
Losing at Checkers is Hard

Jeffrey Bosboom∗ Spencer Congero† Erik D. Demaine∗

Martin L. Demaine∗ Jayson Lynch∗

Abstract

We prove computational intractability of variants of checkers: (1) deciding whether there is a
move that forces the other player to win in one move is NP-complete; (2) checkers where players
must always be able to jump on their turn is PSPACE-complete; and (3) cooperative versions
of (1) and (2) are NP-complete. We also give cooperative checkers puzzles whose solutions are
the letters of the alphabet.

1 Introduction

Winning isn’t for everyone. Sometimes, you want to let your little sibling / nibling / child win,
so that they can feel the satisfaction, encouraging them to play more games. How do you play
to lose? This idea is formalized by the notion of the misère form of a game, where the rules are
identical except that the goal is to lose (have the other player win) according to the normal rules
[BCG04, Con00]. Although your little relative may want to win, it’s probably unreasonable to
assume that they play optimally, so in the misère game, we not only aim to lose but also to prevent
the opponent from losing.

Checkers (in American English, “draughts” in British English) is a classic board game that
many people today grow up with. Although there are several variations, the main ruleset played
today is known as American checkers and English draughts, and has had a World Championship
since the 1840s [Wik17]. Computationally, the game is weakly solved, meaning that its outcome
from the initial board configuration (only) has been computed [SBB+07]: if both players play
optimally to win, the outcome will be a draw.

But what if both players play optimally to lose? (Again, your little relative may not aim to
lose, but you want to lose no matter what they do, so this “worst-case” mathematical model more
accurately represents the goal.) The misère form of checkers is known as suicide checkers, anti-
checkers, giveaway checkers, and losing draughts [Wik17]. This game is less well studied. No one
knows whether the outcome is again a draw or one of the players successfully losing. There are a
few computer players such as Suicidal Cake [Fie09] that occasionally compete against each other.

Complexity of winning. In this paper, we consider a few checkers variants, in particular suicidal
checkers, from a computational complexity perspective. Computational complexity allows us to
analyze the best computer algorithm to optimally play a game, and in particular, how the time
and memory required by that algorithm must grow with the game size. For this analysis to make
sense, we need to generalize the game beyond any “constant” size such as 12 pieces on an 8 × 8
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board. The standard generalization for checkers is to consider an n × n board, and an arbitrary
position of pieces on that board (imagining that we reached this board configuration by several
moves from a hypothetical initial position). The computational problem is to decide who wins from
this configuration assuming optimal play.

In this natural generalization, Robson [Rob84] proved that normal checkers is EXPTIME-
complete, meaning in particular that any correct algorithm must use time that grows exponentially
fast as n increases — roughly needing cn time for some constant c > 1. EXPTIME-completeness
is a precise notion we will not formalize here, but it also implies that checkers is one of the hardest
problems that require exponential time, in the sense that all problems solvable in exponential time
(which is most problems we typically care about) can be converted into an equivalent game of
checkers. So maybe all that time spent playing checkers as a kid wasn’t a waste. . . (There are
many such complexity results about many different games; see, e.g., [HD09, Dem].)

One of the checkers variants we study in this paper adds one rule: every move must capture at
least one piece. Thus, a player loses if they cannot make a jumping move. This always-jumping
checkers is not very interesting from the usual starting configuration (where no jumps are possible),
but it is interesting from an arbitrary board configuration. In Section 4, we show that always-
jumping checkers is PSPACE-complete — a complexity class somewhere in between “easy” problems
(P) and EXPTIME-complete problems. Formally, always-jumping can be solved using polynomial
space (memory) — something we don’t know how to do for normal checkers, where many moves can
be made between captures — and always-jumping checkers is among the hardest such problems.
This result suggests that always-jumping checkers is somewhat easier than normal checkers, but
not by much.

Complexity of losing. But what is the computational complexity of suicide checkers? This
question remains unsolved.

In this paper, we study a closely related problem: what is the computational complexity of
deciding whether you can lose the game “in one move”, that is, make a move that forces your
opponent to win in a single move? We call this the lose-in-1 variation of a game. In Section 3, we
prove that lose-in-1 checkers is NP-complete — a complexity class somewhere in between “easy”
problems (P) and PSPACE-complete problems. In particular, assuming a famous conjecture (the
Exponential Time Hypothesis), NP-complete problems (and thus also PSPACE-complete problems)
require nearly exponential time — roughly 2n

ε
for some ε > 0.

