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ABSTRACT
We prove that any finite collection of polygons of equal area
has a common hinged dissection, that is, a chain of poly-
gons hinged at vertices that can be folded in the plane con-
tinuously without self-intersection to form any polygon in
the collection. This result settles the open problem about
the existence of hinged dissections between pairs of poly-
gons that goes back implicitly to 1864 and has been studied
extensively in the past ten years. Our result generalizes
and indeed builds upon the result from 1814 that polygons
have common dissections (without hinges). We also extend
our result to edge-hinged dissections of solid 3D polyhedra
that have a common (unhinged) dissection, as determined by
Dehn’s 1900 solution to Hilbert’s Third Problem. Our proofs
are constructive, giving explicit algorithms in all cases. For
a constant number of planar polygons, both the number of
pieces and running time required by our construction are
pseudopolynomial. This bound is the best possible even for
unhinged dissections. Hinged dissections have possible ap-
plications to reconfigurable robotics, programmable matter,
and nanomanufacturing.
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1. INTRODUCTION

Figure 1: 4-piece dissec-
tion of Greek cross to
square from 1890 [25].

Around 1808, Wal-
lace asked whether ev-
ery two polygons of the
same area have a com-
mon dissection, that is,
whether any two equal-
area polygons can be
cut into a finite set
of congruent polygonal
pieces [18, p. 222]. Fig-
ure 1 shows a simple
example. Lowry [27]
published the first solution to Wallace’s problem in 1814,
although Wallace may have also had a solution at the time;
he published one in 1831 [36]. Shortly thereafter, Bolyai [4]
and Gerwien [20] rediscovered the result, causing this result
to be known sometimes as the Bolyai-Gerwien Theorem.

By contrast, Dehn [11] proved in 1900 that not all polyhe-
dra of the same volume have a common dissection, solving
Hilbert’s Third Problem posed in the same year [11]. Sydler
[35] showed that Dehn’s invariant in fact characterizes 3D
dissectability.

Lowry’s 2D dissection construction, as described by Fred-
erickson [18], is particularly elegant and uses a pseudopoly-
nomial number of pieces.1 A pseudopolynomial bound is
the best possible in the worst case: dissecting a polygon of

1In a geometric context, pseudopolynomial means polyno-
mial in the combinatorial complexity (n) and the dimensions
of the integer grid on which the input is drawn. Although
the construction does not require the vertices to have ratio-
nal coordinates, a pseudopolynomial analysis makes sense
only in this case.
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Figure 2: Dudeney’s 1902 hinged dissection of a
square into a triangle [15].

diameter x > 1 into a polygon of diameter 1 (for example,
a long skinny triangle into an equilateral triangle) requires
at least x pieces. With this worst-case result in hand, at-
tention has turned to optimal dissections using the fewest
pieces possible for the two given polygons. This problem
has been studied extensively for centuries in the mathemat-
ics literature [31, 7, 18] and the puzzle literature [32, 25,
28, 26], and more recently in the computational geometry
literature [10, 24, 3].

Hinged dissections are dissections with an additional con-
straint: the polygonal pieces must be hinged together at ver-
tices into a connected assembly. The first published hinged
dissection appeared in 1864, illustrating Euclid’s Proposi-
tion I.47 [23]; see [19, pp. 4–5]. The most famous hinged dis-
section is Dudeney’s from 1902 [15]; see Figure 2. This sur-
prising construction has inspired many to investigate hinged
dissections; see, for example, Frederickson’s book [19].

Yet the fundamental problem of general hinged dissection
has remained open [14, 30]: do every two polygons of the
same area have a common hinged dissection? This problem
has been attacked in the computational geometry literature
[2, 12, 13, 17], but has been solved only in special cases.
For example, all polygons made from edge-to-edge gluings
of n identical subpolygons (such as polyominoes) have been
shown to have a common hinged dissection [12]. Perhaps
most intriguingly, Eppstein [17] showed that finding a com-
mon hinged dissection of any two triangles of equal area is
just as hard as the general problem.

Hinged dissections are intriguing from the perspec-
tives of reconfigurable robotics, programmable matter, and
nanomanufacturing. Recent progress has enabled chemists
to build millimeter-scale “self-working” 2D hinged dissec-
tions such as Dudeney’s [29]. An analog for 3D hinged dis-
sections may enable the building of a complex 3D structure
out of a chain of units; see [21] for one such approach. We
could even envision an object that can re-assemble itself into
different 3D structures on demand [13]. This approach con-
trasts existing approaches to reconfigurable robotics (see,
for example, [33]), where units must reconfigure by attach-
ing and detaching from each other through a complicated
mechanism.

Our results. We settle the hinged dissection open problem,
first formally posed in a CCCG 1999 paper [12] but implicit
back to 1864 [23] and 1902 [15]. Specifically, Section 3 proves
a universality result: any two polygons of the same area have
a common hinged dissection. In fact, our result is stronger,
building a single hinged dissection that can fold into any fi-
nite set of desired polygons of the same area. The analogous
multipolygon result for (unhinged) dissections is obvious—
simply overlay the pairwise dissections—but no such general
combination technique is known for hinged dissections. In-
deed, the lack of such a transitivity construction has been

the main challenge in constructing general hinged dissec-
tions.

