Verifying Average Dwell Time by solving optimization problems

Sayan Mitra, Nancy Lynch and Daniel Liberzon
HSCC 2006, Santa Barbara

\square Stability properties arise naturally, some examples:

- Switching supervisory controllers
- Mobile robots starting from arbitrary positions must eventually converge, say on a circle
- Real-time distributed computing with failures; once failures stop, the processes must perform some useful computation.

Stability Under Slow Switchings

- ADT characterizes switching signal σ
- Definition: Hybrid automaton \boldsymbol{A} has average dwell time (ADT) T if there exists a constant N_{0} such that for every execution α of A,

$$
N(\alpha) \leq N_{0}+\operatorname{dur}(\alpha) / T .
$$

$N(\alpha)$: \# mode switches in α, dur (α) : duration of α Extra switches: $S_{T}(\alpha) \equiv N(\alpha)-\operatorname{dur}(\alpha) / T$
\square Theorem (Morse \& Hespanha): For stability it suffices to show that the modes of \boldsymbol{A} have a set of Lyapunov functions (λ, μ) and that the ADT of $A>\log \mu / \lambda$.
\square Given hybrid automaton \boldsymbol{A} and $T>0$, we want to check if T is an ADT for \boldsymbol{A} ?
What is the ADT of \boldsymbol{A} ?

- Invariant-based method [M-Liberzon:CDC04]
- Optimization-based method for verifying ADT
- ADT preserving abstraction: switching simulations

$\square \quad \mathrm{X}$: set of state variables, A: set of actions
\square Actions bring about state transitions (mode switches), $\mathrm{x} \rightarrow_{\mathrm{a}} \mathrm{x}$,
$\square \quad$ A trajectory of X is a function $\tau:[0, \mathrm{t}] \rightarrow \operatorname{val}(X)$
\square An execution is a sequence $\alpha=\tau_{0} \mathrm{a}_{1} \tau_{1} \mathrm{a}_{2} \tau_{2} \ldots \operatorname{dur}(\alpha)=\Sigma_{i} \operatorname{dur}\left(\tau_{\mathrm{i}}\right)$
\square Notion of external behavior, input/output actions and variablesAbstraction/ implementation relations
\square Compositionality
\square Consider two hybrid automata \boldsymbol{A} and \boldsymbol{B}. A relation $\mathbf{R} \subseteq X_{A} X X_{B}$ is a switching simulation relation from \boldsymbol{A} to \boldsymbol{B} if :
- For every start state of \boldsymbol{A} there is a related start state of \boldsymbol{B}
- If $x \in X_{A}, y \in X_{B}, x \mathbf{R} y$ and
$\square \mathrm{x} \rightarrow_{\mathrm{a}} \mathrm{x}$, exists an execution fragment β of B , s.t. y $\boldsymbol{\rightarrow}_{\beta} y^{\prime} \& x^{\prime} \mathbf{R} y^{\prime} \& N(\beta) \geq 1$, dur $(\beta)=0$
$\square x \rightarrow_{\tau} x^{\prime}$, exists an execution fragment β of B,
s.t. $y \boldsymbol{\rightarrow}_{\beta} y^{\prime} \& x^{\prime} \mathbf{R} y^{\prime} \& \operatorname{dur}(\tau) \geq \operatorname{dur}(\beta)$

$$
\begin{aligned}
& \mathbf{R} \subseteq X_{A} X X_{B} \\
& \text { 1. For every start state of } \boldsymbol{A} \text { there is a related start state of } \boldsymbol{B} \\
& \text { 2. If } x \mathbf{R} y \text { and } x \rightarrow_{\mathrm{a}} \mathrm{x}^{\prime}, \exists \beta \text {, s.t. } \mathrm{y} \rightarrow_{\beta} \mathrm{y}^{\prime} \& \mathrm{x}^{\prime} \mathbf{R} \mathrm{y}^{\prime} \& N(\beta) \geq 1, \operatorname{dur}(\beta)=0 \\
& \text { 3. If } \mathrm{x} \mathbf{R} y \text { and } \mathrm{x} \rightarrow_{\tau} \mathrm{x}^{\prime}, \exists \beta \text {, s.t. } \mathrm{y} \rightarrow_{\beta} \mathrm{y}^{\prime} \& \mathrm{x}^{\prime} \mathbf{R} \mathrm{y}^{\prime} \& \operatorname{dur}(\tau) \geq \operatorname{dur}(\beta)
\end{aligned}
$$

- Suppose \mathbf{R} is a switching simulation relation from \boldsymbol{A} to \boldsymbol{B} and T be ADT of \boldsymbol{A}
- Consider any execution $\alpha=\tau_{0} \mathrm{a}_{1} \tau_{1} \mathrm{a}_{2} \tau_{2} \ldots$ of \boldsymbol{A}
- Inductively construct a corresponding execution η of \boldsymbol{B}
- $\quad S_{T}(\eta) \geq S_{T}(\alpha)$
$\square \quad$ Theorem: \boldsymbol{R} is a switching simulation from \boldsymbol{A} to $\boldsymbol{B} \Rightarrow$ ADT of $\boldsymbol{A} \geq$ ADT of \boldsymbol{B}.

