must only meet the requirement that
the subset of Ĉ covered by M is an independent set of columns in MU .

Suppose we have found a maximum independent matching M in our instance.
Let JU be the set of vertices in C that are covered by M ∩ EU and let JL be the
vertices in C that are covered by M ∩ EL. As explained above, JU is a set of inde-
pendent columns in U and JL is a set of independent columns in L. Since JU and JL

are disjoint, we see by equation (3.4) that rank A ≥ |M |. In fact, Murota [36] proves
that rank A = |M | will hold. Thus to compute the rank of a separated matrix A,
one can simply find a maximum independent matching in the matroid matching
instance described above, and then output the cardinality of the matching. Pseu-
docode for this algorithm is given in Algorithm 3.1. The runtime is dominated by
Step 2, which requires O(n3 log n) time as explained in Section B.3.

Algorithm 3.1: Algorithm for computing the rank of a mixed matrix A.

Step 1: Construct the separated matrix Ã and the matroid matching problem G.
Step 2: Compute a maximum independent matching M in G.
Step 3: Return |M |.

38

3.4 Single Matrix Completion

The previous section discussed how to compute the rank of a mixed matrix. We
now use that framework to give an efficient algorithm for finding a max-rank com-
pletion of a single mixed matrix. To simplify the presentation, we assume through-
out that the matrices given as input to the algorithm are square and have full rank.
This assumption can always be satisfied by finding an appropriate submatrix of
the input. We begin by discussing a simple, polynomial-time algorithm.

3.4.1 A Simple Algorithm

Let A be a mixed matrix of size n×n with full rank. We first show that A necessarily
has a completion, regardless of the field from which the entries of A are drawn.
Let X := {x1, x2, . . .} be the set of indeterminates appearing in matrix A. Then
det A is a multivariate polynomial in the variables in X . It has total degree n but
the maximum exponent of each variable is 1 since each indeterminate appears in
exactly one entry of A.

The Schwartz-Zippel lemma [32] shows that if we work over a field of size Ω(n)

then a constant fraction of all values for X are not roots of the determinant. This
statement is stronger than we require: we are content to work over fields where
just a single point is a non-root. The following simple lemma shows that any field
will suffice.

Lemma 3.5. Let P (x1, . . . , xt) be a multivariate, non-zero polynomial such that the max-
imum exponent of any variable is at most d. For any prime power q > d, there exists a
point x ∈ F

t
q such that P (x) 6= 0.

Proof. The proof is by induction on t. The base case is when t = 0 and therefore P

is a polynomial that does not depend on any indeterminates. Since, by assumption,
P is not identically zero, the claim holds trivially.

For t ≥ 1, we may write

P (x1, . . . , xt) =
d
∑

i=0

Pi(x1, . . . , xt−1) xi
t,

where at least one of the polynomials Pk must be non-zero. By induction, there is a

39

point x
′ ∈ F

t−1
q such that Pk(x

′) 6= 0. Substituting x
′ for (x1, . . . , xt−1), P becomes a

single-variate, non-zero polynomial in xt of degree at most d. Since this polynomial
can have at most d roots over Fq and q > d, we may choose a value xt ∈ Fq that is
not a root. Thus P (x′, xt) 6= 0. �

This lemma implies the following simple self-reducibility approach for com-
puting a completion.

Algorithm 3.2: A simple algorithm for finding a completion of a mixed matrix A.

Step 1: Compute the rank r of A using Algorithm 3.1.
Step 2: For each indeterminate x in A

Step 3: Set x := 0.
Step 4: Compute the rank r′ of the resulting matrix using Algorithm 3.1.
Step 5: If r′ < r then set x := 1.

Applying Lemma 3.5 with d = 1, we see that a completion must exist over any
field of size at least 2. Thus for any indeterminate, setting it to either 0 or 1 does
not decrease the rank. This simple algorithm can also be interpreted as using the
method of conditional probabilities [32] to derandomize the algorithm of Lovász.

3.4.2 A Better Algorithm

It is clear that Algorithm 3.2 is not terribly efficient since it repeatedly invokes Al-
gorithm 3.1 on mixed matrices that are very similar. In this subsection, we present
an improved algorithm that requires executing Algorithm 3.1 only once. The idea
is to use the independent matching M produced by Algorithm 3.1 to decide which
indeterminates are “important” and which are not. The unimportant indetermi-
nates may simply be set to zero, but the important ones require more care.

Let’s repeat this discussion more formally. Let A be an n × n mixed matrix,
and let Ã =

(

I Q
Z T

)

be the corresponding separated matrix. Recall that the indeter-
minates in X correspond to edges in the matroid matching problem G. Let M be
a maximum independent matching for G. The important indeterminates are the
ones corresponding to edges used by M , namely the set

XM := { x ∈ X : Ti,j = x for some (i, j) ∈ M } .

40

We now consider the effect on M of choosing a value for an indeterminate.
Since the unimportant indeterminates correspond to edges not chosen by M , it
intuitively seems that we can set their value arbitrarily and M will still be a maxi-
mum independent matching. This is indeed the case, as we show in Lemma 3.6.

Suppose Tn+i,n+j contains some indeterminate x. We will view the operation of
setting x to v as actually setting Tn+i,n+j to 0 and incrementing Qi,n+j by v. This
is equivalent from the point of view of matrix A since A = Q + T (under the
implicit translation of the row indices mentioned in Section 3.2). Let Ã′ denote
the new separated matrix where Q and T have been modified in this manner, and
let G′ denote the new matroid matching problem. There are only two differences
between G and G′. First, the edge (n + i, n + j) does not appear in G′ since x is
no longer an indeterminate. Second, modifying the matrix Q may have affected
independence of some columns. Thus MU (and hence M

+) may have changed
somewhat.

Lemma 3.6. If x is unimportant then setting x to 0 does not decrease the rank.

Proof. Suppose that Tn+i,n+j = x where x is unimportant, i.e., x ∈ X\XM . We claim
that M is still a maximum independent matching for G′. First note that assigning x

the value 0 does not affect the upper submatrix at all, hence the upper submatrices
of Ã and Ã′ are identical. Thus the edges EU in G and G′ are identical, as are the
matroids MU and M

′
U . The edges EL in G and G′ are identical except that the edge

(n + i, n + j) does not appear in G′. Since (n + i, n + j) 6∈ M by assumption, M is
still an independent matching in G′. The rank of Ã′ is at least the cardinality of any
independent matching in G′, and hence at least the size of M . Since |M | = 2n, it
follows that Ã′ has full rank. �

The important indeterminates require more care than the unimportant ones, as
illustrated by the following example.

Example 3.7. Consider the matrix A =
(

x1 1
1 x2

)

. The corresponding separated
matrix is

Ã =

1 0 0 1

0 1 1 0

z1 0 x1 0

0 z2 0 x2

.

41

An independent matching yields two disjoint sets of columns JU and JL that are
independent for the upper half and the lower half respectively. In this example,
we may have JU = {(1

0) , (0
1)} (the first two columns) and JL = {(x1

0) , (0
x2

)}. The
set XM would then be {x1, x2}. Setting both x1 and x2 to 1 is a bad choice since the
original matrix A becomes (1 1

1 1), so the rank has decreased. Setting both x1 and x2

to 0 is a good choice for this example, but this would have been a poor choice if the
original matrix A were

(

x1 0
0 x2

)

. �

Now we explain how to deal with the important indeterminates. Suppose we
choose an arbitrary x ∈ XM and assign it a value. We want to argue that this as-
signment does not decrease the rank, at least for some choices of the value. For
unimportant variables, we simply argued that our matching M was still a maxi-
mum independent matching for the new matroid matching problem G′. However,
if x ∈ XM then x corresponds to some edge in M ; after assigning x a value, this
edge does not appear in G′. Thus M is not a valid matching for G′ and we cannot
directly use M to argue that the new separated matrix Ã′ has full rank. Instead,
we show in the following lemma that we can construct from M a new maximum
independent matching M ′ for G′.

Lemma 3.8 (Swapping Lemma). Let x be an indeterminate in XM that is in entry
Tn+i,n+j . There exists a value v that we can assign to x such that

M ′ = M − (rn+i, cn+j) + (rn+i, ci) − (ĉi, ci) + (ĉn+j, cn+j) (3.6)

is a maximum independent matching for the new matroid matching problem G′.

To prove this lemma, we first need a few definitions. Rather than discussing the
matching M directly, it is more convenient to discuss the columns (i.e., vertices) in
C that are covered by M . Hence we define the following sets of column indices.

JU := { c ∈ C : (ĉ, c) ∈ M }
JL := { c ∈ C : (r, c) ∈ M for some r ∈ RL }

These sets of columns satisfy the following basic properties.

1. The columns in JU are independent for the upper submatrix.

42

2. The columns in JL are independent for the lower submatrix.

3. |JU | = |JL| = n.

4. JU ∪ JL = C.

5. JU ∩ JL = ∅.

An equivalent statement of property 2 is as follows: if we consider only the lower
half of G (i.e., the subgraph induced by the edges EL) then JL must be matchable
in this subgraph. We will now use these sets of columns to prove the Swapping
Lemma.

Proof (of Lemma 3.8). Let x ∈ XM be the indeterminate in entry Tn+i,n+j , as in the
statement of the theorem. We will prove that we can assign x a value v such that

J ′
U := JU − ci + cn+j and J ′

L := JL + ci − cn+j (3.7)

satisfy the basic properties for the matrix Ã′. This is sufficient to prove the state-
ment of the theorem. We break the proof up into the following three claims.

Claim 3.9. J ′
U and J ′

L satisfy basic properties 3–5 for the matrix Ã′.

