

Verifying Average Dwell Time by solving optimization problems

Sayan Mitra, Nancy Lynch and Daniel Liberzon HSCC 2006, Santa Barbara

Hybrid Systems: Computation and Control 2006

- □ Stability properties arise naturally, some examples:
 - Switching supervisory controllers
 - Mobile robots starting from *arbitrary* positions must eventually converge, say on a circle
 - Real-time distributed computing with failures; *once failures stop*, the processes must perform some useful computation.

Stability Under Slow Switchings $V_{\sigma(t)}(t)$ $\frac{\partial V_i}{\partial x} f_i \leq -\lambda V_i$ $V_j \leq \mu V_i$ $\sigma = 1$ $\sigma = 2$ $\sigma = 1$

- ADT characterizes switching signal σ
- **Definition**: Hybrid automaton *A* has average dwell time (ADT) *T* if there exists a constant N_0 such that for every execution α of *A*, $N(\alpha) \le N_0 + dur(\alpha)/T$. $N(\alpha)$: # mode switches in α , $dur(\alpha)$: duration of α

Extra switches: $S_T(\alpha) \equiv N(\alpha) - dur(\alpha) / T$

- **Theorem** (Morse & Hespanha): For stability it suffices to show that the modes of *A* have a set of Lyapunov functions (λ, μ) and that the ADT of $A > \log \mu / \lambda$.
- Given hybrid automaton A and T>0, we want to check if T is an ADT for A? What is the ADT of A?
 - Invariant-based method [M-Liberzon:CDC04]
 - Optimization-based method for verifying ADT
 - ADT preserving abstraction: switching simulations

Hybrid I/O Automata [Lynch,Segala,Vaandrager]

- □ X: set of state variables, A: set of actions
- □ Actions bring about state *transitions (mode switches)*, $x \rightarrow_a x'$
- $\Box \quad A \text{ trajectory of X is a function } \tau:[0,t] \rightarrow val(X)$
- $\square \quad \text{An execution is a sequence } \alpha = \tau_0 a_1 \tau_1 a_2 \tau_2 \dots dur(\alpha) = \Sigma_i dur(\tau_i)$
- □ Notion of external behavior, input/output actions and variables
- □ Abstraction/ implementation relations
- Compositionality

Switching simulation

- Consider two hybrid automata *A* and *B*. A relation $\mathbf{R} \subseteq X_A X X_B$ is a *switching simulation relation* from *A* to *B* if :
 - For every start state of *A* there is a related start state of *B*

If
$$x \in X_A$$
, $y \in X_B$, $x \mathbf{R} y$ and

□ $x \rightarrow_a x'$, exists an execution fragment β of B, at $y \rightarrow y'$ & $y' \in N(B) > 1$ dur(B)=0

s.t. $\mathbf{y} \rightarrow_{\beta} \mathbf{y}' \& \mathbf{x}' \mathbf{R} \mathbf{y}' \& \mathbf{N}(\beta) \ge 1, \operatorname{dur}(\beta) = 0$

 $\Box \quad x \rightarrow_{\tau} x', \text{ exists an execution fragment } \beta \text{ of } B,$

s.t. $\mathbf{y} \rightarrow_{\beta} \mathbf{y}' \& \mathbf{x}' \mathbf{R} \mathbf{y}' \& \operatorname{dur}(\tau) \ge \operatorname{dur}(\beta)$

 $\mathbf{R} \subseteq \mathbf{X}_{\mathbf{A}} \mathsf{X} \; \mathbf{X}_{\mathbf{B}}$

- 1. For every start state of A there is a related start state of B
- 2. If x **R** y and $x \rightarrow_a x'$, $\exists \beta$, s.t. $y \rightarrow_{\beta} y' \& x' \mathbf{R} y' \& N(\beta) \ge 1$, $dur(\beta) = 0$
- 3. If x **R** y and $x \rightarrow_{\tau} x'$, $\exists \beta$, s.t. $y \rightarrow_{\beta} y' \& x' \mathbf{R} y' \& dur(\tau) \ge dur(\beta)$
- Suppose **R** is a switching simulation relation from *A* to *B* and T be ADT of *A*
- Consider any execution $\alpha = \tau_0 a_1 \tau_1 a_2 \tau_2 \dots$ of **A**
- Inductively construct a corresponding execution η of **B**
- $S_T(\eta) \ge S_T(\alpha)$
- **Theorem:** *R* is a switching simulation from *A* to $B \implies$ ADT of $A \ge$ ADT of *B*.

