
Verifying Statistical Zero Knowledge with
Approximate Implementations?

Ling Cheung1, Sayan Mitra1, and Olivier Pereira2

1 Computer Science and AI Laboratory,
Massachusetts Inst. of Technology,

32 Vassar Street, Cambridge, MA 02139, USA
{lcheung, mitras}@csail.mit.edu
2 Laboratoire de Microélectronique
Université catholique de Louvain

1, Place de l’Université B-1348 Louvain-la-Neuve, Belgium
olivier.pereira@uclouvain.be

Abstract. Statistical zero-knowledge (SZK) properties play an impor-
tant role in designing cryptographic protocols that enforce honest be-
havior while maintaining privacy. This paper presents a novel approach
for verifying SZK properties, using recently developed techniques based
on approximate simulation relations. We formulate statistical indistin-
guishability as an implementation relation in the Task-PIOA framework,
which allows us to express computational restrictions. The implementa-
tion relation is then proven using approximate simulation relations. This
technique separates proof obligations into two categories: those requir-
ing probabilistic reasoning, as well as those that do not. The latter is
a good candidate for mechanization. We illustrate the general method
by verifying the SZK property of the well-known identification protocol
proposed by Girault, Poupard and Stern.

? This work was supported by NSF’s CSR program (Embedded and Hybrid Systems
area) under grant NSF CNS-0614993.

1

1 Introduction

From the early 1980’s, it appeared in more and more contexts that proving
security is about establishing that the behaviors of systems are indistinguishable.
This idea probably appeared first in the security community through the work of
Goguen and Meseguer introducing noninterference [?], and in the cryptography
community through the work of Goldwasser and Micali introducing semantic
security [?].

In cryptography, three flavors of indistinguishability have traditionally been
considered [?]. Suppose X = {Xk}k∈N and Y = {Yk}k∈N are two families of ran-
dom variables indexed by k, which we refer to as the security parameter. These
two families are (i) perfectly indistinguishable if they have the same distribution
for each k, (ii) statistically indistinguishable if the statistical distance between
Xk and Yk decreases faster than any inverse polynomial in k, and (iii) compu-
tationally indistinguishable if, for every probabilistic polynomial time-bounded1

distinguisher family D = {Dk}k∈N, the probability that Dk distinguishes Xk

from Yk decreases faster than any inverse polynomial in k.
Various techniques have been used to establish perfect indistinguishability,

including (bi-)simulation relations, invariant assertion, etc. Computational indis-
tinguishability is traditionally proved by reduction: we first make a fundamental
assumption that two (well-known) systems are computationally indistinguish-
able, and then prove that the existence of a polynomial-time distinguisher for
the two protocol systems implies the existence of a distinguisher for the well-
known systems, which violates the fundamental assumption.

Recently, much work has been done in the distributed system and security
communities to develop reasoning techniques for statistical distance between
system executions [?,?,?,?,?,?,?]. These techniques are proposed in the context
of noninterference, therefore are not immediately applicable in the analysis of
cryptographic protocols. For example, they typically do not consider the notion
of polynomial time-bounded computation (an exception being the model of [?]).
We shall return to these works in the related work section.

In this paper, we show that statistical indistinguishability properties can be
formulated very naturally in the Task-PIOA framework [?,?], and they can be
verified using the approximate simulation relation techniques developed in [?,?],
which provide formal soundness proofs for these techniques. Here soundness
means the existence of an approximate simulation guarantees that every trace
distribution in the first system can be matched by some trace distribution in
the second system in such a way that the trace distributions are “close” with
respect to some metric.

We exemplify our approach through the analysis of a classical identification
protocol proposed by Girault, Poupard and Stern [?]. Our analysis establishes
that the GPS protocol is statistical zero-knowledge; that is, there is a proba-
bilistic polynomial-time simulator that produces a protocol transcript that is

1 This means there is a polynomial p such that, for every k, the running time of Dk

is bounded by p(k).

2

statistically indistinguishable from the one resulting from a real execution of
the protocol. The crucial point here is, the simulator must achieve this without
knowing the private information of the party who proves his identity.

This case study is an important first step towards applying approximate
simulation techniques to the verification of statistical security of cryptographic
protocols. We believe this is an area of great potential, because simulation rela-
tion techniques are well-suited for hierarchical verification of large systems with
nondeterministic behavior. Many applications of these techniques in mechanical
verification of systems have been published (see, e.g., [?,?] for some recent non-
security related case studies in the I/O Automaton framework). Our GPS case
study demonstrates that nondeterminism can be used to simplify specifications,
without increasing the proof complexity2. Our new simulation-based verification
technique yields one set of proof obligations which require probabilistic reasoning
and a separate set of obligations that do not involve probabilities. The latter type
of obligations can be checked using the currently available TIOA Toolsuite and
its interface to the PVS theorem prover [?]. Eventually, we hope to (partially)
mechanize or even automate the verification of statistical indistinguishability
properties for cryptographic protocols.

Related Work. Probabilistic observational equivalence or bisimilarity can only
establish perfect indistinguishability or absolute non-interference. But in real-
ity such properties are hard to achieve, if not impossible to achieve. This has
been noted both in the security community (for example in [?]), and also in the
literature related to verification of timed and probabilistic systems [?]. Based
on these observations, there has been intense research in the recent years to-
wards developing metric-based generalizations of probabilistic bisimulations and
observational equivalences. Jou and Smolka [?] first introduced the idea of for-
malizing similarity of observed behavior by using metrics. Approximation met-
rics for probabilistic systems in the context of Labelled Markov Processes (LMP)
have been extensively investigated and many fundamental results have been ob-
tained by Desharnais, Gupta, Jagadeesan and Panangaden [?,?,?] and by van
Breugel, Mislove, Ouaknine, and Worrell [?,?,?,?,?]. Our notion of approximate
implementation, introduced in [?] and developed further in [?], differs from the
previous approaches in at least one of the following ways: (a) the task-PIOA
model allows both nondeterministic and probabilistic choices, and (b) the im-
plementation relation in our framework is based on trace distributions and not
bisimilarity of states. Approximate implementation is derived from a metric over
probability distributions of observed behavior, and thus, we do not require the
state spaces of the underlying automata nor the common space of Input/Output
actions to be metric spaces.

Approximate implementation relations have been applied to verify informa-
tion flow and confidentiality. See, for example, [?,?,?,?] and the references therein

2 Since Task-PIOA uses oblivious, task-based scheduling, nondeterministic specifica-
tions can in fact be given to cryptographic protocols.

3

for an overview of this body of work. In order to prove that there is no infor-
mation flow between two objects A and B, it suffices to show that B cannot
distinguish a pair of behaviors of the system that differ only in A’s behavior.
Typically, variants of weak probabilistic bisimulation are used to verify this type
of indistinguishability properties. A general notion of information flow which
subsumes the computational case, and the associated verifiaction machinary has
been developed in [?]. Also, an approximate notion of bisimilarity is introduced
in [?] as a means to prove quantitative bounds on the information flow through
systems. However, these two papers do not allow internal nondeterminism3, as
we do here as a means of abstraction and simplification.

The approximate simulation function based verification technique proposed
in this paper is particularly suitable for SZK properties because in order to
perform the verification task we have the freedom to choose the simulator S as
well as the simulation function relating S with P and V . To the best of our
knowledge, approximate implementations have not been applied to verify SZK
properties prior to this work.