$\square N(\alpha) \leq N_{0}+\operatorname{dur}(\alpha) / T$
$\square S_{T}(\alpha) \equiv N(\alpha)-\operatorname{dur}(\alpha) / T$
$\square \mathrm{OPT}(T): \alpha^{*} \in \arg \max _{\alpha \in \operatorname{execs}} S_{T}(\alpha)$ If $S_{T}\left(\alpha^{*}\right)$ is bounded then T is ADT for A, Otherwise, α^{*} an execution violating ADT T

Theorem (part 1): If $\max _{\alpha \in \text { cycles }} S_{T}(\alpha)>0$ then $\operatorname{OPT}(T)$ is unbounded.
\square If \exists a cycle with $S_{T}(\alpha)>0$ then $\alpha . \alpha . \alpha \ldots$ is an execution with unbounded extra switches.

Theorem (part 2): For initialized and rectangular $\boldsymbol{A}, \mathrm{OPT}(T)$ is unbounded only if $\max _{\alpha \in \text { cycles }} S_{T}(\alpha)>0$.

- If $\operatorname{OPT}(T)$ is unbounded, \exists execution $\alpha, \mathrm{S}_{\mathrm{T}}(\alpha)>\mathrm{m}^{3}$.
- $\mathrm{N}(\alpha)>\mathrm{m}^{3}+\operatorname{dur}(\alpha) / T$.
- \exists sequence of 3 modes that repeat in α, say a-b-c.
- Since \boldsymbol{A} is rectangular and initialized,
\exists cyclic α^{*} such that $S_{T}\left(\alpha^{*}\right) \geq S_{T}(\alpha)$.

Mixed Integer Linear Program to find cycles with extra switches for initialized rectangular automata.
Objective function: $\quad S_{\tau_{a}}: \frac{K}{2}-\frac{1}{\tau_{a}} \sum_{i=0,2, \ldots}^{K} t_{i}$
Mode: $\forall i \in\{0,2, \ldots, K\}, \sum_{j=1}^{N} m_{i j}=1$ and $\forall i \in\{1,3, \ldots, K-1\}, \sum_{j=1}^{N} \sum_{k=1}^{N} p_{i j k}=1$

Cycle: $\mathrm{x}_{0}=\mathrm{x}_{K}$ and $\forall j \in\{1, \ldots, N\}, m_{0 j}=m_{K j}$
Preconds: $\forall i \in\{1,3, \ldots, K-1\}, \sum_{j=1}^{N} \sum_{k=1}^{N} G[j, k] \cdot p_{i j k} \cdot \mathbf{x}_{i} \leq \sum_{j=1}^{N} \sum_{k=1}^{N} p_{i j k} . g[j, k]$
Initialize: $\forall i \in\{1,3, \ldots, K-1\}, \sum_{j=1}^{N} \sum_{k=1}^{N} R[j, k] \cdot p_{i j k} \cdot \mathbf{x}_{i+1} \leq \sum_{j=1}^{N} \sum_{k=1}^{N} p_{i j k} \cdot r[j, k]$
Invariants: $\forall i \in\{0,2, \ldots, K\}, \quad \sum_{j=1}^{N} A[j] \cdot m_{i j} \cdot \mathbf{x}_{i} \leq \sum_{j=1}^{N} m_{i j} \cdot a[j]$
Evolve: $\forall i \in\{0,2 \ldots, K\}, \quad \mathbf{x}_{i+1}=\mathbf{x}_{i}+\sum_{j=1}^{N} c[j] . m_{i j} \cdot t_{i}$
\square Using powerful existing tools (MILP) for verifying ADT, i.e., proving stability.
\square
Switching simulations for abstractions
Future work

- Probabilistic hybrid systems and stability in the stochastic setting, using Lyapunov function like techniques
- Explore other properties that are quantified over executions; liveness properties
- Finding switching simulations automatically?