Linear Hysteresis switch

X₁, **X**₂

mode 1

mode 2

t

- Not initialized hybrid automaton
- Abstraction using switching simulation

Simple Abstraction

$\square N(\alpha) \le N_0 + dur(\alpha)/T$ $\square S_T(\alpha) \equiv N(\alpha) - dur(\alpha)/T$

$\Box \text{ OPT}(T): \alpha^* \in \arg \max_{\alpha \in \text{execs}} S_T(\alpha)$ If $S_T(\alpha^*)$ is bounded then T is ADT for A, Otherwise, α^* an execution violating ADT T

Theorem (part 1): If $max_{\alpha \in cycles} S_T(\alpha) > 0$ then OPT(T) is unbounded.

If \exists a cycle with $S_T(\alpha) > 0$ then $\alpha . \alpha . \alpha ...$ is an execution with unbounded extra switches.

Theorem (part 2): For initialized and rectangular A, OPT(T) is unbounded only if $max_{\alpha \in cycles} S_T(\alpha) > 0$.

- If OPT(*T*) is unbounded, \exists execution α , $S_T(\alpha) > m^3$.
- N(α) > m³ + dur(α)/T.
- \exists sequence of 3 modes that repeat in α , say a-b-c.
- Since *A* is rectangular and initialized,
 - \exists cyclic α^* such that $S_T(\alpha^*) \ge S_T(\alpha)$.

MILP formulation

Mixed Integer Linear Program to find cycles with extra switches for initialized rectangular automata.

Objective function:
$$S_{\tau_a} : \frac{K}{2} - \frac{1}{\tau_a} \sum_{i=0,2,\dots}^{K} t_i$$

Mode: $\forall i \in \{0, 2, \dots, K\}, \sum_{j=1}^{N} m_{ij} = 1 \text{ and } \forall i \in \{1, 3, \dots, K-1\}, \sum_{j=1}^{N} \sum_{k=1}^{N} p_{ijk} = 1$
(1)

Cycle:
$$\mathbf{x}_0 = \mathbf{x}_K$$
 and $\forall j \in \{1, \dots, N\}, m_{0j} = m_{Kj}$ (2)

Preconds:
$$\forall i \in \{1, 3, \dots, K-1\}, \sum_{j=1}^{N} \sum_{k=1}^{N} G[j, k] \cdot p_{ijk} \cdot \mathbf{x}_i \le \sum_{j=1}^{N} \sum_{k=1}^{N} p_{ijk} \cdot g[j, k]$$
 (3)

Initialize:
$$\forall i \in \{1, 3, \dots, K-1\}, \sum_{j=1}^{N} \sum_{k=1}^{N} R[j, k] . p_{ijk} . \mathbf{x}_{i+1} \le \sum_{j=1}^{N} \sum_{k=1}^{N} p_{ijk} . r[j, k]$$
 (4)

Invariants:
$$\forall i \in \{0, 2, \dots, K\}, \quad \sum_{j=1}^{N} A[j] . m_{ij} . \mathbf{x}_i \le \sum_{j=1}^{N} m_{ij} . a[j]$$
(5)

Evolve:
$$\forall i \in \{0, 2..., K\}, \quad \mathbf{x}_{i+1} = \mathbf{x}_i + \sum_{j=1}^N c[j].m_{ij}.t_i$$
 (6)

ъ.т

- Using powerful existing tools (MILP) for verifying ADT, i.e., proving stability.
- □ Switching simulations for abstractions
- Future work
 - Probabilistic hybrid systems and stability in the stochastic setting, using Lyapunov function like techniques
 - Explore other properties that are quantified over executions; liveness properties
 - Finding switching simulations automatically ?