

Translating Timed I/O Automata to PVS

Hongping Lim, Dilsun Kaynar, Nancy Lynch and Sayan Mitra

Theory of Distributed Systems Group (TDS)

Computer Science and AI Lab, MIT

FORMATS 2005, Uppsala, Sweden

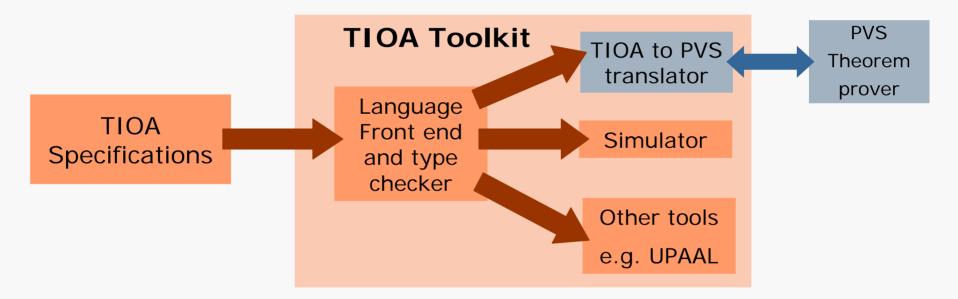
Project Goals

- Develop formal framework for modeling and reasoning about complex, interacting systems
 - Timing-dependent behavior: schedules, deadlines
 - Hybrid behavior: continuous interactions
 - Probabilistic behavior
- ☐ Build language for specifying formal models
 - Extend of IOA language
- ☐ Build Tool support based on the specification language
 - Interface to Theorem Provers
 - Simulator
 - Model checking

Flavors of I/O automaton models

- ☐ Infinite state automata with external interface, abstraction, composition
- ☐ Basic IOA (synchronous distributed algorithms)
 - Sequential order of actions, no timing information
 - Interaction through shared actions
- ☐ TIOA (timing based systems, hybrid systems || environment)
 - Actions and trajectories
 - Trajectories may describe complex continuous dynamics
 - No continuous interaction between components
- ☐ HIOA (embedded systems, software + physical processes)
 - Continuous interactions through shared variables
- ☐ PIOA, PTIOA, PHIOA (security protocols, stochastic hybrid systems)
 - Probabilistic transitions, trajectories, ...

TIOA Toolkit



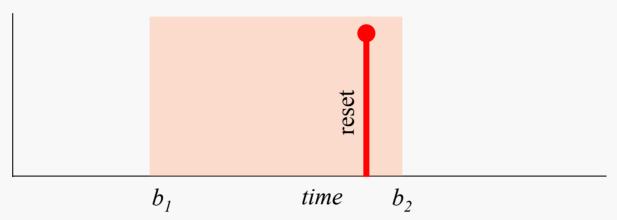
Outline

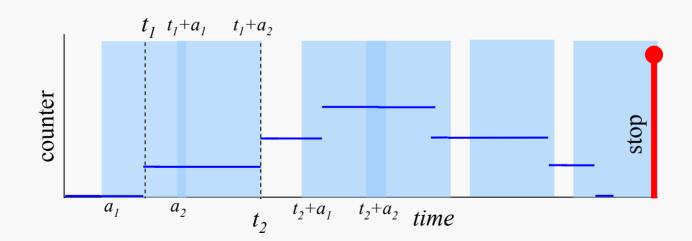
- Introduction
- ☐ TIOA model and language
- ☐ Translation to PVS
- Examples

FIOA model

- ☐ *Timed I/O Automaton* [Kaynar,Lynch,Segala,Vaandrager]
 - State variables X (+ input/output variables = HIOA)
 - Start states Θ
 - Actions A, partitioned into input, output, and internal subsets
 - Discrete transitions D, (x,a,x')
 - Trajectories T, τ maps interval of time to variable values
- $\square \quad \text{Executions} \quad \alpha = \tau_0 a_1 \tau_1 a_2 \tau_2 ... a_n \tau_n$
- ☐ Invariant properties, proof by induction
- □ Traces
- \square Simulation relations: sufficient conditions for $traces(A) \subseteq traces(B)$

