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Stability properties arise naturally, some examples:

W Switching supervisory controllers
W  Mobile robots starting from arbitrary positions must
eventually converge, say on a circle

B Real-time distributed computing with failures; once
failures stop, the processes must perform some useful
computation.
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Stability Under Slow Switchings
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* ADT characterizes switching signal o

«  Definition: Hybrid automaton A has average dwell time (ADT) T'if
there exists a constant N, such that for every execution a of A,

N(a) <N, + dur(o)/T.
N(o): # mode switches in a, dur(a): duration of o

Extra switches: Sy(a) = N(o) — dur(e) /T
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L1 Theorem (Morse & Hespanha): For stability it suffices to show that

the modes of A have a set of Lyapunov functions (A, 1) and that the
ADT of A>logu /A .

Given hybrid automaton A and 7>0, we want to
check if 7'1s an ADT for A ?

What 1s the ADT of A ?

¥ Invariant-based method [M-Liberzon:CDCO04]
B Optimization-based method for verifying ADT
B ADT preserving abstraction: switching simulations
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[Lynch,Segala,Vaandrager]

1 4 .mll'

switch(i,j)

mode = i
d(x) = fi(x)

mode = j
d(x) = fi(x)

L

switch(j,i)

X: set of state variables, A: set of actions

Actions bring about state transitions (mode switches), x> X’

A trajectory of X is a function 7:[0,t] =2 val(X)

An execution 1s a seqUENCe o = T,ya,T,a,T,... dur(o) = 2. dur(t))

Notion of external behavior, input/output actions and variables
Abstraction/ implementation relations
Compositionality

Ood oOoO0o0ad

Hybrid Systems:
Computation and Control 2006



[l Consider two hybrid automata A and B. A relation R € X, X X is a
switching simulation relation from A to B 1f :

B For every start state of A there 1s a related start state of B
B IfxeX,,ye Xz xRyand
O x->,x’, exists an execution fragment 3 of B,
s.t.y Py’ & xRy’ & N(P3) = 1, dur(B)=0
[0 x->_x’, exists an execution fragment 3 of B,

s.t.y gy’ & X’ Ry’ & dur(t) > dur(p)

P=iT,a,7 4T,
R /R

a(orrl‘
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Rc X, XX;
I. For every start state of A there is a related start state of B

2. IfxRyand x> x, AB,s.t.y Dy’ &xX’ Ry & N([5) = 1, dur(j3) =0
3. IfxRyandx> x’, AP, sty Dy’ &x* Ry’ & dur(r) = dur(f)

Suppose R 1s a switching simulation relation from A to B and T be ADT of A
Consider any execution o = 7,a,7,a,7,... of A
Inductively construct a corresponding execution 17 of B

Sr(m) = SHa)

L1 Theorem: R is a switching simulation from A to B = ADT of A > ADT of B.
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X 2 (A+h) X Ahode = 2

mode = 1
d(x;) = ¢;x d(x;) = &%,
i) =101> ok G &d(xl) =0

* Not initialized hybrid automaton

* Abstraction using switching simulation

mode 1 mode 2 t
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X1/ Xpin =1 0 oo T
: * This is in fact a one-clock initialized
Xo/ X i =1
D X% =1+h [N\ %  Verifying ADT reduces to finding
Q\\ 3/ Amin o /(.) o
O, %= < minimum mean cost cycle.
Use e.g., Karp’s algorithm.
X /Xy =11h X/ X pin =1
Xo/X i Xo/Xpin =1Fh
\\Q& X3/X X3/Xin =1Fh
Q
\0} / \‘
YV
B X/Xin =11h x,/x,. =1+h
X1/Xmin =1 / —1+h min
X/ Xmin — =
Xo/X, i =1+h / \ X Xinin =1
_ X3/Xmm =1 X3/ X min =1
Xa/X i =1

-

7 (y.mode ) = x.mode A
XM ciy.t A

= e J
x'/umin

R =<7zn(y.mode)=j=

= y.mode [i][ j],i € {1,2}

min
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LIN(a) <N, + dur(o)/T
L1 SHa) = N(o) — dur(a) /T

1 OPT(7): a* carg max, __ .. SHa)
If S(o”) is bounded then T is ADT for A,

Otherwise, a™ an execution violating ADT T
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Theorem (part 1): If max
unbounded.

SHa) > 0then OPT(T) is

a ecycles

W If dacycle with S(a) > 0 then a .a .a...is an execution
with unbounded extra switches.
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Theorem (part 2): For initialized and rectangular A, OPT(T)

1s unbounded only if max

a € cycles ST(OC) > 0.
If OPT(T) is unbounded, 9 execution a, S (o) > m?.
N(a) > m? + dur(a)/T.

d sequence of 3 modes that repeat in o, say a-b-c.
Since A 1s rectangular and initialized,

3 cyclic " such that S (@) > S (a).
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Mixed Integer Linear Program to find cycles with
extra switches for initialized rectangular automata.

Objective function:

ST ——E Z tq

i=0,2,.

Mode: Vi€ {0,2,..., K}, Zmu—land‘v’;e{l 3.
7=1

Cycle: xp =xx and ¥ j € {1,....N}.mo; = mx;

Preconds: Vi€ {1,3,

Initialize: v i € {1, 3,

Invariants: Vi € {0,2,

Evolve: ¥ ie{0,2...

N N
K—1} ) ) pyr=1

=1 k=1

N N N N
K =1 YUY TG K pgrexa < Z; Pijk-gli

=1 k=1
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\ Kr}.. Xitl1 = X5 + Z (’[} T4 fz
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L1 Using powerful existing tools (MILP) for verifying ADT, i.e.,
proving stability.

L1 Switching simulations for abstractions

Future work

W Probabilistic hybrid systems and stability in the stochastic
setting, using Lyapunov function like techniques

W Explore other properties that are quantified over executions;
liveness properties

¥ Finding switching simulations automatically ?

Hybrid Systems:
Computation and Control 2006



	Verifying Average Dwell Time�by solving optimization problems
	Motivation
	Problem statement
	Hybrid I/O Automata �[Lynch,Segala,Vaandrager]
	Switching simulation
	Switching simulations
	Linear Hysteresis switch
	Simple Abstraction
	Optimization problem 
	Optimization based approach
	MILP formulation
	Conclusions

