1 Probabilistically Checkable Proofs (PCP)

The goal of a probabilistically checkable proof is to verify a proof by looking at only a small number of bits, and probabilistically decide whether to accept or reject. The two resources which PCPs rely on are randomness and queries. A Restricted $(r(n), q(n), a(n))$ PCP verifier is a probabilistic polynomial time verifier with oracle access to a proof π that

1. uses at most $r(n)$ random bits.
2. makes $q(n)$ queries to π.
3. expects answers of size $a(n)$.

Definition 1 A language L is in $\mathrm{PCP}_{s}[r(n), q(n), a(n)]$ if there exists a restricted $(r(n), q(n), a(n))-\mathrm{PCP}$ verifier V with soundness parameter s such that:

$$
\begin{array}{ll}
x \in L \Rightarrow \exists \pi \text { s.t. } & \operatorname{Pr}\left[V^{\pi}(x) \text { accepts }\right]=1 \\
x \notin L \Rightarrow \forall \pi, & \operatorname{Pr}\left[V^{\pi}(x) \text { accepts }\right]<s .
\end{array}
$$

Theorem 2 (PCP Theorem) There exists a global constant Q such that $\forall L \in$ NP there is a constant c such that $L \in \mathrm{PCP}_{1 / 2}[c \log n, Q, 2]$

The PCP Theorem was first proved by Arora, Safra, Arora, Lund, Motwani, Sudan, and Szegedy, then later by Dinur.

It is easy to see that $\mathrm{NP}=\cup_{c \in \mathbb{N}} \mathrm{PCP}_{0}\left[0, n^{c}, 2\right]$, since the proof of membership to a language in NP is polynomial in size, so can just query entire proof and then accept or reject. We also have NP $=\cup_{c \in \mathbb{N}} \mathrm{PCP}_{1 / 2}\left[c \log n, n^{c}, 2\right]$, to see the forward inclusion that $\mathrm{NP} \subseteq \cup_{c \in \mathbb{N}} \mathrm{PCP}_{1 / 2}\left[c \log n, n^{c}, 2\right]$ can simulate $\log n$ bits of randomness (just enumerate over all random strings, count the number of accepting and rejecting configurations, and then output decision).

2 MAX-k-SAT

Definition 3 The promise problem MAX-k-SAT is given by:
$\Pi_{Y e s}=\{\phi \mid \phi$ is a k-cnf formula and all clauses can be simulaneously satisfied $\}$
$\Pi_{N o}=\{\phi \mid \phi$ is a k-cnf formula and any assignment satisfies $<1-\epsilon$ fraction of the clauses $\}$

Corollary 4 There are constants $k, \epsilon>0$ such that $M A X-k-S A T$ is NP-hard to approximate within $1-\epsilon$.

Applying the PCP-theorem to SAT. There is a proof system π such that verifier can query this string in several locations, and if it says one all the time, then ϕ is satisfiable, and if it says zero at least $1 / 2$ the time, then ϕ is unsatisfiable. Given a formula ϕ as input, we'd like to output a MAX $-k-$ SAT instance that is in $\Pi_{Y e s}$ if ϕ is satisfiable and is in $\Pi_{N o}$ if the formula is unsatisfiable. Enumerate all random strings of length $r(n):\left(r_{1}, \ldots, r_{2^{r(n)}}\right)$. On random string r_{i}, the verifier queries some locations of π and computes some function f_{i} of them, and outputs 0 or 1 . The function f_{i} depends only on a constant number of variables Q (the number of queries to π).

For each i, take f_{i} and write it as a Q-cnf formula $\psi_{f_{i}} . f_{i}$ is a function of Q variables, so there are at most 2^{Q} clauses in $\psi_{f_{i}}$. Combining these formulae over all i into the expanded boolean formula $\psi=\psi_{f_{1}} \wedge \cdots \wedge \psi_{f_{2} r(n)}$, there are at most $2^{r(n)} \cdot 2^{Q}$ clauses in ψ. These clauses are in the variables of the proof. If ϕ is satisfialbe, then there is a proof π for which all of the f_{i} 's will accept, and hence each clause in ψ is satisfied. And if ϕ is not satisfiable then for all proofs π, at least $1 / 2$ of the f_{i} 's will reject. Hence for at least half of the f_{i}, there is at least one clause out of the 2^{Q} clauses in $\phi_{f_{i}}$ which is false. Hence $\forall \pi$, at least $\frac{1}{2} \cdot \frac{1}{2^{Q}}$ fraction of the clauses of ψ are unsatisfied. Thus we have an algorithm which given a formula ϕ as input outputs a MAX $-Q-$ SAT instance.