2 Background

Task-structured Probabilistic I/O Automaton (Task-PIOA) [?] is a modeling
framework for distributed systems which allows both probabilistic and nonde-
terministic state transitions. It has a task-based scheduling mechanism which is
less powerful that than traditional perfect-information scheduling. This mecha-
nism together with suitable restrictions on the computing power of task-PIOAs
and schedulers have been applied to verify cryptographic protocols.

Given a set X, we use X⊥ to denote X∪{⊥} and Disc(X) to denote the set of
discrete probability measures on X. If µ is a discrete probability measure on X,
the support of µ, written as supp(µ), is the set of elements of X that have non-
zero measure. The task-PIOA model used in this paper is slightly more general
than the one in [?], because we allow the starting configuration of an automaton
to be any distribution over states and not just a Dirac mass.

Definition 1. A task-structured probabilistic I/O automaton A is a 7-tuple
(Q,µ0, I, O, H,D,R) where:

1. Q is a countable set of states;
2. µ0 ∈ Disc(Q) is the starting distribution on states;
3. I, O and H are countable and pairwise disjoint sets of actions, referred to

as input, output, and internal actions, respectively. The set A := I ∪O ∪H
is called the set of actions of A. If I = ∅, then A is said to be closed.

4. D ⊆ (Q × A × Disc(Q)) is a transition relation. If (q, a, µ) ∈ D, we write
q

a→ µ. If q
a→ µ and q′ ∈ supp(µ), we write q

a→ q′. An action a is enabled
in a state q if there exists q′, such that q

a→ q′.
3 By internal nondeterminism we mean nondeterministic choices that are not related

to inputs.

4

5. R is an equivalence relation on O ∪H. Equivalence classes of R are called
tasks. Task T is enabled in a state q if some action a ∈ T is enabled in q.

In addition, A satisfies:

(a) For every q ∈ Q and a ∈ I, a is enabled in q.
(b) For every q ∈ Q and a ∈ A, there is at most one µ ∈ Disc(Q) such that

(q, a, µ) ∈ D.
(c) For every q ∈ Q and T ∈ R, at most one a ∈ T is enabled in q.

The input enabling assumption (a) is standard in the I/O Automaton literature.
Assumptions (b) and (c) enable us to resolve nondeterminism by specifying a
sequence of tasks.

An execution fragment of A is a finite or infinite sequence α = q0 a1 q1 a2 . . .
of alternating states and actions, such that (i) if α is finite, then it ends with
a state; and (ii) for every non-final i, there is a transition (qi, ai+1, qi+1). We
write α.fstate for q0, and, if α is finite, we write α.lstate for its last state. We
use FragsA (resp., Frags∗A) to denote the set of all (resp., all finite) execution
fragments of A. An execution of A is an execution fragment beginning from
some state in supp(µ0). ExecsA (resp., Execs∗A) denotes the set of all (resp.,
finite) executions of A. The trace of an execution fragment α, written trace(α),
is the restriction of α to the set of input/output actions of A. We say that β is
a trace of A if there is an execution α of A with trace(α) = β. TracesA (resp.,
Traces∗A) denotes the set of all (resp., finite) traces of A.

Parallel composition for task-PIOAs is based on synchronization of shared
actions. Task-PIOAsA1 andA2 are said to be compatible if Ai∩Hj = Oi∩Oj = ∅
whenever i 6= j. In that case, we define their composition A1‖A2 to be

〈Q1 ×Q2, 〈q̄1, q̄2〉, (I1 ∪ I2) \ (O1 ∪O2), O1 ∪O2,H1 ∪H2,∆,R1 ∪R2〉,

where ∆ is the set of triples 〈〈q1, q2〉, a, µ1 × µ2〉 such that (i) a is enabled in
some qi and (ii) for every i, if a ∈ Ai then 〈qi, a, µi〉 ∈ ∆i, otherwise µi assigns
probability 1 to qi (i.e., µi is the Dirac measure on qi, denoted Dirac(qi)).

2.1 Trace Distributions

In studying statistical indistinguishability of protocols modeled at task-PIOAs,
we are interested in analyzing the probability distributions over the set of traces
of automata. The distributions over traces are defined in terms of probabilistic
executions, which are probability distributions over executions. Depending on
how nondeterminism is resolved by a scheduler , a task-PIOA may give rise to
many probabilistic executions. The theory of probabilistic executions of task-
PIOAs with a general class of history dependent schedulers has been developed
in [?]. However, in cryptographic applications, we restrict our attention to static
(or oblivious), schedulers that do not depend on dynamic information gener-
ated during execution. This is so that the scheduler cannot channel dynamically
generated information via the ordering of events. We refer to [?] for further dis-
cussions regarding oblivious schedulers. Formally, task schedule forA is any finite

5

or infinite sequence σ = T1T2 . . . of tasks in R. In this paper we are going to be
concerned with finite task schedules only. By virtue of Assumptions (b) and (c)
for task-PIOAs, a task schedule can be used to generate a unique probabilistic
execution of the task-PIOA A. One can do this by repeatedly scheduling tasks,
each of which determines at most one transition of A. This is captured in the
following operation that “applies” a task schedule to a task-PIOA.

Definition 2. Let A be an action-deterministic task-PIOA. Given µ ∈ Disc(Frags∗A)
and a task schedule σ, apply(µ, σ) is the probability measure on FragsA defined
recursively by:

1. apply(µ, λ) := µ. (λ denotes the empty sequence.)
2. For T ∈ R, apply(µ, T) is defined as follows. For every α ∈ Frags∗A,

apply(µ, T)(α) := p1(α) + p2(α), where:
– p1(α) = µ(α′)η(q) if α is of the form α′ aq, where a ∈ T and α′.lstate

a→
η; p1(α) = 0 otherwise.

– p2(α) = µ(α) if T is not enabled in α.lstate; p2(α) = 0 otherwise.
3. For σ of the form σ′ T , T ∈ R, apply(µ, σ) := apply(apply(µ, σ′), T).

In Case (2) above, p1 represents the probability that α is executed when
applying task T at the end of α′. Because of transition-determinism and action-
determinism, the transition (α′.lstate, a, η) is unique, and so p1 is well-defined.
The term p2 represents the original probability µ(α), which is relevant if T is
not enabled after α.

Given any task schedule σ, apply(ν̄, σ) is a probability distribution over
ExecA. Given a probability measure µ on ExecsA, we define the trace distribution
of µ, denoted tdist(µ) as follows:

tdist(µ)(β) =
∑

α:trace(α)=β

µ(α)−
∑
a∈E

∑
α:trace(α)=βa

µ(α) (1)

We write tdist(µ, σ) as shorthand for tdist(apply(µ, σ)), the trace distribution
obtained by applying task schedule σ starting from the measure µ on execution
fragments. We write tdist(σ) for tdist(apply(ν̄, σ)). A trace distribution ofA is any
tdist(σ). We use tdists(A) to denote the set {tdist(σ) : σ is a task schedule forA}
of all trace distributions of A.

We note that the current definition of trace distributions is equivalent to
the one in [?], where tdist(µ) is simply the image measure under the trace func-
tion. The current definition is more natural for statistically indistinguishability
statements.

2.2 Time Bounds and Task-PIOA families

Since our target applications are cryptographic protocols, we need to express
computational restrictions on task-PIOAs. To do so, we use the definition of
time bounds for task-PIOAs in [?,?]. Roughly speaking, a task-PIOA A has p-
bounded description, with p ∈ N, if A has a bit-string representation bounded

6

by p and the transition relation is computable by a probabilistic Turing machine
with runtime bounded by p. A complete definition can be found in Appendix A.