Hardness of losing checkers in one move is particularly surprising because winning checkers in
one move (mate-in-1 ) is known to be easy. An early paper about the complexity of normal checkers
[FGJ+78] gave an efficient algorithm for deciding mate-in-1 checkers, running in time linear in the
number of remaining pieces. Namely, for each of your pieces, draw a graph whose vertices represent
reachable positions by jumping, and whose edges represent (eventually) jumpable pieces. Then,
assuming all opponent pieces appear as edges in this graph, winning the game is equivalent to
finding an Eulerian path in the graph (a path that visits each edge exactly once) that starts at the
piece’s initial position. Finding Eulerian paths goes back to Euler in 1736, though the problem was
not fully solved until 1873 by Hierholzer [Hie73] who also gave a linear-time algorithm. Proving
that lose-in-1 checkers is an NP problem instead of, say, PSPACE or EXPTIME involves extending
this mate-in-1 result.

Complexity of cooperating. The final checkers variants we consider in this paper are cooper-
ative versions, where the two players cooperate to achieve a common goal, effectively acting as a
single player. The same proofs described above also show NP-completeness of cooperative win-in-2
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checkers — where the players together try to eliminate all pieces of one color in two moves — and
cooperative always-jumping checkers — where the players together try to eliminate all pieces of one
color using only jumping moves. In Section 5, we describe these results in more detail.

Checkers font. Finally, in Section 6, we give a checkers puzzle font : a series of cooperative
always-jumping checkers puzzles whose solutions trace out all 26 letters (and 10 numerals) of the
alphabet. See Figures 7 and 8. We hope that this font will encourage readers to engage with the
checkers variants studied in this paper. An animated font is also available as a free web app.1

2 Checkers Rules and Variants

First let us review the rules of American checkers / English draughts. Two players, Black and Red,
each begin with 12 pieces placed in an arrangement on the dark squares of an 8 × 8 checkerboard.
Black moves first, and play takes place on the dark squares only. Initially, pieces are allowed
to move diagonally forward (i.e., toward the opponent’s side) to other diagonally adjacent dark
squares, but not backward. If a player’s piece, an opponent’s piece, and an empty square lie in a
line of diagonally connected dark squares, the player must “jump” over the opponent’s piece and
land in the empty square, thereby capturing the opponent’s piece and permanently removing it
from the board. Furthermore, jumps must be concatenated if available, and a player’s turn does
not end until all possible connected jumps have been exhausted. If a piece eventually reaches the
last row on the opponent’s side of the board, it becomes a “king,” which enables movement to any
diagonally adjacent dark square, regardless of direction. The goal of each player is to capture all
of the opponent’s pieces.

As in [Rob84, FGJ+78], we generalize the game to an arbitrary configuration of an n×n board.
We still assume that the next player to move is Black.

Next we describe the two main variants of checkers considered in this paper. First, in lose-in-1
checkers, one player tries to make a single move such that, on the following turn, the opponent
is forced to capture all of the first player’s remaining pieces with a sequence of jumps. Second,
in always-jumping checkers, we add one rule: a piece must jump an opponent’s piece on every
move. In other words, pieces are now forbidden from moving to another square without a jump;
the first player with no available jumps (or no pieces) loses. As in standard checkers, jumps must
be concatenated within a single turn as long as there is another jump directly available.

In Section 5, we define and analyze cooperative versions of these two checkers variants, where
players work collaboratively to make one of them to win (without particular regard to who wins).
These variants arise if the players hate draws, or if they want to make the game end quickly.

To improve readability in the following proofs and figures, we rotate the checkerboard 45◦ so
that pieces move horizontally and vertically, rather than diagonally.

3 Lose-in-1 Checkers is NP-Complete

In this section, we prove the following computational decision problem NP-complete:

Problem 3.1 (Lose-in-1 Checkers). Given a checkers game configuration, does the current player
have a move such that the other player must win on their next move?

1http://erikdemaine.org/fonts/checkers/
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(a) A graph with a matching
(drawn in red).

(b) A cycle crossing all and only
matched edges.

(c) A Hamiltonian cycle in
the graph covering the matched
edges.

Figure 1: An example instance of Planar Forced Edge Hamiltonicity (a) satisfying the promise (b),
and its solution (c).