Two task example





FIOA Specification

Introduction Model

Model & Language PVS Translation

Examples

- □ Variables
 - count, flag,t
 - u reset, l reset
 - u_count,l_count
- □ + action
 - Precondition:
 - \square not *flag* and $t \ge l$ count
 - Effect:
 - \square count++
 - \Box l count = t+a₁
 - \Box $u_{count} = t + a_{2}$

- reset action
 - Precondition:
 - \square not *flag* and $t \ge l$ reset
 - Effect:
 - \square flag = true
- □ trajdef
 - Evolve: d(t) = 1
 - Stop when: $t = u_count$ or $t = u_reset$

Upper bound for stop

Introduction

Model & Language

PVS Translation

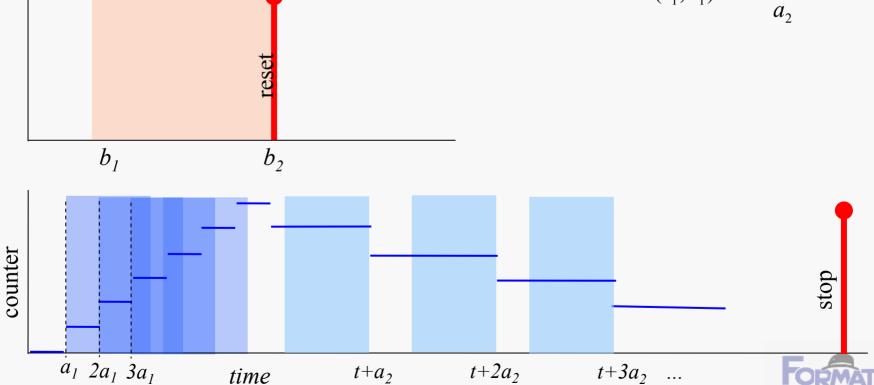
Examples

How late can it *stop*?

$$b_2 + a_2 + \frac{b_2 a_2}{a_1}$$

How early ?

If $a2 \ge b1$ then a1 else $\min(b_1, a_1) + \frac{(b_1 - a_1)a_1}{a_2}$



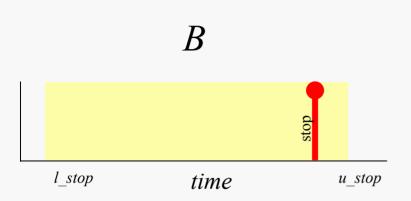
Case studies: Two task example

Introduction

Model & Language

PVS Translation

Examples

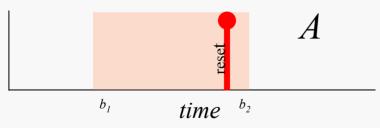


 \square Abstract automaton B with one action stop

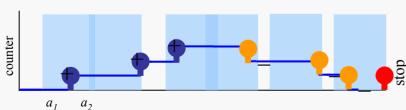
$$u_stop = b_2 + a_2 + \frac{b_2 a_2}{a_1}$$

with simulation relations

- $l_stop = \text{if } a2 \ge b1 \text{ then a } l \text{ else}$ $\min(b_1, a_1) + \frac{(b_1 a_1)a_1}{a_2}$
- a₂Prove trace inclusion (time bounds for *stop*)



 \square Prove forward simulation $R \subseteq Q_A \times Q_B$



time

Simulation Relation

- \square Requires creativity/insight to come up with the right *R*
- ☐ Proof by induction
 - 1. There are related start states
 - 2. Every action/trajectory of A can be emulated by an execution fragment of B with the same trace.
- ☐ Use PVS prover [SRI] for proving interactively
- ☐ Strategies set up the induction and case analysis automatically
- Nonlinear real inequalities handled by *Field* and *Manip* strategy packages[Muñoz, deVito]

Franslation to PVS

- □ Stylized proofs lead to partial automation [Archer, Mitra 05]
- □ Proof management (E.g., ABD implementation [Chockler, Lynch, Mitra, Tauber, DISC'05])
- Rechecking proofs after making changes to spec
- Generation of human readable proofs
- □ Rewrite TIOA specs for the theorem prover! Different language and style.
- ☐ Why not specify automata directly in PVS?
 - TIOA provides structures for natural description of automata
 - ☐ Programs for effects as opposed to functions or relations
 - ☐ Differential equations and stopping conditions for trajectories
 - Other TIOA tools