Our construction starts from an arbitrary (unhinged) dis-
section, such as Lowry’s [27]. We show that any dissection
of a finite set of polygons can be subdivided and hinged so
that the resulting hinged dissection folds into all of the orig-
inal polygons. We give a method of subdividing pieces of
a hinged figure which effectively allows us to “unhinge” a
portion of the figure and “re-attach” it at an alternate lo-
cation. This construction allows us to “move” pieces and
hinges around arbitrarily, at the cost of extra pieces. Thus
we are able to hinge any dissection.

This initial construction easily leads to an exponential
number of pieces, but we show in Section 5 that a more
careful execution of Lowry’s dissection [27] attains a pseu-
dopolynomial number of pieces for a constant number of
target polygons. As mentioned above, such a bound is es-
sentially best possible, even for unhinged dissections (though
we likely do not obtain the optimal constant exponent). This
more efficient construction requires significantly more com-
plex gadgets for simultaneously moving several groups of
pieces at roughly the same cost as moving a single piece,
and relies on specific properties of Lowry’s dissection.

We also solve another open problem concerning the precise
model of hinged dissections. In perhaps the most natural
model of hinged dissections, pieces cannot properly overlap
during the folding motion from one configuration to another.
However, all theoretical work concerning hinged dissections
[2, 12, 13, 17] has only been able to analyze the “wobbly
hinged” model [19], where pieces may intersect during the
motion. Is there a difference between these two models?
Again this problem was first formally posed at CCCG 1999
[12]. We prove in Section 4 that any wobbly hinged dissec-
tion can be subdivided to enable continuous motions without
piece intersection, at the cost of increasing the combinato-
rial complexity of the hinged dissection by only a constant
factor. This result builds on expansive motions from the
Carpenter’s Rule Theorem [9, 34] combined with the theory
of slender adornments from SoCG 2006 [8].

The following theorem summarizes our results in 2D:

Theorem 1. Any finite set of polygons of equal area have
a common hinged dissection which can fold continuously
without intersection between the polygons. For a constant
number of target polygons with vertices drawn on a ratio-
nal grid, the number of pieces is pseudopolynomial, as is the
algorithm to compute the common hinged dissection.

Finally, we generalize our results to 3D in Section 6. As
mentioned above, not all 3D polyhedra have a common dis-
section even without hinges. Our techniques generalize to
show that hinged dissections exist whenever dissections do:

Theorem 2. Any finite set of 3D polyhedra with the same
volume and Dehn invariant have a common hinged dissec-
tion.

2. TERMINOLOGY
A hinged figure F is a finite collection of simple, oriented

polygons (the links) hinged together at rotatable joints at
the links’ vertices so that the resulting figure is connected,
together with a fixed cyclic order of links around each hinge.
(Note that a hinge might exist at a 180◦ angle of a link,



Figure 3: A hinged figure, its incidence graph, and
part of its boundary path.

but this hinge is still considered a vertex of the link.) A
configuration of a hinged figure F is an embedding of F ’s
links into the plane so that the links’ interiors are disjoint
and so that each hinge’s cyclic link order is maintained.

The incidence graph of a hinged figure is the graph that
has a vertex corresponding to every link and every hinge,
such that two nodes are connected by an edge if one repre-
sents a link and the other represents a hinge on that link.
See Figure 3. A hinged figure is tree-like if the incidence
graph is a tree, and it is chain-like if the incidence graph is
an open chain.

The boundary ∂A of a hinged figure A is the oriented
path (or collection of paths) along the edges of the links
traversed in depth-first order, as illustrated in Figure 3. For
a tree- or chain-like figure, the boundary consists of a single
path incorporating all edges of the links. Note that the
boundary path will trace each hinge point multiple times,
but we distinguish these as different boundary points.

For two hinged figures A and B, we say that B is a refine-
ment of A, and write B ≺ A, if A can be obtained from B
by adding hinges between pieces of B, which may effectively
glue together shared edges of pieces in B. The added hinges
in the definition gives rise to an imposed configuration of
B for every configuration of A. The property of refinement
is transitive; that is, if C ≺ B and B ≺ A, then C ≺ A.
This transitivity of refinement plays a central role in the
arguments below.

3. UNIVERSAL HINGED DISSECTION
In this section, we show that any finite collection of equal-

area polygons has a common hinged dissection. More pre-
cisely, we construct a hinged figure with a configuration
in the shape of every desired polygon; continuous motions
without intersection will be addressed in Section 4. The
proof is in three parts: effectively moving rooted subtrees,
effectively moving rooted supersubtrees, and arbitrarily re-
arranging supertrees.

3.1 Moving Rooted Subtrees
Consider a tree-like hinged figure F . If there are two

hinged figures A and B with two distinguished boundary
points a ∈ ∂A and b ∈ ∂B so that F is equivalent to the
hinged figure obtained by identifying points a and b to a sin-
gle hinge (denoted F = A(a)∧(b)B), then we say A and B are
each rooted subtrees of F . If another boundary point b′ ∈ ∂B
is chosen, then the new hinged figure F ′ = A(a) ∧ (b′)B is
related to F by a rooted subtree movement : (A, a) is the
subtree that has been moved.

Our goal is to accomplish this movement with hinged dis-
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Figure 4: The free regions (lightly colored) in trian-
gle ABC are separated by the dark circles and the
angle trisectors `a, `′a, etc.

section. We will achieve this goal by connecting pieces with
chains of isosceles triangles hinged at their base vertices. We
begin with a lemma concerning cutting isosceles triangles
from polygons, and then proceed to construct the required
dissection by cutting out chains from both A (at the point
a) and B (along the boundary from b to b′).