In general, proving NP-completeness consists of two steps [Dem]: (1) proving “NP-hardness”
(Theorem 3.2 below) and (2) proving “membership in NP” (Theorem 3.3 below). The first step
establishes a lower bound on complexity — technically, that the problem is as hard as all problems
in the complexity class in NP. The second step establishes an upper bound on complexity — that
the problem is no harder than NP.

Without getting into the definition of NP, we can prove NP-hardness of a problem by showing
that it is at least as hard as a known NP-hard problem. We prove such a relation by giving
a reduction that shows how to (efficiently) convert the known NP-hard problem into the target
problem. In our case, we will reduce from the following problem; refer to Figure 1 for an example.

Problem 3.2 (Planar Forced Edge Hamiltonicity). Given a max-degree-3 planar undirected graph2

and a perfect matching in that graph,3 is there a cycle that visits every edge in the matching?
The graph and matching must also satisfy the promise that we can draw a cycle that crosses

every matched edge (possibly multiple times) without crossing any nonmatched edges. (An equivalent
promise is that the nonmatched cycles do not enclose any vertices of the graph, i.e, form faces of
the graph.)

This particular problem has not yet been shown to be NP-hard, but it follows from an existing
proof (another reduction from another known NP-hard problem):

Theorem 3.1. Planar Forced Edge Hamiltonicity is NP-complete.

Proof. This result follows from Plesńık’s proof [Ple79] of NP-hardness of Hamiltonicity in directed
graphs where every vertex either (1) has two incoming edges and one outgoing edge or (2) has one
incoming edge and two outgoing edges. Any edge from a Type-1 vertex to a Type-2 vertex is forced
to be in the Hamiltonian cycle. By inspecting Plesńık’s reduction, no two vertices of the same type
are adjacent (the two types form a bipartition). Thus the forced edges form a perfect matching

2A graph is max-degree-3 if every vertex has at most three incident edges. A graph is planar if it can be drawn
in the plane, with vertices as points and edges as curves (or straight lines), such that the edges intersect only at
common endpoints.

3A perfect matching in a graph is a set of edges (“matched edges”) such that every vertex is the endpoint of
exactly one matched edge.
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Figure 2: A graph and matching not satisfying the promise of Planar Forced Edge Hamiltonicity:
the middle square of unmatched edges forms a separator that prevents any cycle from visiting both
the diagonal and orthogonal matched edges.

in the graph. By further inspection, we can verify that the reduction always produces graphs that
satisfy the promise. (The promise is not true in general; see Figure 2 for a counterexample.)

Now we give a reduction from Planar Forced Edge Hamiltonicity to Lose-in-1 Checkers:

Theorem 3.2. Lose-in-1 Checkers is NP-hard.

Proof. Our goal is to convert an instance of Planar Forced Edge Hamiltonicity into an equivalent
instance of Lose-in-1 Checkers. For example, the instance in Figure 1 will convert into the checkers
board in Figure 3.

The overall structure of the reduction is to create two parity classes on the checkerboard, where
each class contains one piece of one player and all other pieces of the other player. If Black can
find a Hamiltonian cycle of concatenated jumps on its turn, then Red will be forced to win by
capturing all of the remaining black pieces in the second parity class; otherwise, some black pieces
will remain because Red cannot traverse the entire cycle.

To produce a checkers instance from a Planar Forced Edge Hamiltonicity instance, we begin
by embedding the 3-regular planar undirected graph in the planar grid. Theorem 1 of [Sto84]
establishes that a graph with n vertices can always be embedded in an n × n grid. We scale the
grid embedding by 27 and place red pieces at every second point along the edges. We modify the
vertical matched edge segments by moving the middle three pieces in each segment six columns
to the right, then adding three red pieces in the same parity class in the rows immediately above
the upper moved piece and below the lower moved piece. We call the resulting structures tabs (by
analogy with the tabs and pockets of jigsaw puzzles). In the figures, this grid embedding consists
of the red pieces on cyan squares.

The forced edge Hamiltonicity instance includes the promise that we can draw a cycle that
crosses all matched edges and no nonmatched edges. We construct such a cycle using the following
algorithm:

1. Take the subgraph of the dual graph4 given by the duals of the matched edges. By the
promise, this graph is connected.

2. Until this graph is a tree, choose an edge in a cycle and replace one endpoint of the chosen
edge with a new vertex.

4The dual graph has a (dual) vertex for each face, and a (dual) edge between two (dual) vertices corresponding
to faces that share an edge.
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Figure 3: The checkerboard produced by the reduction for the example graph and cycle in Figure 1.
The motive pieces are near the upper-left horizontal edge.