Proof. Since x is important, (rn+i, cn+j) ∈ M . This implies that (rn+i, ci) 6∈ M since
the vertex rn+i can have only one incident matching edge. In the lower submatrix,
ci is a column of the diagonal matrix Z, and hence has only one non-zero entry.
Therefore there is exactly one edge in EL that is incident with ci, namely (rn+i, ci).
We have just argued that this edge is not in M , implying that ci 6∈ JL. By choice of
x, we have cn+j ∈ JL. Thus, using basic properties 4 and 5, we have

ci ∈ JU cn+j 6∈ JU ci 6∈ JL cn+j ∈ JL. (3.8)

This shows that the set operations in equation (3.7) are all non-trivial, and com-
pletes the proof of the claim. �

Claim 3.10. J ′
L satisfies basic property 2 for matrix Ã′.

Proof. To prove this claim, we will focus only on the lower half of G and modify
the matching M so that it becomes a valid matching for the lower half of G′. This

43

new matching will be chosen such that it covers the columns in J ′
L. This will show

that J ′
L is matchable in the lower half of G′, which is equivalent to the statement

that basic property 2 is satisfied.

We have argued above that (rn+i, cn+j) ∈ M , that (rn+i, ci) is the only edge
incident with ci in EL and furthermore this edge is not in M . Thus, considering
only the lower half of G′, M − (rn+i, cn+j)+(rn+i, ci) is a matching because we have
just matched rn+i with a different neighbor (which was previously uncovered).
Since J ′

L = JL − cn+j + ci, the new matching covers J ′
L and the claim follows. �

Claim 3.11. There exists a value v such that J ′
U satisfies basic property 1.

Proof. Recall that RU is the set of all rows in the upper submatrix. Let AU denote
the submatrix Ã[RU , JU] corresponding to the columns JU . Since JU satisfies basic
properties 1 and 3, the matrix AU is non-singular. Let ui and un+j be the column
vectors in the upper submatrix corresponding to column indices ci and cn+j . Sup-
pose that we assign x the value v. This effectively adds v · ui to un+j , since ui is the
ith elementary vector. In the resulting matrix, let A′

U be the submatrix Ã[RU , J ′
U]

corresponding to the columns J ′
U . We may equivalently regard A′

U as the matrix
obtained from AU by removing the column ui and replacing it with the column
un+j + v · ui. We will show that, for some value v, the matrix A′

U is non-singular.
This will establish the proof of the claim.

Note that det A′
U = α + v · β, where β = det(A′

U)del(i,n+j). (This follows from
Fact A.8.) We will analyze β by considering the original matrix AU . Column ci is
an elementary vector with its 1 entry in the ith row. Performing column expansion
of det AU , we delete column ci and the ith row. The resulting matrix is precisely
(A′

U)del(i,n+j). Since AU is non-singular, we obtain 0 6= det AU = ± det(A′
U)del(i,n+j).

Thus we have shown that det A′
U is a linear function in v of the form α + v · β

where β 6= 0. Thus −α/β is the unique value for v that makes A′
U singular. We

choose v to be any other value, thereby ensuring that the set J ′
U is independent for

the upper submatrix of Ã′. Thus, if we assign x the value v, then J ′
U will satisfy

basic property 1. �

We have shown that J ′
U and J ′

L satisfy all the basic properties for Ã′, completing
the proof. �

Lemma 3.6 and Lemma 3.8 together tell us how to complete the indeterminates

44

of a mixed matrix. The former allows us to dispense with the unimportant in-
determinates, and the latter guarantees that there exists a good value for every
important indeterminate. In fact, we can choose the value for an important inde-
terminate in polynomial time by evaluating det A′

U symbolically as in Claim 3.11.
This leads to a new algorithm for finding a completion of a mixed matrix A over
any field. Pseudocode for this algorithm is presented in Algorithm 3.3.

Algorithm 3.3: A better algorithm for finding a completion of a mixed matrix A.

Step 1: Construct Ã and G.
Step 2: Run Algorithm 3.1 to find a maximum independent matching M .
Step 3: For every x 6∈ XM , set x := 0.
Step 4: While there exists x ∈ XM

Step 5: Use the Swapping Lemma to find a value v to assign to x.
Step 6: Remove x from XM and set M := M ′ (as in equation (3.6)).

At the end of this algorithm, all indeterminates have been assigned a value.
We regard this algorithm as having set all entries of matrix T to zero and having
modified the values of matrix Q. Since the rank of the matrix Ã never decreases, it
follows that the resulting matrix Q has full rank. Therefore the values chosen for
X constitute a completion for the matrix A.

3.4.3 Efficiency of the Better Algorithm

To justify our claim that Algorithm 3.3 is “better” than Algorithm 3.2, we must
carefully analyze its runtime. Let the dimensions of the input matrix A be n × n.
It is clear that Step 2, which requires O(n3 log n) time, dominates the work in Step
1 and Step 3. The loop of Step 4 repeats O(n) times since |XM | ≤ |M | = 2n. The
work in Step 6 is clearly negligible.

It remains to analyze the work of Step 5. A straightforward implementation
that follows the proof of Claim 3.11 requires O(n3) time, where the bulk of the
work is the determinant computation. We now describe a more efficient imple-
mentation that shares work between subsequent invocations. The key idea is to
maintain a copy of matrix Q that has been pivoted so that independence tests can
be performed quickly. This technique is not new; it has been used in many previ-
ous algorithms, including Cunningham’s matroid intersection algorithm [8].

45

Algorithm 3.4: An efficient implementation of Algorithm 3.3.

Step 1: Construct Ã and G. Let P := Q and let S be the identity.
Step 2: Run Algorithm 3.1 to find a maximum independent matching M .
Step 3: For every x 6∈ XM , set x := 0.
Step 3b: For each j ∈ JQ, find an i ∈ RQ such that Pi,j 6= 0 and pivot on Pi,j .
Step 4: While there exists x ∈ XM

Step 5’: Let Tn+i,j be the entry containing x. Set x := 1 − Pi,j . Pivot on Pi,j and
update S accordingly.

Step 6: Remove x from XM and set M := M ′ (see equation (3.6)).

Our efficient implementation will maintain two additional n × n matrices P

and S that satisfy P = SQ. The matrix P is obtained from Q by performing
Gauss-Jordan pivots, and the matrix S keeps track of these pivots. These matrices
will allow us to quickly find appropriate values for the important indeterminates.
Pseudocode for this efficient implementation is given in Algorithm 3.4.

We argue correctness of Algorithm 3.4 by proving an invariant. First, we must
introduce some notation. In the previous section we defined JU to be the set of
columns that are independent for the upper submatrix. We now need to be more
precise. Let JQ denote the columns of Q that are covered by the matching M and let
JI denote the columns of I that are covered by the matching M . Thus JU = JQ∪JI .
Let RU be the set of all n rows of the upper submatrix. Let RI ⊆ RU denote the
rows in the upper submatrix where the columns JI are non-zero, i.e., ri ∈ RI if and
only if ci ∈ JI . The complementary set of rows is RQ := RU \ RI . The row indices
and column indices of P are taken to be identical to those of Q. In this section, we
will use j rather than n+j as a column index for columns in Q and T . The assumed
range for index j is accordingly n + 1 ≤ j ≤ 2n.

Invariant 3.12. When Step 4 is executed, the algorithm has pivoted exactly once on each
row in RQ and each column in JQ.

An obvious but useful consequence of this invariant is the following.

Corollary 3.13. When Step 4 is executed, the submatrix P [RQ, JQ] is non-singular and
the submatrix P [RI , JQ] contains only zeros.

First we argue that the invariant is initially established by Step 3b. To show

46

that Step 3b can indeed be executed, consider assembling the columns of JI and
JQ into a single matrix. After a suitable reordering of the rows, we have a matrix
of the form (I X

0 Y). (The left columns are those in JI and the right columns are those
in JQ.) By properties of Gaussian elimination (Fact A.13), we see that Step 3b can
always be completed and that the invariant holds afterwards.

How does this invariant allow us to choose a value in Step 5’ quickly? Recall
that our goal at this step is to execute the Swapping Lemma efficiently. So, for cj 6∈
JQ, we want to understand when cj can be swapped into JQ without destroying
independence.

Lemma 3.14. Let cj be a column of submatrix Q that is not in JQ. If Pi,j 6= 0 for some
ri ∈ RI then the columns JQ + cj of matrix Q are independent.

Proof. Let Q′ := Q[RU , JQ + cj]. Our objective is to prove that Q′ has full column-
rank. To do so, we will analyze an appropriate submatrix of P . Let CS be the
column-set of matrix S and let S ′ := S[RQ + ri, CS]. Setting P ′ := S ′ ·Q′, we obtain

P ′ = S[RQ + ri, CS] · Q[RU , JQ + cj] = P [RQ + ri, JQ + cj].

Consider det P ′. We apply the block determinant fact (Fact A.10) where W :=

P [RQ, JQ] and Y := (Pi,j). Clearly Y is non-singular, by choice of Pi,j , and Corol-
lary 3.13 shows that the matrix W is non-singular. Therefore, the block determi-
nant fact shows that P ′ is also non-singular. Since P ′ has full rank and rank cannot
increase by multiplication (Fact A.12), we see that Q′ also has full column rank. �

We now show that the hypothesis of Lemma 3.14 will hold if we choose an
appropriate value v for x.

Lemma 3.15. Let x be the indeterminate in Tn+i,j . If x is assigned the value v = 1 − Pi,j

then Pi,j becomes non-zero. Furthermore, ri ∈ RI .

Proof. First, consider what happens to the various matrices when we assign x a
value. Setting x to the value v amounts to setting Tn+i,j := 0 and Qi,j := Qi,j + v.
To determine how the matrix P is affected, recall that P = SQ. The column view
of matrix multiplication (see Fact A.1) tells us that P∗,j =

∑

c S∗,cQc,j . Therefore
incrementing Qi,j by v results in incrementing P∗,j by v · S∗,i. Thus whether Pi,j

becomes non-zero depends on the value of Si,i.