For an angle α < 90◦ and a length `, denote by Tα(`) the
isosceles triangle with base of length ` and base-angles α.
For a segment PQ, use the notation Tα(PQ) for the triangle
Tα(|PQ|) drawn with base along segment PQ. Finally, for
an angle β, point P , and radius r, let Sβ(P, r) be a circular
sector centered at P with angle β and radius r.

Lemma 3. For any simple polygon V = V1 . . . Vn, there
exist an angle β and a radius r small enough so that the
triangles Tβ(ViVi+1) constructed inward along the edges, as
well as circular sectors Sβ(Vi, r) drawn inside V , are pair-
wise disjoint except at the vertices of V . These triangles
and sectors will be called the free-regions for their respective
edges or vertices of V .

Proof. We first prove the result for triangles. For tri-
angle T = ABC with side lengths a, b, c, semiperimeter
s = 1

2
(a+b+c), and angles δ, ε, ζ, choose βT < 1

3
min{δ, ε, ζ}

and rT < min{s−a, s−b, s−c}. Then the triangles TβT (AB),
etc., and the sectors SβT (A, rT ), etc., can be drawn in the
triangle without overlap, as in Figure 4: Indeed, TβT (AB)
is contained between AB and the two trisectors `a and `′b
(the region shown in red), sector SβT (A, rT ) is contained in
the sector S δ

3
(A, s− a) between trisectors `a and `′a (shown

in green), etc., and these six regions are interior-disjoint.
For the general case, first triangulate polygon V =

V1 · · ·Vn by n − 2 diagonals. For each triangle T = ViVjVk

in the triangulation, calculate βT and rT as above, and
draw the free regions in T . Finally, as all resulting trian-
gles and sectors are disjoint (except at vertices), choosing
β = minT {βT } and r = minT {rT } suffices.

For a sequence of positive lengths `1, . . . , `n, we define the
chain Cα(`1, . . . , `n) = C to be the hinged figure formed by
hinging the 2n upward-pointing triangles

Tα(`1), Tα(`1), Tα(`2), Tα(`2), . . . , Tα(`n), Tα(`n)

in order at their base vertices. The initial point C0 and final
point C1 of this chain are the unhinged vertices of the first
Tα(s1) and the last Tα(sn) respectively.

We now state and prove the desired result of this section.
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Figure 5: Effectively moving a rooted subtree

Theorem 4. For any two tree-like figures F and F ′ re-
lated by the rooted subtree movement of (A, a) from (B, b)
to (B, b′), there exists a common refinement G ≺ F and
G ≺ F ′. Further, if a lies on link La ∈ A, and a simple path
γ along ∂B is chosen from b to b′, this refinement G ≺ F
may be chosen so that only La and links incident with γ are
refined.

Note first that both A and B are tree-like, as they are sub-
trees of tree-like figure F . Note also that there are exactly
two boundary paths γ from b to b′ since B is tree-like.

Proof. Without loss of generality, the diagram is ori-
ented so that γ traces the boundary of B counterclockwise
from b. The construction is in two steps.

In the first step, we cut a chain from the boundary of γ,
as follows. Let r be the smallest free-region radius for all
links touched by γ, and likewise let α be the smallest free-
region angle. Path γ is a polygonal path P0P1 . . . Pt along
the boundary of B, where Pi are vertices of links with P0 = b
and Pt = b′. By refining this path into shorter segments as
necessary, we may assume that each segment Pi−1Pi has
length 2`i with `i ≤ r.

Choose an angle β < α/2t. Next, cut out 2t isosceles tri-
angles along γ: for each segment PiPi+1 ∈ γ, cut two Tβ(`i)
triangles. These triangles fit in the appropriate free-triangle
for their link in B by choice of β, so all of these triangles
may indeed be removed without overlapping or disconnect-
ing any of B’s links. Let B∗ be the hinged figure after these
triangles have been removed, and let C = Cβ(`1, . . . , `t)
be the chain formed by hinging these 2t cut-out triangles
in order. Finally, rehinge the pieces to form the figure
Gb = B∗

(b′) ∧ (C1)C. See Figure 5 for an illustration.
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Figure 6: Moving a rooted supersubtree.

The other step is to cut a chain away from A at a. Draw
t abutting rhombi r1, . . . , rt in link La at point a so that
ri has a diagonal of length `i and an angle of 2β; they are
drawn in the order r1, . . . , rk clockwise around a so that ri

shares (part of) an edge with ri+1 for 1 ≤ i ≤ k−1. Call this
configuration of kites a kite-sweep KSβ(`1, . . . , `n). Recall
that β was chosen so that 2tβ < α and that `i were chosen
so that `i < r for each 1 ≤ i ≤ r, so this kite-sweep can
fit within the free-sector of La at a. Finally, cut out these
t rhombi in the form of 2t β-triangles, rehinging them into
D = Cβ(`1, . . . , `t). Link La is no longer a simple polygon,
so simply cut away a small corner near a and rehinge it as
shown in Figure 5. Let A∗ be the remaining hinged figure
after A has been thus mutilated. Finally, hinge all of A back
together in the form Ga = A∗

(a) ∧ (d1)D.
The final result of our construction is the single hinged

figure G = Ga(D0) ∧ (b)Gb; we claim G ≺ F and G ≺ F ′.
To see G ≺ F , simply configure chains C and D so that
each link assumes the spot from which it was cut from F ;
i.e., chain C fills the triangular holes left along path γ, and
chain D fills the kite-sweep in La. See Figure 5(c), left. For
the refinement G ≺ F ′, the chains simply switch roles: chain
D now fills in the gaps left along γ, and chain C fills the kite
holes in La. See Figure 5(c), right.

