

Massachusetts Institute of Technology

Learning Cycle-Linear Hybrid Automata for Excitable Cells

Sayan Mitra

Joint work with **Radu Grosu, Pei Ye, Emilia Entcheva, I V Ramakrishnan, and Scott Smolka**

> HSCC 2007 Pisa, Italy

Outline

- Excitable cells
- Hybrid model for excitable cells
- Conclusions and future directions

Excitable Cells

- An excitable cell generates electrical pulses or *action potentials* in *response* to electrical stimulation
 - Examples: neurons, cardiac cells, smooth muscle cells
- Local regeneration allows electric signal propagation without damping
- Building block for electrical signaling in brain, heart, and muscles

Neurons of a squirrel **University College London**

Artificial cardiac tissue **University of Washington**

Interaction of Excitable Cells

- Action Potential (AP) depends on stimulus, membrane voltage of neighboring cells, state of cell itself
- Normal: *synchronous pulses,* spiral waves
- Abnormal: *incoherent pulses,* wave breakup
 - Leads to cardiac arrhythmia, epilepsy

Macro Models of Action Potentials

- Cellular automata
- Oscillators and uniform coupling between cells [Kuramoto`84]
- Small-world network of coupled oscillators
 [Watts & Strogatz`98]

$$\frac{\partial \theta_i}{\partial t} = \omega_i + \frac{K}{N} \sum_{j=1}^N \sin(\theta_j - \theta_i)$$
$$i = 1...N$$

Micro Models for Action Potentials

- Membrane potential for squid giant axon [Hodgkin-Huxley`52]
- Luo-Rudy model (1991) for cardiac cells of guine
- Neo-Natal Rat (NNR) model for cardiac cells of ra

$$C \dot{V} = \overline{g}_{Na} m^{3} h (V_{Na} - V) + \overline{g}_{K} n^{4} (V_{K} - V) + g_{L}(V_{L} - V) + I_{st}$$

$$\dot{m} = -(\alpha_{m} + \beta_{m})m + \alpha_{m}$$

$$\dot{h} = -(\alpha_{h} + \beta_{h})h + \alpha_{h}$$

$$\dot{n} = -(\alpha_{n} + \beta_{n})n + \alpha_{n}$$

$$\alpha_{m}(V) = 4e^{-\frac{V}{18}}$$

$$\alpha_{n}(V) = 4e^{-\frac{V}{18}}$$

$$\alpha_{n}(V) = 4e^{-\frac{V}{18}}$$

$$\alpha_{n}(V) = \frac{(0.1 - 0.01 V)}{e^{1 - 0.1 V} - 1}$$

$$\beta_{h}(V) = \frac{1}{e^{3 - 0.1 V} + 1}$$

$$\beta_{n}(V) = 0.125e^{-\frac{V}{80}}$$

Ņa⁺

K⁺

Outside g_K g_I V_{Na}

 \mathbf{I}_{st}

- Large state-space
- Nonlinear differential equations
- Multiple spatial and temporal scales

Inside

Linear Hybrid Approximations for Action Potentials

• **Suppose**, AP can be partitioned into modes so that in mode M, *v* can be approximated by:

$$x_i = b_{Mi} x_i$$

$$v = \sum_{i} x_{i} M \epsilon \{S, U, E, P, F, R\}$$

- b_{Mi} 's can be found by Prony's method which fits sum of exponentials to data
- Mode switches
 - at the beginning and end of stimulus
 - when v crosses threshold voltages V_M
- **But**, stimulus can appear at any M
 - State of cell at the time of arrival of stimulus influences behavior of cell for the next AP
 - b_{Mi} 's history dependent

time

History Dependence of APs

- Frequency of stimulation determines voltage (*v*₀) at the time of appearance of stimulus, which influences shape of next AP
- Lower frequency: longer *resting time* and v_0 closer to *resting voltage* results in *longer AP*
- Higher frequency: *shorter AP*

History Dependence of APs

- Frequency of stimulation determines voltage (*v*₀) at the time of appearance of stimulus, which influences shape of next AP
- Even higher frequency: conjoined AP, bifurcation

History Dependence and Restitution

- Frequency of stimulation determines voltage (*v*₀) at the time of appearance of stimulus, which influences shape of next AP
- *Restitution curve*: APD vs. DI
 - Slope > 1 indicates breakup of spiral waves under high frequency stimulation
 - Local to global behavior

Hybrid Automata Model for Excitable Cells

Cycle Linear Hybrid Automata (CLHA)

- Uncountable family of modes
 - $\mathcal{M} = \mathcal{E} \times \mathcal{R}$: *Epoch* and *Regime*
 - $(\mathcal{R}, <)$ is a total order
- Linear dynamics in each mode
- Unique $\gamma \in \mathcal{R}$ that is visited infinitely many times
- There exists a *snapshot function* $S: X \longrightarrow \mathcal{E}$, such that for any switch $(x_1, \epsilon_1, r_1) \longrightarrow (x_2, \epsilon_2, r_2)$ (i) $r_2 = \gamma$ and $\epsilon_2 = S(x_1)$, or
 - (i) $I_2 = \gamma$ and $\epsilon_2 = S(x_1)$, or
 - (ii) $r_2 \neq \gamma$, $\epsilon_2 = \epsilon_1$ and $r_2 < r_1$
- $\mathcal{R} = \{S, U, E, P, F, R\}$ & determined by v_0

 $M \in \{S,U,E,P,F,R\}$

Identifying CLHA Parameters for a single AP

For each mode, we seek a solution for LTI:

$$\dot{x} = bx, \ x(0) = a,$$

 $b = diag(b_1, ..., b_n), \ a = [a_1 ... a_n]^T$
 $v = \sum_{i=1}^n x_i$

Observable solution is a sum of exponentials:

$$v = \sum_{i=1}^{n} a_i e^{b_i t}$$

- Curve segments are Convex, concave or both
- Consequences:
 - Solutions: might require at least two exponentials
 - Coefficients a_i and b_i: positive/negative or real/complex
- Exponential fitting: Modified Prony's method [Osborne and Smyth `95]

Parameters as Functions of History Variable

- Parameters:
 - Threshold voltages V_{S'} V_{E'} ...
 - Coefficients of differential equations
 b_{S1}, b_{S2}, b_{E1}, ...
 - Coefficients in reset maps
- From each stimulation frequency in the training set, we get a corresponding value for b_{S1}, b_{S2}, ..., V_S, V_E, ...
- Apply Prony's method (a second time) to obtain b_{S1} as a function of v_0 :
 - $b_{M1}(v_0) = c_{M1} \exp(v_0 d_{M1}) + c'_{M1} \exp(v_0 d'_{M1}),$ for each M \in {S,U,E,P,F,R}
 - $V_T(v_0) = c_T exp(v_0 d_T) + c'_T exp(v_0 d'_T)$

Contributions and Simulation Results

Breakup

- CLHA as a model for almost periodic systems
- Iterative process to obtain excitable cell model with desired accuracy
- Simulation efficiency (> 8 times faster)

[True, Entcheva, et al.]

- Biological interpretation of state variables x₁, x₂; restitution curve
- Spiral wave generation and breakup

Spiral

waves

Future Directions

- CLHA for stimulation with different shapes
- CLHAs coupled through---pulses or diffusion---for analyzing synchronization conditions
- Specification of spatiotemporal voltage patterns
- Distributed control through targeted stimulation