47

To understand the value of Si,i, we first show that ri ∈ RI . This holds because
it was shown in Lemma 3.8 that if Tn+i,j contains an indeterminate in XM then
ci ∈ JI (see equation (3.8)). Thus, by definition, we have that ri ∈ RI . Therefore
the invariant shows that we have not yet pivoted on row i. By the properties of
Gaussian elimination (Fact A.15), if we have not yet pivoted on row i then the ith

column of S is the ith elementary vector and hence Si,i = 1. Therefore incrementing
Qi,j by v results in incrementing Pi,j by v. Choosing v = 1 − Pi,j ensures that Pi,j

becomes non-zero. �

This lemma shows that the choice of v in Algorithm 3.4 makes Pi,j non-zero,
and therefore Step 5’ can indeed pivot on Pi,j as specified. To complete the proof
of correctness, we must argue two remaining points: (1) that Invariant 3.12 is re-
stored, and (2) the new matching M ′ is a maximum independent matching for G′.
For the first point, note that setting the matching to M ′ has the effect of setting
JQ := JQ + cj and RQ := RQ + ri. Since the algorithm has just pivoted on entry
Pi,j this shows that the invariant is restored. To prove the second point, we will
show that the Swapping Lemma holds with our particular value of v by revising
Claim 3.11.

Claim 3.16. Setting v := 1 − Pi,j ensures that J ′
U satisfies basic property 1.

Proof. Combine the columns JI − ci and JQ + cj into a single matrix, which we
denote MU ′ . We may reorder the rows such that the matrix has the form MU ′ =

(W X
0 Y) , where W = I[RI − ri, JI − ci] and Y = Q[RQ + ri, JQ + cj]. It suffices to

show that MU ′ is non-singular. Clearly submatrix W is non-singular, so consider
submatrix Y . The algorithm has so far pivoted exactly once in each row of RQ + ri

and each column of JQ + cj . By properties of Gaussian elimination (Fact A.14), we
see that Y = Q[RQ + ri, JQ + cj] is non-singular. The block determinant fact now
implies that MU ′ is non-singular. �

The correctness of Algorithm 3.4 has been established. We now analyze its
runtime by considering the work of Step 3b and Step 5’. It suffices to consider
the pivoting operations. Since the algorithm pivots at most once in each column,
there are at most n pivot operations. Since each pivot requires only O(n2) time (see
Appendix A), the pivots require only O(n3) time in total. Thus the running time of
the algorithm is dominated by Step 2, which requires O(n3 log n) time. This proves

48

the first claim of Theorem 1.2.

Let us now compare Algorithm 3.4 with existing algorithms for finding com-
pletions. The randomized algorithm of Lovász requires O(n3) time to verify the
rank of the resulting matrix and, in order to have a reasonable probability of suc-
cess, operates over a field of size Ω(n). Geelen’s deterministic algorithm can be
implemented in O(n4) time [3] and also operates over a field of size Ω(n). In com-
parison, our algorithm is only a logarithmic factor slower than the randomized
algorithm, completes successfully with certainty, and can operate over any field.
A slight difference between Geelen’s algorithm and ours is that Geelen’s does not
allow indeterminates to be assigned the value zero. Our algorithm can be adapted
to include this requirement by operating over any field with at least three elements.
Details are provided in Section 3.5.1.

3.5 Simultaneous Matrix Completion

Let A := {A1, . . . , Ad} be a collection of mixed matrices over Fq, where each inde-
terminate may appear in several matrices, but at most once in any particular ma-
trix. Let X be the set of all indeterminates appearing in the matrices in A. In this
section, we consider the problem of finding a simultaneous max-rank completion
for the matrices in A. That is, we seek an assignment of values to the indetermi-
nates in X from Fq such that the resulting matrices all have full rank. In this section
we prove that if q > d then such a completion must exist and we give an efficient
algorithm for finding such a completion.

The existence result is a straightforward extension of the result for completion
of a single matrix. Define P :=

∏d

k=1 det Ak. Then P is a multivariate polyno-
mial in the indeterminates X where the maximum exponent of each variable is d.
Lemma 3.5 shows that for any q > d, there is a point x ∈ F

|X |
q such that P (x) 6= 0.

That is, there exists an assignment of values from Fq to the indeterminates in X
such that the resulting matrices all have full rank. Furthermore, this existence re-
sult immediately implies a polynomial-time algorithm to find a simultaneous com-
pletion, using the same self-reducibility approach as Algorithm 3.2. Simply pick
an indeterminate and repeatedly try assigning it values from Fq until all matrices
have full-rank. Repeat this process until all indeterminates have been assigned a

49

value.
We now derive an improved algorithm by extending Algorithm 3.4 to handle

multiple matrices. The intuitive idea is, rather than blindly guessing values for an
indeterminate, maintain pivoted copies of each matrix so that we can quickly find
a value which will not decrease its rank. The first step is to construct the separated
matrix Ãk =

(

Ik Qk

Zk Tk

)

associated with Ak for all k. For simplicity of notation, we
will now focus on a single matrix Ã and drop the subscript k. Suppose we execute
Algorithm 3.1 on Ã and obtain an independent matching M . Let JU and XM be as
defined in the previous section.

Lemma 3.17. Let x be an arbitrary indeterminate in X . There is at most one v ∈ Fq such
that assigning x the value v decreases the rank of Ã.

Proof. If x does not appear in Ã then there is nothing to prove, so assume that
some entry Tn+i,j contains x.

Case 1: x ∈ XM . The argument proceeds as in Lemma 3.8. If we assign x the value
v then we must ensure that the set of vectors J ′

U := JU − ci + cj is linearly
independent. As in Claim 3.11, we observe that det A′

U has the form α + v · β
where β 6= 0. Thus there is precisely one value of v that makes J ′

U linearly
dependent.

Case 2: j ∈ JU . Note that in this case j must be a column of the submatrix Q. Then
setting x to v amounts to incrementing Qi,j by v. Let AU be the matrix consisting
of columns in JU and let A′

U be the matrix that results from incrementing by v.
Note that det A′

U = α+v ·β, where α = det AU 6= 0. (This follows from Fact A.8.)
Thus det A′

U can only be zero when β 6= 0 and v = −α/β. This shows that there
is at most one value of v such that det A′

U = 0.

Case 3: j 6∈ JU and x 6∈ XM . As in Lemma 3.6, assigning a value to x does not affect
independence of JU , nor does it destroy any edges used by the matching. Thus
the rank of Ã is unaffected. �

Lemma 3.17 implies the following approach for finding a simultaneous com-
pletion for a set of matrices A. Pick an indeterminate x and, for each matrix in A,
determine the forbidden value of x, as in the proof of Lemma 3.17. Since we oper-
ate over Fq and q > d, a non-forbidden value must exist. Assigning this value to
x preserves the rank of all matrices. Pseudocode for this simultaneous completion

50

Algorithm 3.5: Algorithm for finding a simultaneous max-rank completion of the
matrices in the set A.
Step 1: For k from 1 to d,

Step 2: Consider A = Ak. Construct the separated matrix Ã =
(

I Q
Z T

)

associated
with A. Compute a maximum independent matching M using Algorithm 3.1.
Initially let P := Q and let S be the identity matrix, so we have P = SQ. The
objects Ã, M , P etc. are implicitly parameterized by k.

Step 3: Define XM , JQ and RQ as in Section 3.4.2 and Section 3.4.3. For each
j ∈ JQ, find an i ∈ RQ such that Pi,j 6= 0 and pivot on Pi,j .

Step 4: For each x ∈ X ,
Step 5: The set of forbidden values for x is initially F := ∅.
Step 6: For k from 1 to d,

Step 7: Consider A = Ak. Let Tn+i,j be the entry of A containing x. We de-
termine A’s forbidden value for x as in Lemma 3.17. If x ∈ XM then, as in
Algorithm 3.4, −Pi,j is the forbidden value for x. Set F := F ∪ {−Pi,j}.

Step 8: Otherwise, suppose that j ∈ IQ. Setting x := v results in incrementing
Qi,j by v and incrementing P∗,j by v · S∗,i (by the column-based view of
matrix multiplication). Let i′ be the row such that Pi′,j 6= 0. We must ensure
that this entry remains non-zero after incrementing. Store the value of i′

for use in Step 11. Setting x := v results in increasing Pi′,j by v ·Si′,i. (Other
entries of P∗,j may also be modified but they will be zeroed in Step 11.) If
Si′,i 6= 0 then the value −Pi′,j/Si′,i is forbidden. Set F := F ∪ {−Pi′,j/Si′,i}.

Step 9: Choose a value v from Fq that is not in F . Assign the value v to x.
Step 10: For k from 1 to d,

Step 11: Consider A = Ak. Update T , Q and P according to the value v for x.
If x ∈ XM , update XM and M as in Step 6 of Algorithm 3.4. Otherwise, if
j ∈ JQ, pivot on entry Pi′,j .

algorithm is given in Algorithm 3.5.

We now briefly consider the running time of this algorithm. Assume for sim-
plicity that all matrices have size n × n. The time required for Steps 1–3 is clearly
O(dn3 log n) since the work is dominated by the d invocations of Algorithm 3.1.
The time for Steps 4–11 is dominated by the pivoting work in Step 11. For each
indeterminate in X and for each matrix we perform at most one pivot, which re-
quires O(n2) time. Thus the time required for Steps 4–11 is O(|X | dn2). Thus the
total runtime of this algorithm is O(d(n3 log n+ |X |n2)). This discussion completes
the proof of Theorem 1.3.

51

3.5.1 Column Compatibility

The performance of the simultaneous matrix completion algorithm may be slightly
improved for collections of matrices satisfying a certain technical property. The
general approach is to reduce the number of pivoting operations by taking advan-
tage of indeterminates that appear together in the same column in each matrix.
Such indeterminates may all be assigned a value simultaneously before perform-
ing any pivoting work.