3.2 Moving Rooted Supersubtrees
Now we increase the level of abstraction by allowing move-

ment of rooted subtrees in a hinged figure F that already
has a refinement G ≺ F . We call F the superfigure of G,
and subtrees of F supersubtrees of G.

Theorem 5. Take tree-like figures F and F ′ related by
the rooted-subtree movement of (A, a) from (B, b) to (B, b′)
as in Theorem 4, and suppose G ≺ F . Then there exists a
common refinement H ≺ G ≺ F and H ≺ F ′. Further, if
a path γ from b to b′ on ∂B is chosen, then only links of G
incident with γ are refined.

In other words, this theorem allows the movement of a su-
persubtree of G. The construction below directly generalizes
the method used in Theorem 4.

Proof. We will write from G’s point of view, so features
of F will have the super prefix. Without loss of generality,



suppose γ winds counterclockwise around the superbound-
ary of B.

Consider the behavior near the superhinge h of F cor-
responding to points a and b; let {hi | 1 ≤ i ≤ n} be
the set of all the hinges of G with the property that hi

has two incident links La
i and Lb

i lying in A and B respec-
tively. As links are defined to be simple polygons, these 2n
links are distinct. We may suppose that these 2n links are
the only links of G incident with superhinge h: the con-
struction below is unchanged by the presence of more, ex-
traneous links. Without loss of generality, we may assume
that these links have been numbered so that they fall in
the cyclic order La

1 , . . . , La
n−1, L

a
n, Lb

n, Lb
n−1, . . . , L

b
1 counter-

clockwise around h.
Our goal is to mimic the two steps in the proof of Theo-

rem 4, by effectively cutting a chain from A at a and cutting
a chain from B along γ.

We begin by choosing the dimensions of the chain. First,
the refinement G ≺ F induces an identification of some
boundary points of G, and any point p ∈ ∂G collocated
with a vertex of any link in G will itself be declared a (pos-
sibly flat) vertex of its link. We also declare b′ to be a vertex
of its link, if it isn’t already. Let r and α be the smallest
free-region radius and angle for any link in G incident with
γ. Polygonal path γ consists of t segments PiQi, (1 ≤ i ≤ t)
from the boundary of G, where P1 corresponds to b and Qt

corresponds to b′; as before, we may subdivide γ as neces-
sary so that |PiQi| = 2`i ≤ 2r for each 1 ≤ i ≤ n. We
choose β = α/2t.

Note that boundary point Qi of G does not necessarily
equal Pi+1, but if they are unequal then both Qi and Pi+1

are vertices of their respective links; let i0, . . . , is be the
indices where Qij−1 6= Pij , with i0 = 1 and is = t + 1.

We begin by refining the links along γ to imitate the first
step in the construction of Theorem 4, i.e. to simulate cut-
ting a Cβ(`1, . . . , `t) from γ and linking it onto b′. We treat
each portion Pij+1Qij+1 of γ, corresponding to a contigu-
ous path along ∂G, separately. For each ij ≤ k ≤ ij+1 − 1,
cut two Tβ(`k) triangles inward along PkQk. Also, cut a
kite-sweep KSβ(`1, . . . , `ij−1) from the free-sector at Pij ,
and then make the link simple by removing and rehing-
ing a small corner as shown in Figure 6(b). Notice that,
since β is less than the free-region angle along each edge
incident with γ, all of the removed isosceles triangles fit
within this region. Likewise, the kite-sweep has total angle
2β · (ij − 1) ≤ 2tβ = α and the largest kite has diagonal
max{`1, . . . , `ij−1} ≤ r, so the kite-sweep fits in the free-
sector at Pij . We have now removed 2(ij+1 − 1) triangles,
namely two of each length `1, . . . , `ij+1−1, which we now re-
hinge into a chain Cj = Cβ(`1, . . . , `ij+1−1) and attach to G
by hinging Cj ’s final point to Qij+1−1.

To see that this construction refines G, note that each of
the s chains may simply fill in the places from which they
were cut. To see that this hinged figure can also serve the
purpose that B∗

(b′) ∧ (c0)C serves in Theorem 4, note that
each chain Cj may fill in the kite-sweep cut at Pij+1 for
1 ≤ j ≤ s − 1, while Cj is the desired chain attached at b′

(Figure 6(c)).
Now we show how to refine G around superhinge h. For

each 1 ≤ i ≤ n, cut a KSiβ/n(`1, . . . , `k) kite-sweep in La
i

at hi; the resulting non-simple link has two corners at hi,
so we cut off and rehinge the more counterclockwise of the
two, calling the resulting link (without this small corner)

r

q

p

(a)

q
r

p

(b)

r

p
q

(c)

Figure 7: Rearranging a superfigure by means of
rooted subtree movements.