We note that p limits the size of action names, the amount of available
memory and the number of Turing machine steps taken at each transition of
A. It, however, does not limit the number of transitions that are taken in a
particular run. This latter type of limitations is captured by bounds on the
length of task schedules. For q ∈ N, we write tdists(A, q) for the set of trace
distributions induced by task schedules of length at most q.

A task-PIOA family A is an indexed set {Ak}k∈N of task-PIOAs. The index k
is commonly referred to as the security parameter. We say that A has p-bounded
description for some p : N → N just in case: for all k, Ak has p(k)-bounded
description. If p is a polynomial, then we say that A has polynomially-bounded
description.

For task-PIOA families, the notions of compatibility and parallel composition
are defined pointwise.

3 Statistical Implementation

In this section, we define a statistical implementation relation for task-PIOA
families, capturing the idea that the trace distributions produced by the two
families are statistically close. We begin by defining δ-approximate implementa-
tion for individual task-PIOAs, and then we generalize to task-PIOA families,
with the additional requirement that δ is a negligible function. Formally, a func-
tion δ : N → R≥0 is said to be negligible if, for every constant c ∈ N, there exists
k0 ∈ N such that δ(k) < 1

kc for all k ≥ k0. (That is, δ diminishes more quickly
than the reciprocal of any polynomial.)

Implementation relations are defined on task-PIOAs with the same external
interface. More precisely, A1 and A2 are said to be comparable if I1 = I2 and
O1 = O2. We define as follows δ-approximate implementation with respect to
some metric d on trace distributions.

Definition 3. Suppose A1 and A2 are comparable, closed task-PIOAs and d is a
metric on their space of trace distributions. For δ > 0, A1 is said to δ-implement
A2 with respect to d, written as A1 ≤d,δ A2, if for every η1 ∈ tdists(A1) there
exists η2 ∈ tdists(A2) such that d(η1, η2) ≤ δ.

In the rest of this paper, we focus on the following metric d and we abbreviate
≤d,δ as ≤δ.

Definition 4. Let A be a closed task-PIOA. The statistical difference over trace
distributions of A is the function d : Disc(TracesA) × Disc(TracesA) → R≥0

defined by:

d(η1, η2)
∆=

∑
β∈TracesA

|η1(β)− η2(β)| .

7

Notice, in Definition 3, we do not impose any restrictions on schedule lengths.
A variation with schedule length bounds can be obtained easily as follows: for
q1, q2 ∈ N, we say that A1 ≤q1,q2,δ A2 if, for every η1 ∈ tdists(A1, q1) there exists
η2 ∈ tdists(A2, q2) such that d(η1, η2) ≤ δ.

Next we define statistical implementation for task-PIOA families with bounded
schedule lengths. We do not impose time bounds on the description of these
families, because in zero knowledge protocols the prover may be unbounded.
Nonetheless, we impose time bounds on schedule lengths, so that the other enti-
ties (e.g., verifier and simulator) will be polynomially bounded, as long as they
are shown to have polynomially bounded description.

Definition 5. Let A1 and A2 be pointwise comparable task-PIOA families. We
say that A1 statistically implements A2 if

∀q1 ∃q2, δ ∀k (A1)k ≤q1(k),q2(k),δ(k) (A2)k,

where q1 and q2 are polynomials and δ is a negligible function.

3.1 Approximate Simulation Relations

We now define a notion of approximate simulation relation, which is a slight
variation of the definition given in [?]. We consider here only finite task schedules
and we do not make use of the expansion operation. These changes simplify the
proof of the soundness theorem (Theorem 1).

Definition 6. Suppose A1 and A2 are two comparable closed task-PIOAs, ε is
a nonnegative constant, and φ is a function Disc(Frags∗A1

) × Disc(Frags∗A2
) →

R≥0 ∪ {∞}. The function φ is an (ε, δ)-approximate simulation from A1 to A2

if exists a function c : R∗
1 ×R1 → R∗

2 such that the following properties hold:

1. Start condition: φ(µ10, µ20) ≤ ε.
2. Step condition: If φ(µ1, µ2) ≤ ε, T ∈ R1, σ ∈ R∗

1 and µ1 is consistent
with σ, and µ2 is consistent with full(c)(σ), then φ(µ′1, µ

′
2) ≤ ε, where µ′1 =

apply(µ1, T) and µ′2 = apply(µ2, c(σ, T)).
3. Trace condition: There exists δ > 0 such that if φ(µ1, µ2) ≤ ε then

du(tdist(µ1), tdist(µ2)) ≤ δ.

Theorem 1. Let A1 and A2 be two closed comparable task-PIOAs. If there ex-
ists a (ε, δ)-approximate simulation function from A1 to A2 then A1 ≤δ A2.

Proof. Let φ be the assumed (ε, δ)-expanded approximate simulation function
from A1 to A2. Let µ1 be the probabilistic execution of A1 generated by the
starting distribution µ10 and a finite task schedule T1, T2, For each i > 0,
we define σi to be c(T1 . . . Ti−1, Ti). Let µ2 be the probabilistic execution of
A2 generated by ν̄2 and the concatenation σ1, σ2, It suffices to show that:
du(tdist(µ1), tdist(µ2)) ≤ δ.

For each j ≥ 0, we define

µ1,j
∆= apply(ν̄1, T1, . . . , Tj) and µ2,j

∆= apply(ν̄2, σ1, . . . , σj) .

8

For i ∈ {1, 2} and for each j ≥ 0, µi,j ≤ µi,j+1. Observe that for every j ≥ 0,
µ1,j+1 = apply(µ1,j , Tj+1) and also that µ2,j+1 = apply(µ2,j , σj+1).

We prove by induction that for all j ≥ 0, φ̂(µ1,j , µ2,j) ≤ ε. For j = 0,
µ1,0 = ν̄1 and µ2,0 = ν̄2. By the start condition of the simulation function,
φ(µ1,0, µ2,0) ≤ ε.

For the inductive step, we assume that φ(µ1,j , µ1,j) ≤ ε and show that
φ(µ1,j+1, µ2,j+1) ≤ ε. First of all, note that µ1,j+1 = apply(µ1,j , Tj+1) and
µ2,j+1 = apply(µ2,j , c(σjTj+1)). From the induction hypothesis φ(µ1,j , µ2,j) ≤ ε,
therefore from the step condition of Definition 6 it follows that φ(µ1,j+1, µ2,j+1) ≤ ε.

From the previous part and the trace condition of Definition 6, for each j ≥ 0,
du(tdist µ1,j , tdist µ2,j) ≤ δ. We conclude that du(tdist(µ1), tdist(µ2)) ≤ δ. ut

In [?,?] it was shown that a more general type of simulation functions,
called expanded approximate simulations also provide a sound way of proving
δ-implementation. This stronger notion was in fact necessary in the Oblivious
Transfer case study [?], where matching events may occur at different points
during execution of the two systems. We do not make use of this in our GPS
case study.

4 GPS Protocol

GPS is an interactive zero-knowledge identification scheme consisting of a num-
ber of repetitions of an elementary round. Its parameters are as follows.
– l: number of repetitions of the elementary round.
– G: a generic multiplicative group.
– g: a fixed element of G.
– S: integer upperbound for secret key.
– A,B: additional integer bounds. (We define Φ = (B − 1)(S − 1).)
– κ ∈ [0, S − 1]: the prover’s secret key.
– I = gκ: the public key.