Formally, define an equivalence relation by the transitive closure of the relation
xi ∼ xj if xi and xj appear in the same column in some matrix in A. The collection
A is called column-compatible if, for every matrix Ak and equivalence class [x], at
most one column of Ak contains indeterminates in [x]. The column-compatibility
condition deserves consideration because the condition is satisfied by the matrices
arising from multicast network coding problems.

For column-compatible collections of matrices, Steps 4–11 of Algorithm 3.5 may
be modified as follows. We repeatedly choose an equivalence class [x], find values
for each indeterminate in that class that preserve the rank of all matrices, then,
pivot each matrix on the column (if any) that contains indeterminates in [x]. This
approach improves the time required for Steps 4–11 to O(|X | dn+ dn3), so the total
runtime of the algorithm becomes O(d(n3 log n + |X |n)).

As mentioned in the previous section, Geelen’s algorithm for finding a com-
pletion of a single mixed matrix does not allow indeterminates to be assigned the
value zero. Such a completion can also be found using a slight variant of Algo-
rithm 3.5. Given a mixed matrix A, we define a singleton collection A := {A}.
The only change required to Algorithm 3.5 is to forbid the value 0 by initializing
F := {0} rather than F := ∅ in Step 5. This algorithm may operate over F3 or
any larger field, and the time required is O(n3 log n) since a singleton collection is
trivially column-compatible.

3.6 Single Matrix Completion, Revisited

In this section we describe our last algorithm for finding a completion of a single
mixed matrix. This algorithm depends on a fairly complicated matroid-theoretic
algorithm, but is otherwise extremely simple. Pseudocode for this algorithm is

52

shown in Algorithm 3.6. The discussion of this algorithm was postponed to the
present section because it does not extend to simultaneous matrix completions.

Algorithm 3.6: A very simple algorithm for finding a completion of a mixed ma-
trix A.

Step 1: Construct Ã and G.
Step 2: Find a maximum independent matching M in G that minimizes |XM |.
Step 3: Assign x := 1 if x ∈ XM and x := 0 otherwise.

Given a mixed matrix A, Step 1 constructs the separated matrix Ã =
(

I Q
Z T

)

and
the matroid matching problem G as in Section 3.4. As before, X denotes the in-
determinates appearing in A and XM ⊆ X denotes the set of indeterminates that
correspond to edges in a matching M . Additionally, define Z to be the set of new
indeterminates that are contained in the diagonal submatrix Z and define ZM anal-
ogously. Step 2 of this new algorithm finds a maximum independent matching M

satisfying a certain condition. To explain why such a matching is useful, we must
examine det Ã in some detail. This determinant consists of a linear combination of
monomials of the form

xα1 xα2 · · · xαk
zβ1 zβ2 · · · zβn−k

.

We first show a connection between the monomials in det Ã and matchings in G.

Lemma 3.18. There is a bijection between the maximum independent matchings in G

and the monomials that appear in det Ã such that a matching M is mapped to a monomial
whose indeterminates are precisely those in XM ∪ ZM .

Proof. The bijection is based on the Laplace expansion of det Ã appearing in equa-
tion (3.5). To prove the forward direction, consider a matching M . Let J be the set
of columns that are covered by edges of M in the lower half of G. Note that J is
the set of columns containing the indeterminates in XM . Since M is an indepen-
dent matching, the columns J are independent for the upper submatrix. Thus, if
we consider the term in the sum of equation (3.5) with this value of J , we see that
det U [RU , J] 6= 0. Furthermore, since each indeterminate appears at most once in
A, there is no cancellation among terms of the determinant and hence det L[RL, J]

contains a monomial whose indeterminates are precisely those in XM ∪ ZM . Thus

53

det L[RL, J] · det U [RU , J] contains this monomial and so does det Ã. The other
direction of the bijection follows by applying same construction in reverse. �

Let us now consider the matching M chosen in Step 2 of Algorithm 3.6.

Lemma 3.19. Every monomial in det Ã except one contains an indeterminate in X \XM .

Proof. We have shown in Lemma 3.18 that there is a monomial corresponding to
M that contains only indeterminates in XM ∪ ZM . Consider any other monomial
that does not contain an indeterminate in X \ XM . Let M ′ be the matching corre-
sponding to this monomial. Our choice of M implies that |XM ′ | ≥ |XM |. Since XM ′

does not contain an indeterminate in X \ XM , we must have XM ′ = XM . Thus the
edges of M ′ corresponding to indeterminates in X are identical to those in M . Let
us consider the edges of M ′ in the lower half of G that correspond to indetermi-
nates in Z . Since the matrix Z is diagonal, there is only one possibility for these
edges. Thus we conclude that M = M ′ and hence there is a unique monomial that
does not contain an indeterminate in X \ XM . �

Suppose that we assign the value 1 to all indeterminates in XM ∪ Z and 0 to all
indeterminates in X \ XM . It follows from Lemma 3.19 that exactly one monomial
will have the value 1 and that all others will have the value 0. This assignment
therefore ensures that det Ã 6= 0 and hence gives a completion for Ã and for the
original matrix A. This discussion proves the correctness of Algorithm 3.6.

The running time of this algorithm is obviously dominated by Step 2. To find
such a matching M , we augment the matroid matching problem G with weights.
Edges corresponding to indeterminates in X are given weight 0 and all other edges
are given weight 1. A maximum weight independent matching therefore gives the
desired matching M . As described in Appendix B, such a matching can be com-
puted in O(n3 log2 n) time. This bound reduces to O(n2.77) if fast matrix multiplica-
tion is used. This completes the proof of Theorem 1.2.

54

Chapter 4

Hardness of Matrix Completion

The previous chapter showed a polynomial time algorithm that finds a completion
for a single matrix over any field. We now show that finding a simultaneous matrix
completion is computationally hard unless the field size is sufficiently large.

4.1 Simultaneous Completion when q < d

Define SIM-COMPLETION(q, d) to be the problem of deciding whether a given col-
lection A of d matrices over Fq has a simultaneous completion. Recall that q must
be a prime power in order for Fq to be a field.

Theorem 4.1. If q is a prime power and d > q, the problem SIM-COMPLETION(q, d) is
NP-complete.

Note that fixing q and d does not determine the size of the input, because the
matrices can be arbitrarily large.

Proof. First we remark that a completion can be checked in polynomial time. Sim-
ply perform Gaussian elimination on the completed matrices and verify that they
have full rank. The Gaussian elimination process runs in polynomial time because
the matrices no longer contain any indeterminates; they only contain values in Fq.
This shows that the problem is in NP. We now show hardness via a reduction from
CIRCUIT-SAT.

The CIRCUIT-SAT problem can be defined as follows: given an acyclic boolean
circuit of NAND gates with a single output, determine if the inputs can be set such

55

that the output becomes 1. Suppose we are given a circuit φ with n gates. We
will construct a collection A of d matrices over Fq such that a completion for A
corresponds to a satisfying assignment for φ and vice-versa. It suffices to consider
the case that d = q + 1 because otherwise we may simply pad the set A with
additional non-singular matrices containing no variables. Suppose initially that
the field size is q = 2, i.e., all values are either 0 or 1.

Gadget 1: The first step is the construction of a matrix gadget that behaves like
a NAND gate. Consider a completion of the mixed matrix

N(a, b, c) :=

(

1 a

b c

)

.

Recall that a completion must maximize the rank of this matrix and therefore must
satisfy 0 6= det N(a, b, c) = c − ab. The only non-zero element of F2 is 1, hence
c = ab + 1. Since multiplication over F2 corresponds to the boolean AND operation
and adding 1 corresponds to boolean NOT, we have c = a NAND b.

It is now straightforward to construct a (large) collection of matrices for which
a simultaneous completion corresponds to a satisfying assignment for φ. For every
NAND gate in φ with inputs a and b and output c, add an instance of N(a, b, c) to A.
We also add to A the matrix (y) where y is the output of the circuit. This reflects
the requirement that the circuit be satisfied, i.e., its output should be 1. It is easy
to verify that a completion for A is a satisfying assignment for φ and vice-versa.
Unfortunately, this collection of matrices is too large: it has |A| = n + 1 matrices
and we desire that |A| = d = q + 1 = 3.

To construct a smaller collection of matrices, we might imagine combining
these matrices into a single block-diagonal matrix A. For example, we might have

A =

N(a, b, c)

N(b, c, d)

N(a, d, e)
. . .

.

Unfortunately such a matrix is not a valid input for the simultaneous matrix com-
pletion problem since variables appear multiple times in general. The next gadget
allows us to circumvent this restriction.

56

Gadget 2: We now construct a gadget that allows us to replicate variables. Con-
sider the following pair of matrices.

B :=

N(1, x(1), y(2))

N(1, x(2), y(3))

N(1, x(3), y(4))
. . .

C :=

N(1, y(2), x(2))

N(1, y(3), x(3))

N(1, y(4), x(4))
. . .

(4.1)

The matrix B enforces that y(i+1) = 1 NAND x(i) = NOT x(i) for all i ≥ 1. The
matrix C similarly enforces that x(i) = NOT y(i) for all i ≥ 2. Thus B and C together
enforce that x(i) = x(1) for all i ≥ 1. We extend the definition of B and C to generate
n copies of all variables in φ (including the inputs and intermediate wires).

Construct the matrix A′ by modifying A so that the first appearance of a vari-
able x uses x(1), the second appearance uses x(2), etc. Let A = {A′, B, C}. It is
easy to verify that a simultaneous matrix completion for A determines a satisfying
assignment for φ and vice-versa. This completes the proof for the special case of
q = 2. Our third gadget is needed to generalize to an arbitrary field Fq.

Gadget 3: This third gadget ensures that each variable can only be assigned the
value 0 or 1. Let c be a fixed non-zero constant in Fq. Consider a completion of the
mixed matrix

Dc :=

c c

c x1

c c

c x2

. . .

.