L
a(∗)
i . As before, by choice of r and β, the ith kite-sweep

can fit within the free-sector of La
i at hi. For 2 ≤ i ≤ n, cut

each of the 2t triangles Tiβ/n(`j) removed from La
i into two

pieces: a triangle T(i−1)β/n(`j) with the same base, and a
kite whose four angle measures are β/n, 180◦ +2(i− 1)β/n,
β/n, and 180− 2iβ/n. The (i− 1)β/n triangles are hinged
into a chain Da

i = C(i−1)β/n(`1, . . . , `2k), and the kites are
hinged into a kite-chain Ea

i = C(i−1)β/n,iβ/n(`1, . . . , `2k) as
in Figure 6; for i = 1, the β/n triangles are hinged into the
kite-chain Ea

1 = C0,iβ/n(`1, . . . , `2k)). We then hinge (Da
i )0

and (Ea
i )0 to point hi of L

a(∗)
i , and hinge point hb of Lb

i to
Ea

i (1). See Figure 6.
As before, this is a refinement of G since each piece may

take its original position. We now describe the alternate
configuration: For 2 ≤ i ≤ n, chain Da

i fills in the kite-
sweep of La

i−1, while La
n’s kite-sweep remains unfilled. The

kite-chains E1, . . . , En fit together to form a refinement of
a chain Cβ(`1, . . . , `k) connecting the two halves. This is
exactly the desired form, so we’re done.

3.3 Putting the Pieces Together
Now we can finally write down the proof of the desired

claim for this section:

Theorem 6. For any finite collection of polygons
P1, . . . , Pn of equal area, there exists a common refinement
C ≺ Pi for 1 ≤ i ≤ n.

Proof Sketch. By the Lowry-Wallace-Bolyai-Gerwien
Theorem, there exists a common decomposition of
P1, . . . , Pn into finitely many polygons {Li | 1 ≤ i ≤ k}.
Hinging these together, we may inductively apply the sub-
tree movement constructions defined in this section as indi-
cated in Figure 7 to obtain a full hinged dissection. For full
details, see [1].

4. CONTINUOUS MOTION
Theorem 6 constructs a hinged dissection that has a con-

figuration in the form of each of the n polygons. This section
shows how to further refine that hinged dissection to enable
it to fold continuously into each polygon while avoiding in-
tersection among the pieces:

Theorem 7. Any hinged figure A has a refinement B ≺
A so that any two configurations of B are reachable by a
continuous non-self-intersecting motion.

Indeed, given polygons P1, . . . , Pn of equal area, Theo-
rem 6 guarantees that there exists a hinged figure F that



refines each of P1, . . . , Pn. By Theorem 7, there is a re-
finement F ′ ≺ F that is universally reconfigurable without
self-intersection. In particular, F ′ can continuously deform
between any of the configurations induced by the Pis. This
figure F ′ solves the problem, proving the first sentence of
Theorem 1.

To prove Theorem 7, we require two preliminary results:
the first about polygonal chains and slender adornments,
and the other “chainifying” a given hinged figure.

4.1 Slender Adornments
Slender adornments are defined by Connelly et al. [8]. An

adornment is a connected, compact region together with
a line segment ab (the base) lying inside the region. Fur-
thermore, the two boundary arcs from a to b must be piece-
wise differentiable, with one-sided derivatives existing every-
where. An adornment is a slender adornment if for every
point p on the boundary other than a and b, the primary in-
ward normal(s) at p, namely the rays from p perpendicular
to the one-sided derivatives at p, intersect the base segment
ab (possibly at the endpoints). In [8], it is shown that chains
of slender adornments cannot lock. Specifically, they show
the following:

Theorem 8. [8, Theorem 8] A strictly simple polygo-
nal chain adorned with slender adornments can always be
straightened or convexified.

(In a strictly simple polygonal chain, edges intersect each
other only at common endpoints.) This implies that any
strictly simple polygonal open chain is universally reconfig-
urable, because to find a continuous motion between two
configurations c1 and c2, one may simply follow a motion
from c1 to the straightened configuration c, and then re-
verse a motion from c2 to c.

4.2 Chainification
Next, we prove that any hinged figure has a refinement

that is chain-like and simply adorned:

Theorem 9. Any hinged figure F has a chain-like refine-
ment G ≺ F so that G consists of a chain of equally-oriented
obtuse triangles hinged at their acute-angled vertices.

Proof. First we refine F to consist of a tree of trian-
gles hinged at vertices, as follows. For each n-sided link L
with n ≥ 4, draw a collection of triangulating diagonals.
Sequentially, for each such diagonal V1Vi currently in link
V = V1V2 . . . Vk (which may be a refinement of an original
link), replace V with two links V1V2 . . . Vi and ViVi+1 . . . V1

hinged at V1, attaching the hinge originally at Vi to its cor-
responding position on either refined piece. The resulting
figure indeed consists of triangles hinged at vertices.

Next, if the resulting triangulated figure is not tree-like,
we may repeatedly remove an edge from a cycle in the in-
cidence graph (i.e. remove the corresponding link from its
hinge) until the graph becomes tree-like. Call this refine-
ment H.

For each triangular link ABC in H, divide ABC into
three triangles AIB, BIC, CIA, where I is the incen-
ter of 4ABC. Note that ∠BIC = π − 1

2
∠B − 1

2
∠C >

π − 1
2
(∠A + ∠B + ∠C) = π

2
, i.e. ∠BIC is obtuse, and like-

wise for the others. Finally, by hinging these obtuse triangles
at the base vertices by walking around H’s boundary (Fig-
ure 8), we obtain the desired chain-like refinement G.

Figure 8: Chainifying a hinged figure
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Figure 9: Refinement to hide bars from each
other.

4.3 Final Piece of the Puzzle
We now prove Theorem 7, i.e., that any hinged figure A

has a universally reconfigurable refinement B.