States and Actions

Introduction	Model & Language	PVS Translation	Examples
--------------	------------------	-----------------	----------

TIOA	PVS	
☐ States variables →	tuple of variables	
\square Initial state \rightarrow	predicate on state variables	
\square Actions \rightarrow	new datatype called actions	
\square Preconditions \rightarrow	predicates on state variables, action	
	parameters, automaton parameters	
\square Effects \rightarrow	•••	
☐ Trajdefs →	•••	

Translating action effects

Introduction

Model & Language

PVS Translation

Examples

- ☐ TIOA effects are nondeterministic, e.g.,

 plus_something(): effect x := x + choose [1,5];
- ☐ TIOA effects are programs with operational semantics:

$$x := x + 5; y := 2.x; ...$$

- ☐ We want the PVS effects to be functions:
 - $plus(k \in [1,5]): x' := x + k$
 - Substitution:

$$x' = x + 5; y' = 2(x + 5)$$

PVS assignments:

$$s' = LET \ s := s \ WITH \ [x := x(s) + 5] \ in$$

$$LET \ s := s \ WITH \ [y := 2 \times x(s)] \ in \ s$$

Translating trajectories

Introduction

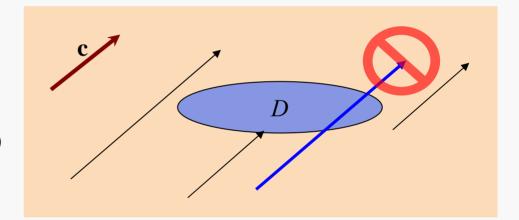
Model & Language

PVS Translation

Examples

□ Trajdef → time_elapse action

- Trajdef
- **Evolve:** $d(\mathbf{x}) = \mathbf{c}$
- **Stop when:** $\mathbf{x} \in D$
- PVS action
- time_elapse($t:R^{\geq 0}$, $\tau:[0,t] \rightarrow R^2$)
- Enabled if
 - \square for all $t_1 \in [0,t]$,
 - If $\tau(t_1) \in D$ then $t_1 = t$
- Effect
 - \Box $s' = \tau(t)$



Translating trajectories

Introduction

Model & Language

PVS Translation

Examples

☐ Works for general *trajdefs*

- Trajdef
- **Evolve:** $d(\mathbf{x}) = c\mathbf{x}$
- **Stop when:** $\mathbf{x} \in D$
- PVS action
- time_elapse($dt: R^{\geq 0}$, $\tau: [0,t] \rightarrow R^2$)
- Enabled at s If
 - - If $\tau(t_1) \in D$ then $t_1 = t$
- Effect
 - \Box $s' = \tau(t)$

Examples

Introduction Model & Language PVS Translation Examples

Case Studies

Fischer's Mutual Exclusion Algori

orithm!

- \square N processes, each go through try, test, etc., to get to critical
- ☐ Transitions determined by deadlines
- \square Single TIOA written as the composition of N automata
- ☐ Safety property: no two processes are *critical* simultaneously
- Automata and properties translated to PVS
- Invariant proved using induction

Ongoing: SATS

- ☐ Small Aircraft Transportation System (SATS) [Muñoz, NASA]
 - Discrete model: airport space partitioned into several logical zones
 - Each zones represented by a queue
 - Transitions represent aircrafts moving from one zone to another
 - Various constraints on transitions
- □ Safety property: upper bound on the number of aircrafts in each zone
- ☐ TIOA description of system
 - Special operators declared in TIOA and defined in PVS, e.g. recursive functions
- Translated to PVS
- Properties written directly in PVS and proved

Ongoing: ABD

- ☐ ABD atomic register implementation
 - Read and write quorums for 2 phase reads and writes
 - Partial functions & graphs
- Proof of correctness using an abstract Partial Order automaton
- ☐ Simulation proof, ABD implements PO-automaton
- Directly coded in PVS

Conclusion

- Translator is part of TIOA toolkit, implemented in Java Available from: http://web.mit.edu/hongping/www/tioa/tioa2pvs-translator/
- ☐ Future directions:
 - Extend translator
 - systems with linear dynamics
 - composed TIOAs
 - Develop new PVS strategies
 - New case studies
 - ☐ Linear hybrid systems
 - ☐ Atomic registers implementations
 - ☐ Continuous SATS