The parameters G and g are chosen by some fixed randomized algorithm which
takes as input a random tape and a security parameter k. The parameters S, A
and B are chosen so that SB/A is negligible in k. The security of GPS then relies
on the intractability of computing base g discrete logarithms in G for exponents
taken from the range [0, S − 1].

Each elementary round of GPS is a three-round protocol between the prover
and the verifier (Figure 1). In the first round, the prover chooses a number r
uniformly at random from the range [0, A− 1] and sends a commitment x = gr

to the verifier. In the second round, the verifier chooses a challenge c uniformly
at random from [0, B − 1] and sends it to the prover. Upon receiving c, the
prover checks that it is in the right range. In the last round, the prover sends
to the verifier y = r + c · κ, and the verifier checks whether gy = x · Ic and
y ∈ [0, A + Φ− 1].

In this paper, we focus on the case where both prover and verifier are honest.
This implies all elementary rounds are independent from each other, therefore

9

Prover Verifier

choose r in [0, A− 1]

x = gr x

check c ∈ [0, B − 1] c choose c in [0, B − 1]

y = r + c · κ
y

check gy = x · Ic and y ∈ [0, A + Φ− 1]

Fig. 1. GPS Elementary Round

a very simple simulator strategy is sufficient. For each elementary round, the
simulator
(1) chooses 〈c, y〉 uniformly at random from [0, B − 1]× [Φ,A− 1], and
(2) produces the transcript 〈gy/Ic, c, y〉.
For statistically zero-knowledge, the simulator’s transcript must be statistically
indistinguishable from the real transcript produced by the prover-verifier pair.

4.1 Task-PIOA Modeling

Our model of the GPS protocol consists of three automata: Prover, Verifier and
SIM. Since we are dealing with the case of honest prover and honest verifier, it is
sufficient to analyze a single elementary round. (Though it is quite easy to adapt
the specifications for multiple-round analysis, by adding history variables.) We
treat the parameters G, g, A,B, S and Φ as globally known constants. The Prover
automaton is parameterized with the secret key κ, and the Verifier and SIM are
parameterized with the public key I.

The task-PIOA specification for Prover is given in Figure 2. It has two param-
eterized output actions, Commit(x) and Rely(y), corresponding respectively to
the two messages from prover to verifier. It has one parameterized input action,
Challenge(c), corresponding to the unique message from verifier to prover. There
are three state variables: rp, cp and commited . The variable rp is initialized with
a random value from [0, A − 1] and is used to compute the commitment in the
first round. The variable cp stores the challenge received in the second round.
The variable commited is a Boolean flag that is set to true after the first Commit
action, so that Commit will be performed only once by Prover. Finally, Prover
has two tasks, one for each parameterized output action.

The specification for Verifier is given in Figure 2. Just as Prover, it has three
parameterized actions corresponding to the three protocol messages, respectively.
Note that Commit(x) and Rely(y) are now inputs and Challenge(c) is an output.
Verifier has an additional output action, Accept(b), where b is a Boolean value
indicating whether the reply y from Prover is accepted. The three state variables:
xv, cv and yv contain, respectively, the contents of the three protocol messages.

10

Prover(κ : [0, S − 1])
Variables:
rp : [0, A − 1], initially choose uniform [0, A − 1]
cp : [0, B − 1]⊥, initially ⊥
commited : Bool, initially false

Actions:
output Commit(x : G), Reply(y : [0, A + Φ − 1])
input Challenge(c : [0, B − 1])

Transitions:

Commit(x)
pre ¬commited ∧ x = grp

eff commited := true

Challenge(c)
eff cp := c

Reply(y)
pre cp 6= ⊥ ∧ y = rp + cp · κ
eff none

Tasks:
{Commit(x)|x ∈ G}
{Reply(y)|y ∈ [0, A − 1]}

Fig. 2. Single Round Honest Prover with Secret Key κ.

We remark that cv is chosen uniformly at random each time a commitment ar-
rives. This is why we make sure that Prover performs Commit only once. Finally,
Verifier also has two tasks, one for each parameterized output action.

Verifier(I)
Variables:
xv : G⊥, initially ⊥
cv : [0, B − 1]⊥, initially ⊥
yv : [0, A + Φ − 1]⊥, initially ⊥

Actions:
input Commit(x : G),
Reply(y : [0, A + Φ − 1])
output Challenge(c : [0, B − 1]),
Accept(b : Bool)

Transitions:

Commit(x)
eff xv := x
cv := choose uniform [0, B − 1]

Challenge(c)
pre xv 6= ⊥ ∧ c = cv

eff none

Reply(y)
eff yv := y

Accept(b)
pre yv 6= ⊥ ∧ b = (gyv = xv · Icv)
eff none

Tasks:
{Challenge(c)|c ∈ [0, B − 1]}
{Accept(b)|b ∈ Bool}

Fig. 3. Single Round Honest Verifier with Public Key I = gκ.

We refer to the composition of Prover and Verifier as PV. Note that the initial
distribution of Prover is unif([0, A−1])×Dirac(⊥)×Dirac(false), because initially
rp is uniformly distributed over [0, A − 1]. Moreover, all three state variables
of Verifier have the value ⊥ initially, therefore the initial distribution of PV is
unif([0, A − 1]) × Dirac(⊥) × Dirac(false) × Dirac(⊥) × Dirac(⊥) × Dirac(⊥). We
write µ10 for this distribution.

The specification for SIM is given in Figure 4. SIM has an internal action
Try, which chooses 〈c, y〉 uniformly at random from [0, B − 1] × [Φ,A − 1] and
stores the values in the auxiliary variables ca and ya, respectively. We include

11

the Try action in anticipation of the analysis of the cheating verifier case, where
the simulator must choose 〈c, y〉 repeatedly, until an appropriate pair is found.

There are four parameterized output actions, playing the same roles as in
Prover and Verifier. The commitment x is computed as gya/Ica , and cs is set to
the same value as ca after the Commit action. Similarly, ys is set to the same value
as ya after the Reply action. The Boolean variable flag is used to makes sure that
Challenge occurs before Reply. Finally, SIM has five tasks, one for each action.
The initial distribution of SIM is µ20 := Dirac(⊥) × Dirac(false) × Dirac(⊥) ×
Dirac(⊥)× Dirac(⊥).

SIM(I)
Variables:

xs : G⊥, initially ⊥
cs, ca : [0, B − 1]⊥, initially ⊥
ys, ya : [Φ, A − 1]⊥, initially ⊥
flag : Bool, initially false

Actions:
internal Try
output Commit(x : G), Challenge(c : [0, B − 1]),
Reply(y : [0, A + Φ − 1]), Accept(b : Bool)

Transitions:

Try
pre ca = ⊥
eff ca := choose uniform [0, B − 1]

ya := choose uniform [Φ, A − 1]

Commit(x)
pre ca 6= ⊥ ∧ x = gya /Ica

eff cs := ca

xs := gya /Ica

Challenge(c)
pre cs 6= ⊥ ∧ c = cs

eff flag := true

Reply(y)
pre flag ∧ y = ya

eff ys := ya

Accept(b)
pre ys 6= ⊥ ∧ b = (gys = xs · Ics)
eff none

Tasks:
{Try}{Commit(x)|x ∈ G}
{Challenge(c)|c ∈ [0, B − 1]}
{Reply(y)|y ∈ [0, A − 1]}
{Accept(b)|b ∈ Bool}

Fig. 4. Simulator with Public Key I = gκ.