Proof of Theorem 7. As shown in Theorem 9, A has
a refinement C consisting of obtuse triangles hinged along
their bases. For each such obtuse triangle 4DEF , we create
the following 7-piece refinement (Figure 9). Let I be the
incenter of triangle DEF , and suppose the line through I
perpendicular to DI intersects sides DE and DF at P and
P ′ respectively; by obtuseness of DIE, P lies on the interior
of side DE, and likewise for P ′. Reflect P over angle bisector
EI to Q; it is not hard to check that ∠PQP ′ = 90. Define
R, S, and T as illustrated; since PEQ is isosceles and acute,
R is inside PEQ. Repeat on the other side to form the 7-
piece refinement as illustrated. As the angles in all of the
adornments are 90◦ or larger, each can be easily checked
to be slender. Furthermore, no bar can touch any other
except at the vertices, since the bars in DEF only touch the
boundary of DEF at single vertices, and no two bars within
DEF are touching. Thus, the resulting hinged figure B is
a strictly simple polygonal chain with slender adornments
that refines C (and hence refines A), so we are done.

5. PSEUDOPOLYNOMIAL
We now describe how to combine the preceding steps with

ideas of Eppstein [17] and the classical rectangle-to-rectangle
dissection of Montucla [31] to perform our hinged dissection
using only a pseudopolynomial number of pieces, proving the
second sentence of Theorem 1. In contrast to Theorem 6,
we will only describe the transformation between two given
polygons rather than arbitrarily many. A simple induction
shows that the construction remains pseudopolynomial for
a constant number of target polygons.

The idea is as follows: the inefficiency in the preceding
construction is because movements may traverse the same
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Figure 10: Equalizing the areas of two triangular
chains.

hinges many times, leading to a recursive application of su-
persubtree movement and giving exponentially many inter-
connections. By performing some simplifying steps prior
to subtree movement, we can instead ensure that move-
ments are along mostly-disjoint paths so that all recursion
is constant-depth.

To do this, given two figures, chainify them so we have
two chains of triangles. We then further subdivide them so
that both chains have the same number of links, and such
that corresponding triangles have the same area. We do this
using an idea from [17]: cut the triangles from base to apex
along the lines that yield the desired area, hinging at the
base to maintain connectivity (see Figure 10).

Given these compatible chains, our task reduces to pro-
ducing hinged dissections between each pair of equal-area
triangles in such a way that the base vertices of one map
to the base vertices of the other. If each individual pair of
triangles requires only pseudopolynomially many pieces, we
will be done.

5.1 Supercuts
Let G ≺ F be hinged figures. If we make a cut in F ,

producing F ′, we may not be able to directly make the same
cut in G: attempting to do so may disconnect the figure. We
give here a construction allowing us to produce an H refining
both G and F ′. In keeping with earlier terminology, we call
the cut in F a supercut with respect to G. This operation
will be useful in keeping everything pseudopolynomial.

Theorem 10. Let f1 and f2 be boundary points along
some link of a tree-like figure F . Let F ′ be the tree-like
figure obtained by adding a straight-line cut between f1 and
f2 and hinging at f1, and suppose G ≺ F . Then there ex-
ists a common refinement H ≺ G and H ≺ F ′. Further, H
differs from G only within the free region of the boundaries
defined by adding the straight-line cut of F ′ to G.

Proof. Consider the behavior of G along the edge from
f1 to f2. In G the supercut may traverse several hinged
pieces. Suppose first that the supercut hits no existing
hinges. Let {hi | 1 ≤ i ≤ n} be the points of intersec-
tion between the supercut and the existing edges of G (so

hb

3

f2 = hb

4

ha

3
f2 = ha

4

f1 = h1

hb

2

ha

2

hb

2

ha

2

ha

3

hb

3

(a)

(b) (c)

Figure 11: Making a supercut across existing edges

that in particular h1 = f1 and hn = f2). After the cut has
been made, distinguish identified vertices on each side as ha

i

and hb
i . We proceed inductively along the segments in H,

beginning with h1 to h2 which we can easily cut and hinge
exactly as in F .

Now suppose we have already modified all segments up
to hi to refine F appropriately. Cut the segment from ha

i

to hi+1, hinging at ha
i , and perform a rooted subtree move-

ment from ha
i to hb

i . We modify this movement in two ways:
first, instead of tracing the entire exterior path between the
two points, we use only the direct path along the cut line,
with the intermediate vertices as base points of our triangle
chain. Second, since this path will cross the paths used by
previous segments, we reuse all base points from earlier cut-
out triangles, decreasing the angle slightly to separate them;
see Figure 11 for an example of this construction. Repeating
this for all segments, we obtain the full supercut as desired.

Now consider the case where one or more hinges of G
lie on the cut edge. We only need that our inductive step
can cut hinges as well as simple links. Where before our
inductive transformation was based on subtree movement,
for this case we will use supersubtree movement. Since we
have already covered cutting links, we may here consider
only links entirely on one side of the cut line. Treat all such
links as a rooted supersubtree and again perform supersub-
tree movement traversing only the cut path instead of the
entire figure boundary, and again reusing previous boundary
triangle base points. The rest of the argument is identical.

Combining these two inductive steps allows us to produce
the desired refinement across any existing configuration of
the cut line in G, so we are done.

5.2 Rectangle to Rectangle
Our construction also requires an efficient transformation
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Figure 12: The stages of the rectangle-to-rectangle
transformation.

between arbitrary equal-area rectangles. Since this dissec-
tion is nearly identical to the 230-year-old classical dissec-
tion, we outline this only briefly.