3. Double the tree to form a cycle.

Each matched edge has cycle-crossing points at which the cycle may cross. For the horizontal
edges, the cycle-crossing points are the outer two pieces of the three center pieces in the edge; for
the tabs, they are the middle piece of both horizontal sections of each tab. We lay out this cycle
in the checkerboard starting from an edge that is crossed twice consecutively (there is at least one
such edge, corresponding to a leaf in the doubled tree). At each such immediate recrossing, after
entering at a cycle-crossing point, the cycle steps into the face for a limited distance, then leaves
via the other cycle-crossing point (see Figure 4). At other crossings, the cycle walks the boundary
of the face starting with the adjacent edge nearest the cycle-crossing point, inset by 7 spaces from
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(a) Horizontal (b) Tab, from left (c) Tab, from right

Figure 4: Behavior of the cycle when immediately recrossing edges.

(a) Horizontal (b) Tab

Figure 5: Placing the black motive piece.

horizontal edges and 8 from vertical edges (being off-by-one is necessary for the parity to work
out). This inset ensures the cycle can enter and leave at immediate recrossings without interfering
with the boundary walk. The walk crosses subsequent edges using the first cycle-crossing point
encountered (and possibly resumes in the same direction after reentering via the other cycle-crossing
point on that edge). The cycle walks the outer face in the same way as any other face. We place
black pieces at every second point on the cycle, in the opposite parity class from the red empty
pieces (so they are adjacent, not coincident, at edges). In the figures, these are the black pieces on
orange squares.

We now place the motive pieces, one per player, which will be the pieces moving during their
turns. Only the motive pieces are positioned to make captures, so because captures must be made
if available, only the motive pieces will move during the next two plies. We place Black’s motive
piece between two red pieces in the cyan parity class along a forced edge, where one of the adjacent
red pieces is the point of a cycle crossing. The cycle crossing is moved one unit to now cross at the
black motive piece; we can always do this without interfering with the rest of the instance because
the crossings were placed at least three spaces apart in the previous step. (See Figure 5.) Red’s
motive piece is then placed between two black pieces in the orange parity class. Both motive pieces
are kings, allowing them to move in any direction while traversing the graph or cycle.
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If the input forced edge Hamiltonicity instance contains a Hamiltonian cycle including all the
forced edges, then Black can capture with the motive piece all red pieces along all forced edges in
the cyan parity class, with the motive piece returning to its initial position. Red is then forced to
capture the entire orange cycle, which contains all black pieces (including the black motive piece),
and win the game. Thus the lose-in-1 instance has an answer of yes.

If the input forced edge Hamiltonicity instance does not contain a Hamiltonian cycle including
all the forced edges, Black will not be able to capture any red pieces on at least one of the forced
edges in the cyan parity class. Then Red’s capture sequence will end because the red piece at a
cycle crossing of that forced edge will block its motive piece from continuing to capture, so Red
will not win the game with this move. Thus the lose-in-1 instance has an answer of no.

The second step is to show membership in NP. The goal here is to show that, when the answer
to the problem is yes, then there is a succinct certificate (essentially, a solution) that easily proves
that the answer is yes.

Theorem 3.3. Lose-in-1 Checkers is in NP.

Proof. The certificate is Black’s move (capture sequence) — whose length is less than the number
of pieces — that forces Red to win. We give an efficient (polynomial-time) algorithm to verify such
a certificate. First we execute the capture sequence to recover the board state at the beginning of
Red’s turn. Now we need to decide whether Red has the option to not win in one move, in which
case the certificate is invalid. If Red cannot capture, then this is the case: Red either cannot move
at all (and thus loses) or any move does not immediately win. Thus assume that Red can capture
(otherwise return invalid). For each red piece r that can capture, we will check whether moving
r can lead to Red “getting stuck”, leaving some black pieces uncaptured.

Construct the graph for solving mate-in-1 from [FGJ+78] as described in Section 1, with vertices
representing reachable positions for r by jumping and edges representing (eventually) jumpable
black pieces. For the certificate to be valid, there must be at least one winning move using r, so
the graph must include all black pieces as edges, and it must have an Eulerian path starting at r
(otherwise return invalid). Thus the graph has zero or two vertices of odd degree, and if there are
two, one of them must be r.