(Here c is not an indeterminate that requires completion, it is a parameter of the
matrix Dc.) If Dc is to have full rank, it is clear that none of the indeterminates can

57

be assigned the value c. Furthermore, if all indeterminates are assigned values in
{0, 1} then Dc has full rank. By adding the matrices {D2, . . . , Dq−1} to the collection
A, we enforce that each indeterminate is either 0 or 1.

We now verify that the first two gadgets behave as desired when operating over
Fq but the indeterminates are restricted to the values 0 and 1. It suffices to consider
the matrix N(a, b, c). Recall that det N(a, b, c) = c − ab. If a, b, c are elements of
Fq that are restricted to take on the values {0, 1} then the set of solutions to the
equation c − ab 6= 0 is precisely

(a, b, c) ∈ {(0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0)} ,

which again corresponds to the NAND operation. This verifies that our third gad-
get indeed reduces the case of general q to the case q = 2.

In summary, A = {A′, B, C,D2, . . . , Dq−1} is a collection of q + 1 matrices over
Fq for which a completion corresponds to a satisfying assignment for φ and vice-
versa. Given φ, the collection A is easy to construct in polynomial time, and hence
SIM-COMPLETION(q, d) is NP-hard. �

As a special case of Theorem 4.1, we see that deciding whether three matrices
over F2 have a simultaneous completion is NP-complete. What about two matri-
ces over F2? A common phenomenon in theoretical computer science is that the
difference between 2 and 3 often means the difference between polynomial-time
decidability and NP-hardness. (See, for example, Papadimitriou [40].) A well-
known example is obtained by restricting the clause sizes of a CNF formula: 3SAT
is NP-hard and 2SAT is polynomial-time decidable. Another example is coloring
the vertices of a graph: 3-coloring is NP-hard whereas 2-coloring is easy. Yet an-
other example is obtained by restricting the number of appearances of a variable in
a CNF formula: 3SAT is NP-hard even if each variable appears at most three times,
but SAT is polynomial-time decidable if each variable appears at most twice.

One might conjecture that this 2-or-3 phenomenon extends to simultaneous ma-
trix completions, since the number of appearances of a variable in a set of matrices
seems related to the number of appearances of a variable in a CNF formula. In
fact, our proof of Theorem 4.1 bears strong similarity to the proof that 3SAT is
NP-complete when each variable appears at most three times. Can we show anal-
ogously that completing two matrices over F2 is easy? Somewhat surprisingly, we

58

will show in Section 4.2 that the opposite result is true: SIM-COMPLETION(2, 2) is
NP-complete.

Before doing so, we use rudimentary polyhedral combinatorics to prove a re-
sult claimed above. To the best of our knowledge, this proof was not previously
known.

Theorem 4.2 (Tovey [46]). SAT is decidable in polynomial time if each variable appears
at most twice.

Proof. Suppose we are given a CNF formula φ where each variable appears at
most twice. If both appearances of a variable are unnegated then clearly we can
assume that this variable is true and delete the clauses that contain it. A similar ar-
gument holds if both appearances of a variable are negated, hence we may assume
that a variable appears negated exactly once and unnegated exactly once.

Let m be the number of clauses in φ and let x1, . . . , xn be the variables. Define

Ai := { j : xj appears unnegated in clause i }
Bi := { j : xj appears negated in clause i } .

The linear programming relaxation of the satisfiability problem is a feasibility prob-
lem for the following polytope P :

∑

j∈Ai

xj +
∑

j∈Bi

(1 − xj) ≥ 1 (for 1 ≤ i ≤ m)

0 ≤ xj ≤ 1 (for 1 ≤ j ≤ n)

Any integer vector in this polytope corresponds to a satisfying assignment for φ

and vice-versa. So it suffices to find an integer vector in this polytope. The first
m constraints of this polytope may be written as the system of equations Mx ≥ c.
Recall our previous assumption that each variable appears once negated and once
unnegated. This implies that each column of M contains exactly two non-zero
entries, one being +1 and the other being −1. Such matrices are well known to
be totally unimodular [44, Theorem 13.9], and hence the polytope P has integer
vertices [31, Theorem 7C.1]. If the formula φ is satisfiable then P is non-empty and
we can find an integer vertex in polynomial time via the ellipsoid method. This
vertex directly yields a satisfying assignment for φ. �

59

4.2 Simultaneous Completion when q = d

Example 4.3. Consider the following two matrices over F2.

M0 :=

(

1 0

0 x

)

and M1 :=

(

1 1

1 x

)

.

These matrices do not have a simultaneous completion because M0 is singular
when x = 0 and M1 is singular when x = 1. This example easily generalizes to
show that there exist q matrices over a field Fq that do not have a simultaneous
completion. To do so, we simply use the matrices encountered earlier which force
all values to be 0 or 1, namely Mc := (c c

c x) for 2 ≤ c < q �

Recall Algorithm 3.2, the simple self-reducibility algorithm for finding a com-
pletion of a single matrix over F2. The algorithm chooses an indeterminate arbi-
trarily, assigns it a value arbitrarily, and verifies that the matrix still has full rank.
One might imagine generalizing this algorithm to find a simultaneous completion
for two matrices over F2: assign values to indeterminates arbitrarily and verify
that both matrices still have full rank. The following example shows that this gen-
eralization does not work.

Example 4.4. We show that the generalization of Algorithm 3.2 described above
will err on the following two matrices.

A :=

x 0 1

y 1 0

z 1 1

and B :=

x 0 1

y 1 0

0 z 1

These matrices have completions when the following equations are satisfied.

det A = x + y + z = 1 =⇒ (x, y, z) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)}
det B = x + yz = 1 =⇒ (x, y, z) ∈ {(1, 0, 0), (1, 0, 1), (1, 1, 0), (0, 1, 1)}

The only simultaneous completion for these two matrices is (x, y, z) = (1, 0, 0).
Consider now the operation of Algorithm 3.2 on these matrices. It begins by arbi-
trarily setting the indeterminate x to 0. The resulting matrices are both still non-

60

singular because their determinants are det A = y + z and det B = yz respectively.
Next, the indeterminate y is considered. Setting y to 0 makes B singular so y is
set to 1. The resulting determinants are det A = 1 + z and det B = z. However,
there is no choice of z that ensures both determinants are non-zero, and hence the
algorithm fails. �

The preceding example shows that a simple algorithm fails to find a comple-
tion for two matrices over F2. This failure is to be expected — we will show that
SIM-COMPLETION(q, q) is NP-complete for every prime power q ≥ 2. The key to
proving this result is the following lemma.

Lemma 4.5. For any n ≥ 1, define the mixed matrix

Rn(x1, . . . , xn) :=

1 1 1 . . . 1 0

x1 1 1 . . . 1 1

0 x2 1 . . . 1 1

0 0 x3 . . . 1 1
...

...
...

...
0 0 0 . . . xn 1

.

The determinant of this matrix (over any field) is

det Rn =
n
∏

i=1

(1 − xi) −
n
∏

i=1

(−xi). (4.2)

Proof. Construct the following matrices from Rn by modifying the last column.

R′
n :=

1 . . . 1 1

x1 . . . 1 1

0
.

...
0 . . . xn 1

and R′′
n :=

1 . . . 1 −1

x1 . . . 1 0

0
.

...
0 . . . xn 0

Since the determinant is a linear function of every column (Fact A.7), we have
det Rn = det R′

n + det R′′
n. The latter determinant is easily computed by the block

61

determinant fact.

det R′′
n = (−1)n · det

(

−1
)

· det

x1 . . . 1

0
.

0 . . . xn

= −
n
∏

i=1

(−xi) (4.3)

To compute det R′
n, we will use the Schur complement. Moving the first row to

the last row, we incur a sign change of (−1)n and obtain the block matrix (W X
Y Z),

where

W =

x1 . . . 1

0
.

0 . . . xn

, X =

1
...
1

, Y =
(

1 . . . 1
)

, Z =
(

1
)

.

The properties of the Schur complement (Fact A.11) now imply that

det R′
n = (−1)n · det Z · det

(

W − XZ−1Y)

= (−1)n · det
(

W − XY
)

= (−1)n · det

(

x1 1 . . . 1

0 x2 . . . 1

0 0
.

0 0 . . . xn

−

1 1 . . . 1

1 1 . . . 1
...

...
1 1 . . . 1

)

= (−1)n · det

x1 − 1 0 . . . 0

−1 x2 − 1 . . . 0

−1 −1
.

−1 −1 . . . xn − 1

=
n
∏

i=1

(1 − xi).

Thus we have shown that det Rn = det R′
n + det R′′

n =
∏n

i=1(1 − xi) −
∏n

i=1(−xi). �

Lemma 4.5 can also be proven by induction, but we feel that our purely linear
algebraic proof better captures the structure of the matrix Rn.

Theorem 4.6. If q is a prime power, the problem SIM-COMPLETION(q, q) is NP-complete.

62

Proof. This theorem is an adaption of Theorem 4.1, where the replication gadget
is based on the matrix Rn rather than the matrices B and C (cf., equation (4.1)).

Suppose we are given φ, an instance of CIRCUIT-SAT. We construct the matrices
A′ and Dc (2 ≤ c ≤ q − 1) as in Theorem 4.1. Recall that A′ is a block-diagonal
matrix with a block for each NAND gate, where each appearance of a variable uses
a distinct replicated copy.

Next we will use the matrix Rn. Lemma 4.5 shows that det Rn is the arithmeti-
zation of the boolean formula

n
∧

i=1

xi ∨
n
∧

i=1

xi.

Thus the matrix Rn satisfies the following curious property: any completion for
Rn where x1, . . . , xn ∈ {0, 1} satisfies x1 = · · · = xn. This is precisely the property
needed to replicate a variable n times. Thus, for every variable (including the
inputs and intermediate wires) a, b, c, . . . in φ, we add a copy of Rn to the following
matrix.

E :=

Rn(a(1), . . . , a(n))

Rn(b(1), . . . , b(n))

Rn(c(1), . . . , c(n))
. . .