First (Figure 12(a)), snake the narrower rectangle (B)
back and forth, covering as much of the other rectangle (A)
as possible. Second (Figure 12(b)), cut the triangular por-
tions of B and fold them into rectangular caps, if possible.
Third (Figure 12(c)), if this was not possible then we need
to move the extended portion of B to the left side of A as
if it “wrapped around” when hitting the right edge. After
this, the second step is guaranteed to be successful. For full
details of this construction, see [1].

5.3 Unaltered Subtree Movement
It will be useful in the analysis to be able to perform

subtree movements without modifying the subtree. This is
in contrast to earlier constructions, which cut the kite tree
out of the subtree being moved.

Accomplishing this is a simple modification of the earlier
operation: we cut both the kite sweep and the triangle chain
out of the free region of the parent subtree, and only need
to alter the hinge connection points. The kite sweep will
form a chain connecting at one end to the source vertex
and at the other end to the subtree being moved, and the
triangle chain will be a loose chain hanging from the source
vertex (geometrically; it is not connected directly to the kite
sweep); see Figure 13. To move the subtree, we then extend
the kite sweep out, fill it in with the hanging triangle chain,
and place the moving tree at the destination point.

5.4 Polygon to Polygon
With the pieces described, the transformation is simple:

first, perform the equal-area chainification on both input
polygons. Then convert each triangle to a rectangle us-
ing the same cutting procedure described in Figure 12(b)

(a) (b) (c)

Figure 13: Moving a subtree by modifying only the
parent tree.

for capping the top of the rectangle. We would then like
to map between the two rectangles using the rectangle-to-
rectangle transformation. However, to ease analysis, we ac-
tually view the rectangle-to-rectangle transformation as be-
ing done first, and then transform the rectangles back into
the original triangles by making the necessary supercuts as
though the figures were a solid rectangle.

After these steps, we will have pairwise dissections be-
tween the triangles in the chain. In the last step, we use
Unaltered Subtree Movement to adjust the hinge joints be-
tween pairs of triangles to lie on the correct boundary points.
This yields a common refinement of the two triangle chains,
and we are done.

See [1] for the analysis of this procedure, as summarized
by the following theorem.

Theorem 11. The procedure described above gives a dis-
section with a pseudopolynomial number of pieces.

6. THREE DIMENSIONS
We now consider hinged figures in three dimensions. A 3D

hinged figure is a collection of simple polyhedra called links
hinged along common positive-length edges called hinges.
As before, the cyclic order of links around a hinge must
remain constant.

Not every two polyhedra of equal volume have a com-
mon dissection. Dehn [11] proved an invariant that must
necessarily match between the two polyhedra. For exam-
ple, Dehn’s invariant forbids any two distinct Platonic solids
from having a common dissection. Many years later, Sydler
[35] proved that polyhedra A and B have a common dis-
section if and only if A and B have the same volume and
the same Dehn invariant. Jessen [22] simplified this proof
by an algebraic technique and generalized the result to 4D
polyhedral solids. (The 5D and higher cases remain open.)
Dupont and Sah [16] gave another proof which illustrates
further connections to algebraic structures.

Clearly, if two polyhedra have no common dissection, then
they also have no common hinged dissection. We show the
inverse: given a common dissection of polyhedra A and B,
we can construct a common hinged dissection of A and B.
More generally, we have the 3D analog of Theorem 6:

Theorem 12. Given n polyhedra P1, . . . , Pn of equal vol-
ume and equal Dehn invariant, there exists a hinged figure
H such that H ≺ Pi for 1 ≤ i ≤ n.



Note that our algorithms assume that the (unhinged) dis-
section is given. None of the proofs that Dehn’s invariant
is sufficient are explicitly algorithmic, so it remains open
whether one can compute a dissection when it exists. (We
suspect, however, that this may be possible by suitable adap-
tation of an existing proof.)

All of the following definitions are 3D analogs of the defi-
nitions given in Section 2. The boundary ∂A of a hinged fig-
ure A is the 2-manifold (or collection of disjoint 2-manifolds)
formed by identifying faces of links as follows: (1) for each
non-hinge edge e of a link `, the two faces adjacent to e are
connected along their common edge, and (2) for each hinge
edge e, each pair of adjacent faces of adjacent links around e
are joined along their common edge. The incidence graph of
a hinged figure, the notions of tree-like and chain-like, and
the concept of refinement are unchanged.

The proof will be as follows: First we will describe a re-
vised notion of free-regions for tetrahedra. Next, we illus-
trate the technique for moving rooted subtrees and for mov-
ing rooted supersubtrees, under the assumption that each
link is a tetrahedron. By tetrahedralizing the links before
each supersubtree movement, these assumptions lose noth-
ing. The rest of the proof remains unchanged.

6.1 Defining Free Regions
We begin by defining free regions for a tetrahedron T .

Choose an angle α smaller than the smallest dihedral an-
gle of T ’s six edges. For each face φ of T , let freeT (φ) be
the tetrahedron inside T whose base is φ and whose base
dihedral angles are α/3.

For each edge e of T , construct a cylinder Ce of length
2
3
|e| centered at the midpoint of e with axis along e. Each

cylinder has radius r, chosen small enough so that these six
cylinders do not intersect, and also so that for each edge e,
Ce does not intersect freeT (φ3(e)) and freeT (φ4(e)) where
φ3(e) and φ4(e) are the faces not adjacent to e.