To conclude this section, we make a general remark about the semantics
of Task-PIOA specifications. Namely, transitions are enabled whenever their
preconditions are met, which implies that some transitions may be repeated. As
depicted in Figure 5, the Challenge, Reply and Accept actions may be repeated.
It is always possible to add boolean flags so that these actions occur at most
once. We have chosen not to do so, in order to keep our specifications simpler.
Moreover, this feature may be used to model duplicated messages.

5 Simulation Proof

Throughout this section we fix δ to be Φ+1
A−1−Φ . We will show that PV δ-implements

SIM with respect to the d metric of Definition 4 , by establishing a suitable ap-
proximate implementation function φ. We will use the usual (.) notation to refer
to state variable values. For example, we use v.rp to refer to the value of rp at
state v ∈ QPV.

12

Notice that all of the parameters G, g, S,A, B, Φ, κ and I depend on the se-
curity parameter k. Thus the automata Prover,Verifier, and Sim, as well as the
error δ, are implicitly parameterized by k. Since we do not make any assumptions
about k, the results in this section holds for any k.

We begin our development by identifying some simple invariant properties of
PV and the SIM. These invariants are proved by induction on the length of the
executions of the automata, and they rely on the atomic transition semantics of
Task-PIOAs.

Lemma 1. In all reachable states of PV, cv 6= ⊥ ⇐⇒ xv 6= ⊥ ⇐⇒ commited

Lemma 2. In all reachable states of SIM the following conditions hold:
1. ya 6= ⊥ ⇐⇒ ca 6= ⊥ 2. cs 6= ⊥ ⇐⇒ xs 6= ⊥

Table 5 defines two sets of predicates for SIM and PV. These predicates together
with the above invariants provide a concise way of describing sets of executions
in which certain actions have taken place. For the purpose of exposition, we
say that an execution is in phase i, if its last state is in the ith predicate, but
not in i + 1st. For example, if an execution α of PV has α.lstate ∈ V2, then
we can conclude that the variables cv, xv, and cp have all been assigned some
value (other than ⊥); we say that α is in phase 2. Now, we define a notion of

Predicate SIM variables Predicate PV variables

S0 ya 6= ⊥
S1 S0 ∧ cs = ca V1 cv 6= ⊥
S2 S1 ∧ flag V2 V1 ∧ cp = cv

S3 S2 ∧ ys = ya V3 V2 ∧ yv = rp + κcv

Table 1. Predicates defining execution rounds.

correspondence between the executions of PV and SIM.

Definition 7. The relation R ⊆ QPV × QSIM is defined as follows: For any
v ∈ QPV and u ∈ QSIM, vRu if and only if the following conditions hold: (i) For
all i ∈ {1, 2, 3}, v ∈ Vi ⇐⇒ u ∈ Si (ii) v.xv = u.xs (iii) v.cv = u.cs (iv) v.yv =
u.ys (v) v.rp = u.ya − κu.cs (vi) v.cv 6= ⊥.

The first condition in Definition 7 ensures that a pair of executions of PV and SIM
are related by R only if they are in the same phase. Conditions (ii), (iii),(iv), and
(v), forces the values sent through by the Commit, Challenge, and Reply messages
to be identical. The final condition simply prevents the initial state of PV, which
is also a degenerate execution of PV, to be related to any execution of SIM.

Next we prove a key lemma which states that every (nondegenerate) execu-
tion of PV is related by R to a unique execution of SIM that also has the same
trace. The proof of this lemma is free from probabilistic reasoning and follows
from a standard inductive argument. Suppose some action a is enabled from the

13

⊥

rp

S0 S1

V1

S2

V2

S3

V3

Try Commit Challenge Reply

Challenge
Challenge,

Reply, Accept

Commit Challenge Reply

Challenge Challenge,
Reply, Accept

Fig. 5. PV and SIM

last state of any execution α1 of PV and suppose there exists a unique execution
α2 that is related to α1 and that has the same trace. We show that the exten-
sion of α1 by a, can be matched by a unique execution of SIM that extend α2

by a sequence of actions corresponding to a. This correspondence is illustrated
in Figure 5. Further, we show that for each action in the sequence, there exists
a unique transition of SIM which preserves the relation R on the last states of
the extended executions.

Lemma 3. For each execution α1 of PV there exists at most one execution α2

of SIM such that trace(α1) = trace(α2) and α1.lstate R α2.lstate.

Proof. The proof is by an induction on the length of the execution α of PV. The
base case hold vacuously because of Part (vi) of the definition of R.

For the inductive case, suppose α1 is an execution of PV and α2 is the unique
execution of SIM such that trace(α1) = trace(α2) and α1.lstateRα2.lstate. Sup-
pose further that action a is enabled at α1.lstate, say v. Let α′1 = αav′ and
α2.lstate = u. We proceed by a case analysis on a:

– Case a = Commit(m), for some fixed m ∈ G. We show that α2 can be
uniquely extended by two transitions labeled by actions Try and Commit.
Let v′.cv be a fixed element c of [0, B − 1], and v′.rp = v.rp be a fixed
element r of [0, A− 1] such that gr = m. As trace(α′1) = trace(α1)Commit,
we have to extend α2 with an execution fragment with trace Commit.
Since a = Commit is enabled at v, from Lemma 1 v /∈ V1. From Part (i)
of the definition of R, u /∈ S1 and it follows from Lemma 2 that cs = ⊥.

14

Therefore, Try is the only action enabled at u. The Try action corresponds
to a set of transitions based on different possible choices of ca and ya in the
post-state; let u′ be one possible post state. As u′ ∈ S0 \S1, the only possible
enabled action at u′ is Commit. In order for Commit(m) to be enabled at u′,
ca must equal m. Let u′′ be the uniquely determined post state of u′ after
Commit occurs. No other actions can occur at u′′ without violating the trace
condition. Further, u′′.ya − κc has to be equal to r in order for Part (v) of
Definition 7 to be preserved. Thus the choice for u′.ya reduces to a single
value, r + κc. That is, there is a unique transition u → Tryu′, for which
u′

Commit→ (m)u′′ and v′Ru′′. So, α2 is extended by two successive uniquely
defined transitions.

– Case a = Challenge(c), c ∈ Z. We will show that α2 can be uniquely extended
by a transition corresponding to the Challenge action. Since Challenge is
enabled at v, v ∈ V1. If in addition v ∈ V2, then from Part (i) of Definition 7

it follows that u ∈ S2. Therefore u
Challenge(c)→ u′, where u′ = u. Also, v ∈ V2

implies that v′ = v, which suffices. Clearly, no other action can occur at u
while satisfying the trace condition.

Next, suppose v ∈ V1 \V2. In this case v
Challenge(c)→ v′ and all the components

of v′ equal those of v, except that v′.cp = c and v.cp = ⊥. From the induction

hypothesis we know that u ∈ S1 \ S2. Therefore u
Challenge→ u′, and all the

components of u′ equal those of u, except that u′.f lag = true. It follows
that v′Ru′.