3 Generalized Graph Coloring (GGC)

A $G G C$ instance is a 4-tuple $\left(V, E, \Sigma,\left\{c_{e}\right\}_{e \in E}\right)$ where V is set of vertices, E is set of edges, Σ is set of colors, and $c_{e}: \Sigma \times \Sigma \rightarrow\{$ TRUE, FALSE $\}$ is a constraint on edge e. For example, in a 3 -coloring of a graph, the constraint c_{e} on each edge $e=\left(v_{i}, v_{j}\right)$ would just be $A\left(v_{i}\right) \neq A\left(v_{j}\right)$ where $A: V \rightarrow\{0,1,2\}$ is the color assignment to the vertices.

Let G be a GGC instance. G is satisfiable if $\exists A: V \rightarrow \Sigma$ such that $\forall e=\left(v_{i}, v_{j}\right) \in E, c_{e}\left(A\left(v_{i}\right), A\left(v_{j}\right)\right)=$ TRUE. The interesting parameter for these graphs is the unsatisfiability of G. Define

$$
\operatorname{UNSAT}(G):=\min _{A: V \rightarrow \Sigma} \frac{\# \text { of edges }\left(v_{i}, v_{j}\right) \text { s.t. } c_{e}\left(A\left(v_{i}\right), A\left(v_{j}\right)\right)=\text { FALSE }}{|E|}
$$

Suppose exists a polynomial transformation T that takes Boolean formulae to GGC (a) instances (where a is the number of colors) such that:

- $\phi \in \mathrm{SAT} \Rightarrow T(\phi)$ is satisfiable (i.e. $\operatorname{UNSAT}(T(\phi))=0)$
- $\phi \notin \operatorname{SAT} \Rightarrow \operatorname{UNSAT}(T(\phi))>\epsilon$

Then NP $\subseteq \cup_{c \in \mathbb{N}} \mathrm{PCP}_{1-\epsilon}(c \log n, 2, a)$. To see why this is true: the proof is the coloring A. The verifier picks a random edge $\left(v_{i}, v_{j}\right)$ and queries the 2 elements $A\left(v_{i}\right)$ and $A\left(v_{j}\right)$, then checks whether this assignment $\left(A\left(v_{i}\right), A\left(v_{j}\right)\right)$ satisfies the constraint $c_{\left(v_{i}, v_{j}\right)}$.

4 Dinur's Main Theorem

Theorem 5 There is a polynomial time transformation $T: G G C(16) \rightarrow G G C(16)$ and an $\alpha>0$ such that:

- If G is satisfiable, then $T(G)$ is satisfiable.
- If $\operatorname{UNSAT}(G)<\alpha$, then $\operatorname{UNSAT}(T(G))>2 \cdot \operatorname{UNSAT}(G)$.
- $\operatorname{Size}(T(G))=O(|G|)$.

Initially G may have $\operatorname{UNSAT}(G) \in 0,1 / n^{2}$ (i.e. there is a coloring A for which all constraints are satisfied, or for all colorings A there is at least one constraint out of the n^{2} constraints which is not satisfied-note that n^{2} is an upper bound on the number of constraints since number of edges is at most n^{2}). Apply T to G once we amplify this gap to $\operatorname{UNSAT}(T(G)) \in\left\{0,2 / n^{2}\right\}$. Apply T a second time to get $\operatorname{UNSAT}(T(T(G))) \in\left\{0,4 / n^{2}\right\}$, a third time to get $\operatorname{UNSAT}(T \circ T \circ T(G)) \in$ $\left\{0,8 / n^{2}\right\}, \ldots$, a logarithmic number of times to get $\operatorname{UNSAT}(T \circ \cdots \circ T(G)) \in$ $\{0, \epsilon\}$ for a constant ϵ.

Definition 6 A hypergraph is q-uniform if each hyperedge involves exactly q vertices.

Lemma 7 There exists a transformation
$T_{1}: G G C(c$ colors, $q-$ uniform $) \rightarrow G G C(2$ colors, $[\log c] \cdot q-$ uniform $)$
such that

$$
\operatorname{UNSAT}\left(T_{1}(G)\right)=\operatorname{UNSAT}(G)
$$

Proof For a vertex v_{i} of a hyperedge in G with $A\left(v_{i}\right) \in\{1,2, \ldots, c\}$, map it

Figure 1:
to x vertices $\left(v_{i_{1}}^{\prime}, \ldots, v_{i_{x}}^{\prime}\right)$ where $\left.x=x_{1} \ldots x_{\log A\left(v_{i}\right)}\right)$ is the binary representation the color $A\left(v_{i}\right)$ (hence x is at most $\log c$) and assign each vertex $v_{i_{j}}^{\prime}$ the color corresponding to its bit x_{j} in the binary representation of c. See Fig. 1. Hence a q-hyperedge which is c-colored maps to a hyperedge containing $o(\log c) \cdot q$ vertices which are 2-colored.