Let freeT (e) be the wedge of Ce of angle α/3 centered
within the dihedral angle of T at e. By choice of α and r,
freeT (e) will not intersect freeT (φ) for any face φ. These ten
regions are the desired free regions for tetrahedron T .

6.2 Moving Rooted Subtrees
There are two ways to join a pair of rooted subtrees (A, a)

and (B, b) (where a and b are hinges or edges of their re-
spective figures), as each edge has two possible orientations.
For each rooted subtree movement of (A, a) from (B, b) to
(B, b′), we treat a, b, and b′ as oriented edges, and we join
them so that the orientations of the joined edges match.

We may now illustrate the analog of Theorem 4:

Theorem 13. For any two tree-like hinged figures F and
F ′ related by the rooted subtree movement of (A, a) from
(B, b) to (B, b′) for oriented edges a, b, and b′, there is a
common refinement G, i.e. G ≺ F and G ≺ F ′.

Proof. First we choose the boundary path. Let pa be
the point 1/3 across edge a, and let φ0 be the face of F
to the left of edge a, i.e. the face so that edge a traces
its boundary counterclockwise (as seen from the outside).
Likewise, let pb′ be the point 1/3 across b′, and φ1 the face
to b′’s right. Triangulate the boundary ∂F , and let γ be a
piecewise linear path along ∂F from pa to pb′ that passes
through no vertices of the triangulation, crosses each edge
of each triangle orthogonally (as ∂F is locally flat around

A

a

B

b

b′

C

D

Figure 14: Moving the rooted subtree (A, a) from
edge b to edge b′.

each edge), begins in face φ0, and ends in face φ1. Without
loss of generality, γ does not cross itself, as loops may be
eliminated. We may also assume that all turn angles of γ
are at most 90◦, by truncating sharp turns.

Second, we thicken the boundary path. We now choose
a small ω and form two paths γ` and γr by offsetting γ by
a constant width of ω to the left and right, respectively.
The value ω is chosen small enough to satisfy the follow-
ing conditions: (1) 2ω is smaller than the free-radius of a;
(2) 2ω < min{|a|, |b|}/3; (3) paths γ` and γr have the same
number of segments as γ; (4) the region Γ between γ` and
γr contains no vertices of the triangulation of ∂F and does
not intersect itself. In essence, we have just thickened the
path γ to have width 2ω.

Third, we build a pyramid chain whose base is the region
Γ, as follows. We first divide Γ into regions that will serve as
the bases. Each time Γ crosses an edge of the triangulation
of ∂F , draw the intersection of Γ with this edge; it intersects
γ at right angles. At each rightward turn of Γ, let vr be the
vertex of γr at this turn and v` that of γ`; draw the perpen-
diculars from vr to the two edges incident with v`, as well
as segment vrv`. Perform this procedure in mirror image
for all leftward turns of Γ. These drawn segments divide Γ
into rectangles and pairs of congruent right triangles. We
subdivide each such rectangle of dimensions 2ω × s into 2k
rectangles of dimensions 2ω × s

2k
, where k is chosen large

enough so that s
2k

≤ 2ω.
We now carve out pyramids based at each of these regions

along Γ. Let β be the free region angle at edge a of A. For
some sufficiently small h (to be specified soon), form for
each region R along Γ the pyramid whose base is R and
whose vertex is at height h above the center or centroid of
region R. These pairwise-congruent pyramids hinge along
their common edges to form a chain C of pyramids whose
base is Γ. This chain C may be folded into a “kite-sweep” of
octahedra and triangular bipyramids at a common segment
t having length 2ω. If h is small enough so that the total
dihedral angle around t is at most β, then this chain can
be seen to fit within a cylindrical wedge of radius 2ω, angle
β, height 2ω, and axis along t. Thus, carve out a chain D
duplicate to C from A based at the start of Γ in this folded
form. To ensure that A is formed by simple polyhedra, we
refine this link into a hinging of tetrahedra, possible by [6].

Finally, hinge the mutilated A, the mutilated B, and



chains C and D as illustrated in Figure 14; for the same
reasons as in Theorem 4, this hinged figure forms a refine-
ment of both F and F ′.

6.3 Moving Rooted Supersubtrees
A generalization of Theorem 5 follows quickly, along the

lines of our generalization of Theorem 4 above:

Theorem 14. Take tree-like figures F and F ′ related by
the rooted-subtree movement of (A, a) from (B, b) to (B, b′)
as in Theorem 13, and suppose G ≺ F . Then there exists a
common refinement H of G and F ′.

The rest of the proof of Theorem 12 follows the proof of
Theorem 6 unchanged. We obtain Theorem 2 as an imme-
diate corollary.

6.4 Higher Dimensions
We believe, though have not verified, that our techniques

generalize further to refining dissections of polyhedral solids
in arbitrary dimensions into equivalent hinged dissections.
Again we obtain only configurations, not folding motions,
for each desired polyhedral solid. Also, it is unknown when
common (unhinged) dissections exist in 5D and higher [16],
although the solution in 4D is again the Dehn invariant [22].
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André-Joseph Panckoucke, Lille, 1749.

[33] D. Rus, Z. Butler, K. Kotay, and M. Vona.
Self-reconfiguring robots. Comm. ACM, 45(3):39–45, 2002.

[34] I. Streinu. Pseudo-triangulations, rigidity and motion
planning. Discrete Comput. Geom., 34(4):587–635,
November 2005.

[35] J.-P. Sydler. Conditions nécessaires et suffisantes pour
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