– The proofs for the cases a = Reply and a = Accept are similar to the case
for a = Challenge; α2 is uniquely extended by transitions corresponding to
the Reply and Accept actions, respectively.

ut

We define a function F : ExecsPV → (ExecsSIM)⊥, as follows: F(α1)
∆= α2, if α2

is the unique execution of SIM for which α1 R α2, and F(α1)
∆= ⊥, if no such

α2 exists. From the proof of Lemma 3 it is clear that F(α1) = ⊥ only when α
is a degenerate execution corresponding to one of the starting states of PV. We
note that for any non-degenerate execution α1, Lemma 3 gives a procedure for
inductively constructing F(α1).

The lemmas stated thus far assert facts about executions of PV and SIM
and the relationship between them; their proofs do not require any probabilistic
reasoning.

Definition 8. We define three functions
φ, d1, d2 : Disc(Frags∗PV)× Disc(Frags∗SIM) → R≥0 ∪ {∞} as follows:

d1(µ1, µ2)
∆=

∑
α1∈ExecsPV,F(α1) 6=⊥

|µ1(α1)− µ2(F(α2))| (2)

d2(µ1, µ2)
∆= d(tdist(µ1), tdist(µ2)) (3)

φ(µ1, µ2)
∆= max

i∈{1,2}
di(µ1, µ2) (4)

15

In what follows, we develop the proof for Lemma 6 which asserts that φ is indeed
an approximate simulation function for PV and SIM.

We begin by stating certain basic facts about the probabilistic executions
of PV that can be generated by task schedules. Lemma 4 states that unless a
Commit (Try resp.) task is scheduled the initial distribution for PV (SIM, resp.)
does not change.

Lemma 4. If σ is a task schedule for PV that does not contain Commit then
apply(µ10, σ) = µ10. Similarly, if σ is a task schedule for SIM that does not
contain Try then apply(µ20, σ) = µ20.

The next lemma states that for any probabilistic execution µ1 of PV that is
obtained through the application of a task schedule, all the executions in the
support of µ1 are in the same phase.

Lemma 5. Suppose σ is a task schedule for PV and µ1 = apply(µ10, σ). The
following holds for all i ∈ {1, 2, 3}: if there exists α ∈ supp(µ1), such that
α.lstate ∈ Vi, then for all α ∈ supp(µ1), α.lstate ∈ Vi.

Lemma 6. φ is an (δ, δ)-approximate simulation from Comp to Simulator.

Proof. First, we define the task correspondence function c as follows:

c(σ, T) ∆=

{Try}{Commit} if T = Commit and σdoes not contain Commit,
λ if T = Commit and σ contains Commit,
T otherwise.

(5)

The proof has three parts corresponding to the three conditions in Definition 6.

Start condition. As µ10 and µ20 are supported at degenerate executions,
d2(µ10, µ20) = 0. It is easy to check using Parts (iii) and (vi) of the defini-
tion of R that d1(µ10, µ20) is also 0.

Step condition. We assume µ1 is consistent with some task schedule σ of
PV, µ2 is consistent with full(c)(σ), and that φ(µ1, µ2) ≤ δ. It suffices to show
that for each task T , di(µ′1, µ

′
2) ≤ δ, for i = {1, 2}, where µ′1 = apply(µ1, T) and

µ′2 = apply(µ2, c(σ, T)). We proceed by a case analysis on T .

– Case T = Commit. Consider the sub-case where σ contains Commit, then for
every execution α1 ∈ supp(µ1), α1.lstate = commited , that is, the Commit
action is disabled. So, µ′1 = µ1. Since c(σ, T) = λ, µ′2 = µ2, and from the
induction hypothesis it follows that φ(µ′1, µ

′
2) ≤ δ.

If σ does not contain Commit, then from Lemma 4 µ1 = µ10 and µ2 = µ20.
Part 1. We show that d1(µ′1, µ

′
2) ≤ δ. From the definitions of the PV and

16

SIM automata, we know that

µ′1(α) =

1

AB if α = v0Commit v1, v0 is an initial state of PV, and
v0

Commit→ v1,
0 otherwise.

(6)

µ′2(α) =

1

[A−1−Φ]B if α = u0Try u1Commit u2, u0 is the initial state of SIM,

and u0
Try→ u1, u1

Commit→ u2,
0 otherwise.

(7)

Consider an execution α1 of PV, such that µ′1(α1) > 0. From Lemma 3 we
know that F(α1) is exactly of the form specified by the first condition in
Equation (7). So, µ′1(α1) − µ′2(F(α2)) =

∣∣∣ 1
AB − 1

(A−1−Φ)B

∣∣∣ = 1+Φ
BA(A−1−Φ) .

Alternatively, if µ′1(α1) = 0, then F(α1) is not of the form specified by the
first condition in Equation (7), and therefore µ′2(α2) = 0. From Equation (6)
it follows that α1 is not degenerate and by Lemma 3 there exists a unique
α2 = F(α1). Thus, d1(µ′1, µ

′
2) = n(1+Φ)

BA(A−1−Φ) , where n is the number of
unique executions of PV that are of the form specified by Equation (7). The
number of possible initial states v0 of PV is A (rp is chosen from [0, A− 1]),
and for each of these states the number of possible v1 states is B (cv is
chosen from [0, B − 1] independently of rp). It follows that n = AB, and
d1(µ′1, µ

′
2) = 1+Φ

(A−1−Φ) ≤ δ.
Part 2. We show that d2(µ′1, µ

′
2) ≤ δ. Let tdist(µ′i) = ηi, for i ∈ {1, 2}.

From Equations (6) and (7) it follows that for every trace β ∈ supp(η′i),
β = Commit(m) for some m ∈ G. The value of m uniquely determines
|η1(β)−η2(β)|. In what follows, we use the shorthand notation 〈v0, v1〉, to de-
note an execution v0Commit(m)v1 of PV, and 〈u0, u2〉, to denote an execution
u0Tryu1Commit(m)u2 of SIM. We rewrite d2(µ′1, µ

′
2) =

∑
m∈G |η1(Commit(m))−

η2(Commit(m))| which can be written as:∑
m∈G

|µ′1({〈v0, v1〉 | gv0.rp = m})− µ′2({〈u0, u2〉 | u2.xs = m})|

=
∑
m∈G

∑
k∈[0,A−1],gk=m

|µ′1({〈v0, v1〉 | v0.rp = k})− µ′2({〈u0, u2〉 | u2.ya − κu2.cs = k})|

≤
∑

k∈[0,A−1]

|µ′1({〈v0, v1〉 | v0.rp = k})− µ′2({〈u0, u2〉 | u2.ya − κu2.cs = k})|

Executions of PV that are of the form 〈v0, v1〉 and have the same value for
v0.rp, differ only with respect to the value of v1.cv. Similarly, executions of
SIM that are of the form 〈u0, u2〉 and have the same value for u2.xs, differ
only with respect to the value of u2.ca. Rewriting terms as summation over
possible values of cv and ca and using the triangle inequality, we get:

d2(µ′1, µ
′
2) ≤

∑
k∈[0,A−1]

∑
c∈[0,B−1]

|µ′1({〈v0, v1〉 | v0.rp = k, v1.cv = c})−

µ′2({〈u0, u2〉 | u2.xs = k, u2.ca = c})| .

17

Since F(〈v0, v1〉) = 〈u0, u2〉 for any fixed k and c.

d2(µ′1, µ
′
2) ≤

∑
α,trace(α)∈supp(tdist(µ′))

|µ′1(α)− µ′2(F(α))| = d1(µ′1, µ
′
2) ≤ δ.