If all vertices of the graph have even degree, then check whether the graph minus the starting
vertex for r has any cycles. If it does have cycles, then Red can avoid that cycle and cover the rest
of the graph, and thereby get stuck at the start vertex. Conversely, if Red can get stuck, then there
must be a cycle in the remainder, because the graph is Eulerian. Therefore we can detect validity
in this case.

If the graph has two vertices r, s of odd degree, then connect them both to a new vertex r′, and
apply the algorithm for the previous case starting from r′. Cycles in this graph including r′ are
equivalent to paths in the old graph starting at r and ending at s. Therefore we can again detect
validity.

4 Always-Jumping Checkers is PSPACE-Complete

In this section, we prove the following computational decision problem PSPACE-complete:

Problem 4.1 (Always-Jumping Checkers). Given a checkers game configuration in which all moves
must capture a piece, does the first player have a winning strategy?

Theorem 4.1. Always-Jumping Checkers is PSPACE-complete.
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Again, the proof consists of two parts — PSPACE-hardness and membership in PSPACE. In
this case, however, membership in PSPACE is straightforward, because Always-Jumping Checkers
falls into the class of bounded 2-player games [HD09]: each move strictly decreases the number of
pieces, so the number of moves is bounded by the initial number of pieces. To prove PSPACE-
hardness, we reduce from a known PSPACE-hard problem called Bounded 2-Player Constraint
Logic (B2CL) [HD09]. For this proof, we assume familiarity with [HD09] or the corresponding
lectures of [Dem].

Proof. To reduce from B2CL, we construct variable, fanout, choice, and, and or gadgets in
always-jumping checkers that simulate the corresponding gadgets from B2CL. Refer to Figure 6.

Wire. A wire is simply a line of alternating red pieces and empty spaces. A black piece can
traverse the entire length of a wire during a single move. As every piece is a king, a wire can turn
at any empty square along its length.

Parity shift. During a single turn, a piece is confined to one of four parity classes (one of the
four squares in a 2 × 2 block of squares). In most of our gadgets, the parity of the incoming and
outgoing pieces differs. We handle this with a shift gadget, as shown in Figure 6a (which can
also be seen as removing one of the output wires from a choice gadget). Repeated applications
of the shift gadget (and its 90◦ rotation) can move a piece to any parity class of the board, so a
combination of wires, turns, and shifts can move a piece to an arbitrary dark square.

(a) shift (b) variable (c) fanout (d) choice (e) and (f) or

Figure 6: Gadgets in our reduction from Bounded 2-Player Constraint Logic [HD09] to Always-
Jumping Checkers. For example, black can get a piece to the top output of the or gadget only if
they can get a piece to one of the inputs, and black can get a piece to the top output of the and
gadget only if they can get a piece to both of the inputs. Gadgets (b)–(e) also form a reduction
from Bounded Nondeterministic Constraint Logic [HD09] to cooperative always-jumping checkers.

variable. When the game begins, players take turns choosing to either activate or deactivate the
variable gadgets, shown in Figure 6b. If Black moves first on a given variable, he must continue
capturing red pieces along the wire, corresponding to setting the variable to true. If Red moves
first, he can capture the black piece, corresponding to setting the variable to false. Once set, a
variable never changes value.

fanout, choice, and, or. These gadgets are all based on a similar construction. Triples of
red pieces prevent the black pieces from capturing, and pairs of black pieces prevent the red pieces
from capturing. When a black piece arrives via an input wire, it captures the middle piece of some
triple(s), allowing other black pieces to leave the gadget along the output wires. In the fanout
gadget, the arriving black piece breaks both triples, allowing a black piece to exit along each output
wire. choice also has two output wires, but only one black piece can leave, so Black must choose
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which wire to activate. In the and gadget, both black pieces must arrive to break their respective
triples, while in the or gadget, the arrival of a black piece along either wire enables a black piece
to leave. Even if both or inputs are activated, the output wire is consumed when the first black
piece leaves.

Board layout. Our reduction translates the given B2CL graph directly using the gadgets above,
adding turns and shifts as necessary for layout. Black is the first player to move in the resulting
checkers game.

In B2CL, the first player wins if they can flip a particular edge (specified as part of the instance),
which corresponds to activating an and output wire in the checkers game. That and output wire
leads to a long series of shift gadgets, giving Black a large number FB of free moves if Black can
activate the and output.