Lemma 8 There exists a transformation

$$
T_{2}: G G C(2 \text { colors, } q-\text { uniform }) \rightarrow G G C(2 \text { colors, } 3-\text { uniform })
$$

such that:

$$
\begin{gathered}
\operatorname{UNSAT}(G)=0 \Rightarrow \operatorname{UNSAT}\left(T_{2}(G)\right)=0 \\
\operatorname{UNSAT}\left(T_{2}(G)\right)>\frac{1}{2^{q+2}} \cdot \operatorname{UNSAT}(G)
\end{gathered}
$$

Lemma 9 There exists a transformation

$$
T_{3}: G G C(c \text { colors, } q-\text { uniform }) \rightarrow G G C\left(c^{q} \text { colors, } 2-\text { uniform }\right)
$$

such that:

$$
\begin{gathered}
U N S A T(G)=0 \Rightarrow U N S A T\left(T_{3}(G)\right)=0 \\
\operatorname{UNSAT}\left(T_{3}(G)\right)>\frac{1}{q} \operatorname{UNSAT}(G)
\end{gathered}
$$

Proof Given a c-coloring of a q-uniform hypergraph G, we create a graph $T_{3}(G)$ with vertices consisting of $V(G)$ and an additional vertex corresponding to each hyperedge of G. We join each hyperedge vertex e_{h} to the q vertices involved in the hyperedge $h=\left(v_{1}, \ldots, v_{q}\right)$. So the number of edges in $T_{3}(G)$ is $q \cdot|E|$, where $|E|$ is number of edges in G. See Fig. 2

Figure 2:
And we assign "vertex set" vertices one of colors, and hyperedge vertices e_{h} a q-tuple of colors where each position of the tuple can take on one of colors. Let $A^{\prime}: V \rightarrow[c] \times \cdots \times[c]=[c]^{q}$ be a c^{q} coloring of $T_{3}(G)$.

For an edge $\left(v_{i}, e_{h}\right)$ in $T_{3}(G)$ where $h=\left(v_{1}, \ldots, v_{i}, \ldots, v_{q}\right)$, define the edge constraint for $T_{3}(G)$ to be:

1. $A^{\prime}\left(v_{j}\right)$ is the color corresponding to the $j^{\text {th }}$ position of $A^{\prime}\left(e_{h}\right)$.
2. The q-tuple of colors assigned to e_{h} satisfy the hyperedge constraint for G (i.e. $c\left(A^{\prime}\left(e_{h}\right)\right)=$ TRUE).

The first constraint ensures that for an edge $\left(v_{j}, e_{h}\right)$ we have $A^{\prime}\left(e_{h}\right)$ of the form $\left(A\left(v_{1}\right), \ldots, A\left(v_{j}\right), \ldots, A\left(v_{q}\right)\right)$ where color assigned to the $j^{t h}$ position of $A^{\prime}\left(e_{h}\right)$ matches the color assigned to $v_{j} A\left(v_{j}\right)$.

Let

$$
\operatorname{UNSAT}(G)=\min _{A: V \rightarrow[c]} \frac{\# \text { of unsatisfied hyperedges in } G}{|E|}=\epsilon
$$

Suppose for contradiction that

$$
\operatorname{UNSAT}\left(T_{3}(G)\right)<\frac{\epsilon}{q}
$$

We have

$$
\operatorname{UNSAT}\left(T_{3}(G)\right)=\min _{A^{\prime}: V \rightarrow[c]^{q}} \frac{\# \text { of unsatisfied edges in } T_{3}(G)}{q \cdot|E|}<\frac{\epsilon}{q}
$$

Hence the \#unsatisfied edges in $T_{3}(G)<$ \#unsatisfied edges in G. If we apply the coloring of the "vertex set" vertices in $T_{3}(G)$ to the vertices of G, then each unsatisfied edge in $T_{3}(G)$ will yield at most one unsatisfied edge in G (namely if the second condition of $T_{3}(G)$ is violated then the hyperedge in G will not be properly colored). And all other hyperedges of G will be satisfied since satisfied edges $\left(v_{i}, e_{h}\right)$ in $T_{3}(G)$ correspond to satisfied hyperedge e_{h} in G. But this induces a c-coloring of G with

$$
\operatorname{UNSAT}(G) \leq \frac{\# \text { of unsatisfied edges in } T_{3}(G)}{|E|}<\epsilon
$$

contradictng the fact that $\operatorname{UNSAT}(G)=\epsilon$