– Case T = Challenge. Suppose there exists an α1 ∈ supp(µ1), such that
α1.lstate /∈ V1, then by Lemma 5, for every α1 ∈ supp(µ1), α1.lstate /∈ V1.
That is, for all α1 ∈ supp(µ′1), the Challenge task is disabled at the last
state of α1. Further, for all such α1’s, F(α1).lstate /∈ S1 and the task
c(Challenge) = Challenge is also disabled at F(α1).lstate. So, in this case
Challenge task does not alter the probabilistic executions; from the induc-
tion hypothesis we have φ(µ′1, µ

′
2) ≤ δ.

On the other hand, for every α1 ∈ supp(µ1), α1.lstate ∈ V1, then for any
such α1, F(α1).lstate ∈ S1.
Part 1. We show that d1(µ′1, µ

′
2) ≤ δ. The task Challenge is enabled at the

last state of α1 and at that of the corresponding execution α2 = F(α1) of

SIM. If α′1 = α1Challenge v1 such that α′1.lstate
Challenge→ v1, then µ′1(α

′
1) =

µ1(α1) and µ2(F(α′1)) = µ2(F(α1)). And for any other α′, µ′1(α
′) = µ′2(F(α′) =

0. Thus, for each α′1 ∈ supp(µ′1), µ′1(α
′
1)−µ′2(F(α′1)) = µ1(α1)−µ2(F(α1)),

where α′1 = α1Challengev1. Taking summation over all α′1 ∈ supp(µ′1) and
applying the induction hypothesis it follows that d1(µ′1, µ

′
2) ≤ δ.

Part 2. We show that d2(µ′1, µ
′
2) ≤ δ. First of all, consider a trace β′1 in the

support of tdist(µ′1). From the previous part we know that tdist(µ′1)(β
′
1) =

tdist(µ1)(β1) and tdist(µ′2)(β
′
1) = tdist(µ2)(β1), where β′1 = β1Challenge(c),

for some c ∈ [0, B−1]. Next, consider a trace β1 for which tdist(µ′1)(β
′
1) = 0.

For any executions α1 that have trace(α1) = β′1, µ′1(α1) = 0. Also, from the
previous part and the definition of F it follows that for the unique execution
α2 of SIM for which F(α2) = α1, µ′2(α2) = 0, and therefore tdist(µ′2)(β

′
1) = 0.

Combining these two cases, we have d2(µ′1, µ
′
2) =

∑
β′∈supp µ′1

|tdist(µ′1)(β
′
1)−

tdist(µ′2)(β
′
1)| =

∑
β∈supp µ1

|tdist(µ1)(β1)− tdist(µ2)(β1)| = d2(µ1, µ2) ≤ δ.

– The proof for the cases T = Reply (and T = Accept), is very similar
to the proof for T = Challenge. If σ does not contain a sub-sequence of
Commit,Challenge (Commit,Challenge,Reply, resp.), then µ′1 = µ′2. If σ con-
tains such a sub-sequence then µ1 and µ′1 are related as follows: µ′1(α

′
1) =

µ1(α) if α′1 is the same as α followed by a Reply (an Accept, resp.) action, and
otherwise µ′1(α

′
1) = 0. The distributions µ′2 and µ2 are analogously related.

And therefore, the values of both the d1 and d2 metrics remain unchanged.

Trace condition. for any µ1, µ2, if φ(µ1, µ2) ≤ δ then from our definition of φ,
d2(tdist(µ1), tdist(µ2)) ≤ δ. ut

The main result of this section follows from Lemma 6 and Theorem 1.

Theorem 2. Let PV denote the task-PIOA family containing, for each k, the
automaton PV parameterized by k. Similarly for Sim. Then PV statistically im-
plements SIM.

18

Proof. By Lemma 6 and Theorem 1, we know that PV is a δ-implementation of
Sim. By assumption, SB/A is negligible in k. By definition,

δ =
Φ + 1

A− 1− Φ
=

(S − 1)(B − 1) + 1
(A− 1− (S − 1)(B − 1))

.

Therefore, δ is also negligible in k. It is now sufficient to note that the function
full(c) in the proof of Lemma 6 increases the length of task schedules by at
most 1. ut

Note that the protocol transcript 〈x, c, y〉 can be extracted from the traces of
PV and Sim (in particular, those traces containing all of Commit, Challenge and
Reply). Therefore, we may infer from Theorem 2 that the GPS protocol specified
by Prover and Verifier satisfies the statistical zero-knowledge property.

6 Conclusion

In this paper we have presented a technique for verifying SZK properties in the
task-PIOA framework [?], using approximate simulation relations. We formulate
statistical indistinguishability as a new type of implementation relation for task-
PIOAs, called statistical implementation. This is an extension of δ-approximate
implementation to the setting of task-PIOA families (with polynomial bounds
on schedule lengths). We also develop a general technique for proving statistical
implementations, based on the notion of approximate simulation functions intro-
duced in [?,?]. To illustrate the applicability of our methods, we have modeled the
GPS identification protocol [?] in the task-PIOA framework. The formal model
of GPS turns out to be very natural and contains internal nondeterminism.

A noteworthy feature of our approximate implementation based verification
technique is that it allows us to separate probabilistic reasoning from non-
probabilistic reasoning. As exemplified in the GPS case study, execution corre-
spondence relations and invariant assertions are free of probabilistic reasoning.
By replacing the probabilistic choices in the specifications with the corresponding
nondeterministic choices, these lemmas can indeed be verified using the TIOA
Toolkit and its interface to the PVS theorem prover [?].

Future Work. The analysis of the GPS protocol presented in this paper assumes
an honest verifier that correctly follows the protocol. In the future, we plan on
applying the same technique to verify the SZK property of the protocol against
cheating verifiers. A cheating verifier Verifier′ does not choose the challenge cv

uniformly at random. Instead, it attempts to extract the secret key κ by recording
the history of its interaction with the prover and generating the challenge based
on some arbitrary function f of the history and the current commitment xv.
The simulator strategy SIM′ in this case would be to repeat the Try action a
certain number of times, say L, and then execute the Commit action. And the
challenging part of the simulation proof would be to find a suitable number L

19

for which the probability that the SIM′ fails to match the commitment and the
challenge messages is negligible.

We are interested in exploring applications of the approximate simulation
based techniques in the verification of statistical security properties and concur-
rent zero-knowledge protocols. We also intend to incorporate specialized theorem
prover strategies in the TIOA Toolkit that would enable us to partially automate
these proofs.