In B2CL, the Red player needs to be able to pass, so we also provide Red with a large number
FR of free moves using a collection of FR isolated gadgets consisting of a pair of red pieces adjacent
to a single black piece: . (Recall that the player to move loses if they cannot capture.) We
set FR to twice the number of gadgets not counting the long chain of shift gadgets, which is an
upper bound on the number of black moves if the formula does not get satisfied. We then set
FB = 2FR, so that Red runs out of moves if Black can activate the desired series of shift gadgets.
Therefore Black wins the checkers game exactly when the first player wins the B2CL instance, so
Always-Jumping Checkers is PSPACE-complete.

5 Cooperative Versions are NP-Complete

In cooperative lose-in-1 (win-in-2) checkers, players collaborate to force one of them to win in
two moves. The computational decision problem for this game asks whether the current player
has a move such that the other player can win on their next move, which is almost identical
to the competitive lose-in-1 decision problem. Indeed, the same reduction as in Section 3 shows
cooperative lose-in-1 (win-in-2) checkers is NP-complete.

In cooperative always-jumping checkers, players collaborate to remove all the pieces of one
color, and so the game becomes essentially a single-player puzzle. Because at least one piece is
still consumed on every turn, the game is bounded, so it is in NP. Furthermore, we can prove NP-
hardness by reducing from Bounded Nondeterministic Constraint Logic (Bounded NCL), which
is NP-complete [HD09]. It happens that the same fanout, choice, and, and or gadgets from
Section 4 can form this reduction, which proves that cooperative always-jumping checkers is NP-
complete.

6 Checkers Font

In Figure 7, we show a collection of cooperative always-jumping checkers puzzles whose solutions
trace letters of the alphabet and digits 0–9, as shown in Figure 8. Each puzzle is a plausible end
game of cooperative always-jumping checkers. In each puzzle, Black moves first and, in any solution
that eliminates all pieces of one color, the paths traced by the movement of the pieces combine to
create the letter or digit. In some puzzles, Black wins (e.g., ‘b’ and ‘w’), while in other games, Red
wins (e.g., ‘r’ and ‘y’).
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Figure 7: A puzzle font for checkers. Each letter and digit is represented by an 8 × 8 cooperative
always-jumping checkers puzzle, where the goal is to eliminate all pieces of one color. Black always
moves first, but does not always win. The movement of the pieces in a puzzle solution traces the
letter or digit, as revealed in Figure 8. See http://erikdemaine.org/fonts/checkers/ for an interactive
version.

11

http://erikdemaine.org/fonts/checkers/


Figure 8: Solved font: Paths traced by the solutions to the 8 × 8 cooperative always-jumping
checkers puzzles in Figure 7.

7 Open Problems

The main remaining open problem is to analyze the computational complexity of suicidal (misère)
checkers. A natural conjecture is that this game is EXPTIME-complete, like normal checkers.

Another natural open problem is to analyze the computational complexity of cooperative check-
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ers, where the players together try to eliminate all pieces of one color. We have shown that this
problem is NP-complete when limited to just two moves or when we add the always-jumping rule.

A final open problem is the computational complexity of mate-in-2 checkers: making a move
such that, no matter what move the opponent makes, you can win in a second move. Given
that mate-in-1 checkers is easy, while lose-in-1 is NP-complete, we might naturally conjecture that
mate-in-2 checkers is NP-complete, but our proofs do not immediately apply.
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[Ple79] J. Plesńik. The NP-completeness of the Hamiltonian cycle problem in planar diagraphs
with degree bound two. Information Processing Letters, 8(4):199–201, 1979.

[Rob84] J. M. Robson. N by N Checkers is EXPTIME complete. SIAM Journal on Computing,
13(2):252–267, May 1984.

[SBB+07] Jonathan Schaeffer, Neil Burch, Yngvi Björnsson, Akihiro Kishimoto, Martin Müller,
Robert Lake, Paul Lu, and Steve Sutphen. Checkers is solved. Science, 317(5844):1518–
1522, 2007.

[Sto84] James A. Storer. On minimal-node-cost planar embeddings. Networks, 14(2):181–212,
1984.

[Wik17] Wikipedia. Draughts, 2017. https://en.wikipedia.org/wiki/Draughts.

13

http://courses.csail.mit.edu/6.890/
http://www.fierz.ch/suicidecheckers.php
https://en.wikipedia.org/wiki/Draughts

	Introduction
	Checkers Rules and Variants
	Lose-in-1 Checkers is NP-Complete
	Always-Jumping Checkers is PSPACE-Complete
	Cooperative Versions are NP-Complete
	Checkers Font
	Open Problems