Let A = {A′, D2, . . . , Dq−1, E}. Our construction implies that a completion for
A determines a satisfying assignment for φ and vice-versa. Thus we see that
SIM-COMPLETION(q, q) is NP-complete. �

4.3 Deciding Non-Singularity

In this section, we obtain a new hardness result for deciding non-singularity of a
single mixed matrix where the same indeterminate can appear in multiple entries.
This new result is a corollary of Theorem 4.6.

Before doing so, we briefly distinguish two notions of rank for a mixed matrix.
The distinction was not important up to this point because the notions are equiva-
lent for mixed matrices where each variable appears only once. The term-rank of

63

A is the largest value r such that there exists an r×r submatrix whose determinant
is a non-zero polynomial. The generic-rank1 of A over Fq is the largest value r such
that there exists a completion of A in Fq and an r× r submatrix whose determinant
evaluates to a non-zero value under this completion. These two notions of rank are
not in general the same. In particular, the term-rank does not depend on the field
under consideration, but the generic rank does. To see why, consider the matrix
M = (x x

1 x). The determinant of this matrix is x2 − x = x(x − 1). This is a non-zero
polynomial, but it evaluates to zero at every point in F2. Thus the term-rank of M

is 2 but the generic-rank over F2 is 1.

We focus on the problem of deciding whether a mixed matrix is non-singular
(i.e., has full rank) with respect to its generic-rank. The following hardness result
was already known.

Theorem 4.7 (Buss et al. [4]). Let M be a matrix over any field Fq where variables
can appear any number of times. The problem of deciding whether M is non-singular is
NP-complete.

Our Theorem 4.6 yields as a corollary the following refinement of Theorem 4.7.

Corollary 4.8. Let M be a matrix over any field Fq where variables can appear several
times. The problem of deciding whether M is non-singular is NP-complete, even if we
require that each variable appear in M at most q times.

Proof. Given a circuit φ, construct the set of matrices A = {A′, D2, . . . , Dq−1, E}
as in Theorem 4.6. Let M be the block-diagonal matrix with these matrices on
the diagonal and note that M satisfies the stated restriction. We have shown that a
satisfying assignment for φ corresponds to a maximum-rank completion for M and
vice-versa. Thus deciding whether M is non-singular with respect to its generic
rank also decides whether φ is satisfiable. �

For the sake of comparison, we provide a brief description of the proof of Buss
et al. They reduce from 3SAT by arithmetizing the CNF formula. Recall that 3SAT
is hard only when each variable appears at least three times. The resulting formula
is raised to the power q − 1 to ensure that its value is either 0 or 1. Next, they use
the fact that the determinant function is universal, meaning that for any arithmetic

1Our terminology follows that of Murota [36]. Buss et al. [4] use the term maxrank to refer to
the generic-rank.

64

formula one can construct a (small) matrix whose determinant equals that formula.
This construction is originally due to Valiant [47]. The matrix that results from their
reduction is hard only when there are at least 3q − 3 occurrences of some variable.
In contrast, Corollary 4.8 shows hardness even when all variables occur at most q

times. Thus our result is strictly stronger, even in the case that q = 2.
We remark that, given the formula of equation (4.2), Valiant’s construction

would not yield the matrix Rn. Instead, it would yield a matrix where each vari-
able occurs twice, which is insufficient to prove Theorem 4.6.

65

66

Appendix A

Preliminaries on Linear Algebra

In this section we review elementary but useful results from linear algebra. These
results may be found in the books of Strang [45], Aitken [2], and Murota [36].

Let us begin with notation. Matrices are denoted with capital letters, such as A.
The entry of A in the ith row and jth column is denoted Ai,j . If I is a subset of the
row indices of A and J is a subset of the column indices then A[I, J] denotes the
submatrix with rows in I and columns in J . This notation is not terribly convenient
for referring to a particular row or column. Instead, we will use the following
handy notation. Thinking of ∗ as a “wildcard” character, we will let Ai,∗ denote
the ith row of A and let A∗,k denote the kth column of A. We occasionally construct
submatrices by deleting the ith row and jth column. The notation Adel(i,j) denotes
the resulting matrix.

Next, we present a convenient formulation of matrix multiplication. Suppose
A and B are matrices of compatible size and that C = AB. The standard formula
for the entries of C is

Ci,k =
∑

j

Ai,jBj,k. (A.1)

That is, entry i, j of C is the dot-product of the ith row of A and the kth column of
B. Applying our wildcard notation to equation (A.1), we can view matrix multi-
plication in four convenient ways.

Fact A.1. The following four reformulations of matrix multiplication are obtained by

67

replacing variables in equation (A.1) with wildcards in various ways.

Entry-based view: Ci,k = Ai,∗ · B∗,k

Row-based view: Ci,∗ =
∑

j Ai,jBj,∗

Column-based view: C∗,k =
∑

j A∗,jBj,k

Outer-product view: C = C∗,∗ =
∑

j A∗,jBj,∗

Next, we turn to the determinant. The determinant function and its properties
are used extensively in this thesis. We review these properties next.

Fact A.2. The determinant of an n × n matrix A is defined as follows.

det A =
∑

σ

sign(σ)
n
∏

i=1

Ai,σ(i) (A.2)

The sum is over all permutations σ of the numbers {1, . . . , n}, and sign(σ) denotes the
sign, or signature, of the permutation.

Fact A.3. A matrix A has a multiplicative inverse if and only if det A 6= 0. Such a matrix
is called non-singular.

Fact A.4. det(AB) = det A · det B.

Fact A.5. det(A−1) = (det A)−1.

Fact A.6. Let A be a matrix and let A′ be obtained from A by swapping two adjacent rows
or two adjacent columns. Then det A = − det A′. More generally, if A′ is obtained from A

by reordering the rows and columns arbitrarily, then det A = ± det A′.

Fact A.7. The determinant is a linear function of every column. More precisely, let A be a
square matrix and suppose A∗,i = v + w for some column vectors v and w. Construct the
matrix A(v) from A by replacing its ith column with the vector v, and construct the matrix
A(w) analogously. Then det A = det A(v) + det A(w).

The quantity det Adel(i,j) is called the (i, j)th minor of A.

Fact A.8. Let A be a square matrix and let A′ be the matrix obtained from A by adding v

to the (i, j)th entry. Then det A′ = det A + v · det Adel(i,j).

Fact A.9 (Generalized Laplace expansion). Let A be an n×n matrix. Fix a set of rows

68

I such that ∅ 6= I ⊂ {1, . . . , n}. Then

det A =
∑

J⊂{1,...,n}
|J |=|I|

det A[I, J] · det A[I, J] · (−1)
∑

i∈I i+
∑

j∈J j. (A.3)

Proof. See Aitken [2] or Murota [36]. �

Fact A.10 (Block Determinant). Let A = (W X
0 Y) be a square matrix where W and Y are

square submatrices. Then det A = det W · det Y .

Proof. Let IY and JY respectively be the rows and columns corresponding to the
submatrix Y . Apply Fact A.9 with I = IY . If J 6= JY then A[I, J] contains a zero
column and hence det A[I, J] = 0. Thus the only non-zero term in the sum of (A.3)
is obtained when J = JY . �

We remark that the positions of the submatrices in Fact A.10 are largely irrele-
vant — reordering the rows and columns affects only the sign of the determinant
(Fact A.6). For example, we also have that det (X W

Y 0) = ± det W · det Y , under the
assumption that W and Y are square.

Let A be a square matrix of the form A = (W X
Y Z) where Z is square. If Z is

non-singular, the matrix W −XZ−1Y is known as the Schur complement of Z in A.
The Schur complement satisfies the following useful property.

Fact A.11.

det

(

W X

Y Z

)

= det Z · det
(

W − XZ−1Y
)

.

The rank of a matrix A, denoted rank A, is defined as the largest size of a non-
singular submatrix of A. A non-singular matrix is also said to have full rank.

Fact A.12. If A = BC then rank A ≤ min {rank B, rank C}.

Our work also relies on properties of the Gaussian elimination algorithm and
its pivot operations. Consider an n × n matrix A. A pivot operation simply adds
some multiple αj of a row i to every other row j. Clearly pivoting requires O(n2)

time. A column-clearing pivot, also known as a Gauss-Jordan pivot, chooses the
multiples so that, for some column k, all entries except Ai,k become zero. When
Gaussian elimination uses Gauss-Jordan pivots, it is called Gauss-Jordan elimina-

69

tion.

It is well known that for any non-singular matrix, the Gauss-Jordan algorithm
always completes successfully. We will use a slightly more general statement.

Fact A.13. Let A = (W X
0 Y) be a square matrix where W and Y are square. If A is

non-singular, we may perform Gauss-Jordan elimination on the right half of the matrix,
pivoting exactly once in each row and column of Y .

Usually the point of Gauss-Jordan elimination is to turn a matrix A into the
identity matrix, and in general swapping rows is necessary to achieve this. We will
typically be interested in turning A into a matrix where each row and column has
only a single non-zero entry. The specific locations and values of these non-zero
entries are irrelevant, hence swapping rows is unnecessary to achieve this goal.

Fact A.14. Suppose we perform Gauss-Jordan elimination on a matrix A. Let the set of
rows and columns on which we have pivoted so far be respectively R and C. Then A[R,C]

has full rank.

When performing Gauss-Jordan elimination on a matrix A, pivoting on row i

can be viewed as multiplying A on the left by a matrix which equals the identity
matrix except in the ith column. In general, a sequence of pivot operations can be
described by a matrix S which is the product of these matrices.

Fact A.15. Suppose we perform a sequence of Gauss-Jordan pivots, described by a matrix
S. That is, if P is the pivoted form of A then P = SA. If we haven’t yet pivoted on row i

then the ith column of S is the ith elementary vector.