References

1. Goguen, J.A., Meseguer, J.: Security policy and security models. In: Proceedings
of the IEEE Symposium on Security and Privacy. (1982) 11–20

2. Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker
hiding all partial information. In: Proceedings of the 14th Annual ACM Symposium
on the Theory of Computing, San Francisco California (1982) 365–377

3. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM Journal on Computing 18(1) (1989) 186–208

4. Volpano, D., Smith, G.: Probabilistic noninterference in a concurrent language.
Journal of Computer Security 7(2,3) (1999) 231–253

5. Sabelfeld, A., Sands, D.: Probabilistic noninterference for multi-threaded pro-
grams. In: 13th IEEE Computer Security Foundations Workshop — CSFW’00,
Cambridge, UK, IEEE Computer Society Press (2000) 200–214

6. Backes, M., Pfitzmann, B.: Computational probabilistic non-interference. In: 7th
European Symposium on Research in Computer Security. Number 2502 in LNCS,
Springer-Verlag (2002)

7. Sabelfeld, A.: Confidentiality for multithreaded programs via bisimulation. In: Pro-
ceedings of Andrei Ershov 5th International Conference on Perspectives of System
Informatics. Number 2890 in LNCS, Springer (2003)

8. Smith, G.: Probabilistic noninterference through weak probabilistic bisimulation.
In: Proceedings of the 16th IEEE Computer Security Foundations Workshop, Pa-
cific Grove, California, IEEE Computer Society Press (2003) 3–13

9. Aldini, A., Di Pierro, A.: A quantitative approach to noninterference for prob-
abilistic systems. Electronic Notes in Theoretical Computer Science 99 (2004)
183–203

10. Di Pierro, A., Hankin, C., Wiklicky, H.: Approximate non-interference. Journal of
Computer Security 12(1) (2004) 37–81

11. Canetti, R., Cheung, L., Kaynar, D., Liskov, M., Lynch, N., Pereira, O., Segala, R.:
Using task-structured probabilistic I/O automata to analyze an oblivious transfer
protocol. Cryptology ePrint Archive, Report 2005/452 (2005) http://eprint.

iacr.org/.
12. Canetti, R., Cheung, L., Kaynar, D., Liskov, M., Lynch, N., Pereira, O., Segala,

R.: Task-structured Probabilistic I/O Automata. In: Proceedings of the 8th In-
ternational Workshop on Discrete Event Systems – WODES’2006, IEEE (2006)
207–214

13. Mitra, S., Lynch, N.: Approximate simulations for task-structured probabilistic I/O
automata. In: LICS workshop on Probabilistic Automata and Logics (PAuL06),
Seattle, WA (2006)

14. Mitra, S., Lynch, N.: Approximate implementation relations for probabilistic I/O
automata (2006) To appear in ENTCS.

http://eprint.iacr.org/
http://eprint.iacr.org/

20

15. Girault, M., Poupard, G., Stern, J.: On the fly authentication and signature
schemes based on groups of unknown order. Journal of Cryptology 19(4) (2006)
463—487

16. Umeno, S., Lynch, N.A.: Proving safety properties of an aircraft landing protocol
using i/o automata and the pvs theorem prover: A case study. In: Formal Methods,
14th International Symposium on Formal Methods. Volume 4085 of Lecture Notes
in Computer Science., Springer (2006) 64–80

17. Chockler, G., Lynch, N., Mitra, S., Tauber, J.: Proving atomicity: an assertional
approach. In Fraigniaud, P., ed.: Proceedings of Nineteenth International Sym-
posium on Distributed Computing (DISC’05). Volume 3724 of Lecture Notes in
Computer Science., Cracow, Poland, Springer (2005) 152 – 168 Full version:http:
//theory.lcs.mit.edu/~mitras/research/v30.pdf.

18. Archer, M., Lim, H., Lynch, N., Mitra, S., Umeno, S.: Specifying and proving
properties of timed I/O automata in the TIOA toolkit. In: In Fourth ACM-IEEE
International Conference on Formal Methods and Models for Codesign (MEM-
OCODE’06), IEEE (2006)

19. Gupta, V., Jagadeesan, R., Panangaden, P.: Approximate reasoning for real-time
probabilistic processes. The Quantitative Evaluation of Systems, First Interna-
tional Conference on (QEST’04) 00 (2004) 304–313

20. Jou, C.C., Smolka, S.A.: Equivalences, congruences and complete approximations
for probabilistic processes. In: CONCUR 90. Number 458 in LNCS, Springer-Verlag
(1990)

21. Desharnais, J., Jagadeesan, R., Gupta, V., Panangaden, P.: The metric analogue of
weak bisimulation for probabilistic processes. In: Proceedings of the 17th Annual
IEEE Symposium on Logic in Computer Science (LICS), Copenhagen, Denmark,
22-25 July 2002, IEEE Computer Society (2002) 413–422

22. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Approximating labelled
markov processes. Inf. Comput. 184(1) (2003) 160–200

23. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled
markov processes. Theor. Comput. Sci. 318(3) (2004) 323–354

24. van Breugel, F., Worrell, J.: Towards quantitative verification of probabilistic tran-
sition systems. In: ICALP ’01: Proceedings of the 28th International Colloquium
on Automata, Languages and Programming,, London, UK, Springer-Verlag (2001)
421–432

25. van Breugel, F., Mislove, M., Ouaknine, J., Worrell, J.B.: An intrinsic characteri-
zation of approximate probabilistic bisimilarity. In: Proceedings of FOSSACS 03.
LNCS, Springer (2003)

26. van Breugel, F., Mislove, M.W., Ouaknine, J., Worrell., J.: Domain theory, testing
and simulation for labelled markov processes. Theoretical Computer Science (2005)

27. Mislove, M.W., Ouaknine, J., Pavlovic, D., Worrell, J.: Duality for labelled markov
processes. In: Proceedings of FOSSACS 04. Volume 2987 of LNCS., Springer (2004)

28. Mislove, M.W., Ouaknine, J., Worrell., J.: Axioms for probability and nondeter-
minism. ENTCS (2004)

29. Canetti, R., Cheung, L., Kaynar, D., Liskov, M., Lynch, N., Pereira, O., Segala,
R.: Time-bounded Task-PIOAs: A framework for analyzing security protocols.
In Dolev, S., ed.: Proceedings the 20th International Symposium on Distributed
Computing (DISC 2006). Volume 4167 of LNCS., Springer (2006) 238–253 Invited
Paper.

30. Canetti, R., Cheung, L., Kaynar, D., Liskov, M., Lynch, N., Pereira, O., Segala,
R.: Task-structured probabilistic I/O automata. Technical Report MIT-CSAIL-
TR-2006-060, Massachusetts Institute of Technology, Cambridge, MA (2006)

http://theory.lcs.mit.edu/~mitras/research/v30.pdf
http://theory.lcs.mit.edu/~mitras/research/v30.pdf

21

A Task-PIOAs and Time Bounds

We assume a standard bit-string representation for various constituents of a
task-PIOA, including states, actions, transitions and tasks. Let p ∈ N be given.
A task-PIOA A is said to have p-bounded description just in case:

(i) the representation of every constituent of A has length at most p;
(ii) there is a Turing machine that decides whether a given bit string is the

representation of some constituent of A;
(iii) there is a Turing machine that, given a state and a task of A, determines

the next action;
(iv) there is a probabilistic Turing machine that, given a state and an action of

A, determines the next state of A;
(v) all these Turing machines can be described using a bit string of length at

most p, according to some standard encoding of Turing machines;
(vi) all these Turing machines return after at most p steps on every input.

Suppose we have a compatible set {Ai : 1 ≤ i ≤ b} of task-PIOAs, where
each Ai has description bounded by some pi ∈ N. It is not hard to check that
the composition ‖b

i=1Ai has description bounded by ccompose ·
∑b

i=1 pi, where
ccompose is a fixed constant (the proof of this result in an immediate extension
of the two task-PIOAs case described in [?, Lemma 4.2]).

	Verifying Statistical Zero Knowledge with Approximate Implementations
	Ling Cheung, Sayan Mitra, and Olivier Pereira
	1 Introduction
	2 Background
	2.1 Trace Distributions
	2.2 Time Bounds and Task-PIOA families

	3 Statistical Implementation
	3.1 Approximate Simulation Relations

	4 GPS Protocol
	4.1 Task-PIOA Modeling

	5 Simulation Proof
	6 Conclusion
	A Task-PIOAs and Time Bounds