Proof. Let R be the set of rows in which we have performed a pivot operation.
Then every row has been incremented by some linear combination of the rows in
R. Thus,

Pa,∗ = Aa,∗ +
∑

j∈(R−a)

αa,jAj,∗,

for some coefficients αa,j . We can rewrite this equation as

Pa,∗ =
∑

j

αa,jAj,∗,

where αa,j = 1 if a = j and αa,j = 0 if j 6= R and a 6= j. The row-based view of

70

matrix multiplication (Fact A.1) shows us that these coefficients are precisely the
entries of the matrix S. Since i 6∈ R, the entry Sa,i is zero if a 6= i and 1 if a = i. �

71

72

Appendix B

Preliminaries on Matroids

Matroids are mathematical objects of great importance in combinatorial optimiza-
tion and with numerous applications in computer science. For example, many of
the well-known results concerning spanning trees, bipartite matchings, and graph
connectivity are simple consequences of standard theorems in matroid theory.

A comprehensive introduction to matroids and all of their interesting proper-
ties would require a whole book. In this thesis, we will require only a few basic
definitions and the existence of certain efficient algorithms. A more detailed intro-
duction to matroids can be found in the following books. Cook et al. [5] give an
eminently readable introduction to matroids, highlighting the connections to other
combinatorial problems. A more detailed treatment can be found in the books of
Murota [36] and Schrijver [44]. Oxley’s book [39] focuses exclusively on matroid
theory, with an emphasis on mathematical properties rather than connections to
computer science.

B.1 Definitions

For the reader unfamiliar with matroids, we introduce them via an example.

Example B.1. Suppose one is given the matrix

A :=

1 0 1

0 1 1

0 1 1

.

73

Our instincts from linear algebra immediately tell us several things about this ma-
trix. First of all, it does not have full rank, since adding the first two columns
together produces the third column. However, the first two columns are linearly
independent, so they form a basis for the column-space of A. This tells us that
the rank of A is 2. Since bases are quite important, we might wonder if there are
other bases for the column-space. Let us denote the columns of A by a, b and c

respectively. We find that the following unordered pairs of columns are linearly
independent, and hence are bases.

{ {a, b} , {a, c} , {b, c} }

We also know instinctively that removing columns from a basis doesn’t ruin
linear independence. So we can easily enumerate all sets of linearly independent
columns.

{ ∅, {a} , {b} , {c} , {a, b} , {a, c} , {b, c} } . (B.1)

Let’s call this collection of sets I, to denote “independent”. Now suppose that we
forgot what the exact entries of matrix A were. Indeed, this is quite likely since
A was defined on the previous page! Nevertheless, we can still deduce various
properties about A from the set I. We can still see that A has rank 2 since the set
{a, b, c} is not a member of I. We can also deduce that column c is not spanned
by either column a or column b individually, but it is spanned by column a and b

together.

So it seems that much of the structure of A is captured by I. This collection of
sets I is called a matroid, since it is like the matrix but A more abstract: it captures
the linear independence properties of A but not the specific numerical entries. �

Let’s explore matroids a bit more formally and write down some familiar prop-
erties of linear independence. Formally, a matroid is an ordered pair M := (C, I),
where C is a finite ground set and I is a collection of subsets of C. We may think of
C as the set of columns of some matrix and I as the collection of column-sets that
are linearly independent. The collection I must satisfy three basic properties:

1. ∅ ∈ I.

2. If S ∈ I and T ⊂ S then T ∈ I.

74

3. If S, T ∈ I and |S| > |T | then ∃s ∈ S such that s 6∈ T and (T ∪ {s}) ∈ I.

These properties are all well-known facts from linear algebra. In fact, we used the
first two properties above in deriving equation (B.1). We might start to wonder
about other properties that I satisfies. Can we derive additional properties using
just the three listed above, or do we need to delve back into our linear algebra
toolbox again? Surprisingly, these three properties are enough to derive almost
any fact that one could derive using linear algebra. Since these three properties are
so important, they are often called the matroid axioms.

Since one can derive many facts from these axioms alone, it no longer seems
important that there was a matrix underlying the definition of C and I. Perhaps
one could find other set systems that satisfy these axioms? Then one could learn
a lot about those set systems by using the consequences of these axioms. It turns
out that many familiar mathematical objects do indeed satisfy the matroid axioms:
spanning trees, bipartite matchings, etc. Each of these objects leads to a new type
of matroid.

We will encounter a few types of matroids in this thesis.

Linear matroids: These are the matroids that can be obtained as the set of linearly
independent columns of some matrix. Many of the commonly encountered
matroids are in fact linear. More exotic, non-linear matroids do exist, but
they will not be discussed herein. For a matrix A, the corresponding matroid
is denoted MA.

Transversal matroids: These are the matroids that are obtained from bipartite
matchings. They are discussed further in the following section.

Free matroids: For any ground set C, the free matroid is the pair (C, I) where I
contains every subset of C. Free matroids trivially satisfy all three matroid
axioms.

Direct sums: This is a means of constructing a new matroid from two given ma-
troids. Suppose M1 = (C1, I1) and M2 = (C2, I2) are matroids whose
ground sets C1 and C2 are disjoint. Their direct sum, denoted M1 ⊕ M2,
is the matroid (C1 ∪ C2, I3) where I3 contains all sets that are the union of a
set in I1 and a set in I2. This construction is easy to visualize when M1 and
M2 are linear matroids, corresponding to matrices A1 and A2. Their direct
sum is the linear matroid corresponding to the matrix

(

A1 0
0 A2

)

.

75

We conclude this section with a remark on terminology. Since the purpose of
matroids is, in some sense, to abstract away from matrices and linear algebra, the
sets in I are not described as being “linearly independent”. Instead, they are sim-
ply called independent sets.

B.2 Bipartite Matchings and Transversal Matroids

Let us now explain how bipartite matchings give rise to a matroid. Let G = (V + ∪
V −, E) be a bipartite graph. If M is a matching for G, define ∂+M to be the vertices
in V + covered by M , and define ∂−M analogously.

Definition B.2. A set S ⊆ V − is called matchable if there exists a matching M in G

such that S ⊆ ∂−M . Let I be the collection of all matchable subsets of V −. The pair
(V −, I) is called a transversal matroid.

To show that a transversal matroid is indeed a matroid, we must prove that
the three matroid axioms are satisfied. To prove this, we will actually show an
important connection between bipartite graphs and matrices. This connection will
imply that a transversal matroid can be derived from a matrix and is hence a linear
matroid.

Definition B.3. Let G = (V + ∪ V −, E) be a bipartite graph. We define an associated
matrix of indeterminates A. The rows of A are indexed by V + and the columns are indexed
by V −. For each (u, v) ∈ E, we set Au,v to be a new indeterminate xu,v. All other entries
of A are zero.

This construction is clearly invertible: given A, it is easy to construct the graph
G. The connection between G and A is important because many combinatorial
properties of G translate into algebraic properties of A.

Theorem B.4. The size of a maximum matching in G is rank A.

Proof. We prove a slightly simpler result: G has a perfect matching if and only
if det A 6= 0. The more general result follows by considering subgraphs of G and
submatrices of A.

Let V + = {u1, . . . , un} and V − = {v1, . . . , vn}. Consider the familiar permuta-

76

tion expansion of det A.

det A =
∑

σ

±
n
∏

i=1

Ai,σ(i) (B.2)

Suppose that G does not have a perfect matching. This means that for every per-
mutation σ, there is at least one value i such that (ui, vσ(i)) 6∈ E, implying that
Ai,σ(i) = 0. Thus every term in Equation (B.2) vanishes, and hence det A = 0.

On the other hand, suppose that G does have a perfect matching. This means
that there exists a permutation σ such that for all i we have (ui, vσ(i)) ∈ E, implying
that Ai,σ(i) = xui,vσ(i)

. Thus the term in (B.2) corresponding to σ is non-zero. Every
non-zero term in (B.2) is a product of a distinct set of variables, and hence there is
no cancellation amongst the terms. Thus det A 6= 0. �

This theorem stems from the classic work of Frobenius [12] and Kőnig [24]. For
a detailed history of this work, see Schrijver [43, 44] or Lovász and Plummer [31].

We now return to the discussion of transversal matroids. We use the following
fact, which is a consequence of Theorem B.4: for any matching in G, if U ′ ⊆ U

and V ′ ⊆ V are the vertices covered by the matching then the submatrix A[U ′, V ′]

is non-singular. Thus, for every matchable subset S ⊆ V , there is a square, non-
singular submatrix of A whose columns contain S. It follows that the columns of A

corresponding to S are linearly independent. Conversely, if a set of columns S in
A is linearly independent then there exists a non-singular submatrix with column-
set S. Since the determinant of this submatrix is non-zero, there exists a matching
covering S. Thus the matchable subsets of V are precisely the sets of independent
columns of A. Since the collection of independent column-sets of A is a matroid
by definition, the matchable subsets of V also form a matroid. That is, transversal
matroids do indeed satisfy the matroid axioms.

B.3 Algorithms

It is often possible to develop efficient algorithms for problems involving matroids
by exploiting their structural properties. An oft-cited example is the problem of
finding an independent set of maximum weight. Given a matroid (C, I) and a
weight-function w : C → R, one can find in polynomial time a set S in the col-
lection I that maximizes

∑

s∈S w(s). This problem is not considered further in this

77

thesis, but it does provoke some important questions. What does it mean to be
“given a matroid”? Since I can be exponentially larger than C, what does “poly-
nomial time” mean?

In this thesis, matroids are represented using the independence oracle model.
This means that a matroid is represented as a pair (C, fC) where fC is a function
that decides in time polynomial in |C| whether a set S ⊆ C is independent. For a
linear matroid constructed from a matrix of numbers, the oracle can test if a set S of
columns is linearly independent by executing the Gaussian elimination algorithm
and returning true if it completes successfully. For a transversal matroid on a graph
G = (V + ∪ V −, E), the oracle can test if a set S ⊆ V − is matchable by computing
a maximum matching in the graph induced by V + ∪ S. The oracle returns true
if the resulting matching covers S. This maximum matching can be computed in
polynomial time by standard algorithms.

One of the fundamental algorithmic problems on matroids is the matroid in-
tersection problem. This problem plays a central role in this thesis. Suppose we
have two matroids M1 = (C, I1) and M2 = (C, I2) that are defined on the same
ground set C. The objective is to find a set S ∈ I1 ∩ I2 that maximizes |S|. The
matroid intersection problem is known to be solvable in polynomial time. For the
special (but common) case of linear matroids, Cunningham [8] gives an algorithm
requiring only O(n3 log n) time.

We now describe two other important problems that are closely related to the
matroid intersection problem. The first of these is the matroid union problem.
Given M1 = (C, I1) and M2 = (C, I2), the objective is to find disjoint sets S1 ∈ I1

and S2 ∈ I2 maximizing |S1| + |S2|. The second problem is the (bipartite) matroid
matching problem. An instance consists of a bipartite graph G = (V + ∪V −, E) and
two matroids M

+ = (V +, I+) and M
− = (V −, I−). A matching M in G is called

an independent matching if ∂+M ∈ I+ and ∂−M ∈ I−. The matroid matching
problem is to find a maximum cardinality independent matching.

The matroid intersection, matroid union and (bipartite) matroid matching prob-
lems are all equivalent: there are simple reductions from any one to any other
[44, 36, 13]. Cunningham’s algorithm implies that all three of these problems can
be solved in O(n3 log n) time, for linear matroids. Thus, when faced with a ma-
troid theoretic problem, we can attempt a reduction to whichever of these three
problems is more convenient. We remark that the non-bipartite matroid matching

78

problem is much more difficult. See, for example, Lovász and Plummer [31].
These three problems generalize naturally by introducing weights. For the in-

tersection and union problems we define a weight function w : C → R, and for
the matching problem we define a weight function w : E → R. The new objective
is to find a solution maximizing the weight of the solution rather than the cardi-
nality. Gabow and Xu [14] developed efficient, but quite complicated, algorithms
for these weighted problems on linear matroids. They give an algorithm that re-
quires O(n3 log n log(nC)) time, where C is the maximum weight. This algorithm
uses only standard matrix operations. Using fast matrix multiplication, they give
an (impractical) algorithm with a theoretical running time of O(n2.77 log C).

79

80

Bibliography

[1] Rudolf Ahlswede, Ning Cai, Shuo-Yen Robert Li, and Raymond W. Ye-
ung. Network information flow. IEEE Transactions on Information Theory,
46(4):1204–1216, 2000.

[2] Alexander C. Aitken. Determinants and Matrices. Interscience Publishers, New
York, ninth edition, 1956.

[3] Mark Berdan. A matrix rank problem. Master’s thesis, University of Waterloo,
2003.

[4] Jonathan F. Buss, Gudmund S. Frandsen, and Jeffrey O. Shallit. The computa-
tional complexity of some problems in linear algebra. Journal of Computer and
System Sciences, 58(3):572–596, 1999.

[5] William J. Cook, William H. Cunningham, William R. Pulleyblank, and
Alexander Schrijver. Combinatorial Optimization. Wiley, 1997.

[6] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT Press, Cambridge, MA, second edition,
2001.

[7] Thomas M. Cover and Joy M. Thomas. Elements of Information Theory. Wiley,
1991.

[8] William H. Cunningham. Improved bounds for matroid partition and in-
tersection algorithms. SIAM Journal on Computing, 15(4):948–957, November
1986.

81

[9] Peter Elias, Amiel Feinstein, and Claude E. Shannon. A note on the maximum
flow through a network. IRE Transactions on Information Theory, IT-2:117–119,
1956.

[10] Meir Feder, Dana Ron, and Ami Tavory. Bounds on linear codes for network
multicast. Technical Report ECCC TR03-033, Electronic Colloquium on Com-
putational Complexity, 2003.

[11] Lester R. Ford and Delbert Ray Fulkerson. Maximal flow through a network.
Canadian Journal of Mathematics, 8:399–404, 1956.

[12] Ferdinand G. Frobenius. Über matrizen aus nicht negativen elementen.
Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin,
pages 456–477, 1912.

[13] Satoru Fujishige. Submodular Functions and Optimization, volume 47 of Annals
of Discrete Mathematics. North-Holland, 1991.

[14] Harold N. Gabow and Ying Xu. Efficient theoretic and practical algorithms for
linear matroid intersection problems. Journal of Computer and System Sciences,
53(1):129–147, 1996.

[15] James F. Geelen. Maximum rank matrix completion. Linear Algebra and its
Applications, 288:211–217, 1999.

[16] James F. Geelen. Matching theory. Lecture notes from the Euler Institute for
Discrete Mathematics and its Applications, 2001.

[17] Nicholas J. A. Harvey, David R. Karger, and Kazuo Murota. Deterministic
network coding by matrix completion. In Proceedings of the Sixteenth An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA 05), pages 489–498,
2005.

[18] Nicholas J. A. Harvey, Robert D. Kleinberg, and April Rasala Lehman. On
the capacity of information networks. Special Issue of the IEEE Transactions on
Information Theory and the IEEE/ACM Transactions on Networking. Submitted
March 2005.

82

[19] Tracey Ho, David R. Karger, Muriel Médard, and Ralf Koetter. Network cod-
ing from a network flow perspective. In Proceedings of the IEEE International
Symposium on Information Theory, 2003.

[20] John E. Hopcroft. Personal communication, 2004.

[21] Sidharth Jaggi, Philip A. Chou, and Kamal Jain. Low complexity algebraic
multicast network codes. In Proceedings of the IEEE International Symposium on
Information Theory, page 368, 2003.

[22] Sidharth Jaggi, Peter Sanders, Philip A. Chou, Michelle Effros, Sebastian Eg-
ner, Kamal Jain, and Ludo Tolhuizen. Polynomial time algorithms for multi-
cast network code construction. IEEE Transactions on Information Theory. Sub-
mitted July 2003.

[23] Ralf Koetter and Muriel Médard. An algebraic approach to network coding.
IEEE/ACM Transactions on Networking. To appear.

[24] Dénes Kőnig. Vonalrendszerek és determinánsok [Hungarian; Line systems
and determinants]. Mathematikai és Természettudományi Értesitő, 33:221–229,
1915.

[25] Monique Laurent. Matrix completion problems. In C.A. Floudas and P.M.
Pardalos, editors, The Encyclopedia of Optimization, volume III, pages 221–229.
Kluwer, 2001.

[26] April Rasala Lehman and Eric Lehman. Complexity classification of network
information flow problems. In Proceedings of the Fifteenth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 04), January 2004.

[27] April Rasala Lehman and Eric Lehman. Network coding: Does the model
need tuning? In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 05), pages 499–504, January 2005.

[28] F. Thomson Leighton. Introduction to Parallel Algorithms and Architectures: Ar-
rays, Trees, Hypercubes. Morgan Kaufman, 1992.

[29] Shuo-Yen Robert Li, Raymond Yeung, and Ning Cai. Linear network coding.
IEEE Transactions on Information Theory, 49(2):371–381, 2003.

83

[30] László Lovász. On determinants, matchings and random algorithms. In L. Bu-
dach, editor, Fundamentals of Computation Theory, FCT ’79. Akademie-Verlag,
Berlin, 1979.

[31] László Lovász and Michael D. Plummer. Matching Theory. Akadémiai Kiadó
– North Holland, Budapest, 1986.

[32] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cam-
bridge University Press, 1995.

[33] Marcin Mucha and Piotr Sankowski. Maximum matchings via Gaussian elim-
ination. In Proceedings of the 45th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 248–255, 2004.

[34] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as
easy as matrix inversion. Combinatorica, 7(1):105–113, 1987.

[35] Kazuo Murota. Mixed matrices – irreducibility and decomposition. In R. A.
Brualdi, S. Friedland, and V. Klee, editors, Combinatorial and Graph-Theoretic
Problems in Linear Algebra, volume 50 of IMA Volumes in Mathematics and its
Applications, pages 39–71. Springer-Verlag, 1993.

[36] Kazuo Murota. Matrices and Matroids for Systems Analysis. Springer-Verlag,
2000.

[37] Kazuo Murota and Masao Iri. Structural solvability of systems of equations —
a mathematical formulation for distinguishing accurate and inaccurate num-
bers in structural analysis of systems. Japan J. Appl. Math, 2:247–271, 1985.

[38] Hung Quang Ngo and Ding-Zhu Du. Notes on the complexity of switching
networks. In Switching Networks: Recent Advances, pages 307–357. Kluwer
Academic Publishers, 2001.

[39] James G. Oxley. Matroid Theory. Oxford University Press, 1992.

[40] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[41] Peter Sanders, Sebastian Egner, and Ludo Tolhuizen. Polynomial time al-
gorithms for network information flow. In Proceedings of the 15th Annual

84

ACM Symposium on Parallel Algorithms and Architectures (SPAA), pages 286–
294, 2003.

[42] Piotr Sankowski. Dynamic transitive closure via dynamic matrix inverse. In
Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), pages 509–517, 2004.

[43] Alexander Schrijver. On the history of combinatorial optimization (till 1960).
http://homepages.cwi.nl/˜lex/files/histco.pdf.

[44] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency.
Springer-Verlag, 2003.

[45] Gilbert Strang. Linear Algebra and its Applications. Thomson Learning, 1988.

[46] Craig A. Tovey. A simplified NP-complete satisfiability problem. Discrete
Applied Mathematics, 8(1):85–89, 1984.

[47] Leslie G. Valiant. Completeness classes in algebra. In Proceedings of the 11th
Annual ACM Symposium on Theory of Computation (STOC), pages 249–261,
1979.

[48] Sir Charles Wheatstone. An account of several new instruments and processes
for determining the constants of a voltaic circuit. Philosophical Transactions of
the Royal Society of London, 133:303–329, 1843.

85

