
6.841 Advanced Complexity Theory April 18, 2007

Lecture 18

Lecturer: Madhu Sudan Scribe: Nadia Benbernou

1 Probabilistically Checkable Proofs (PCP)

The goal of a probabilistically checkable proof is to verify a proof by looking
at only a small number of bits, and probabilistically decide whether to accept
or reject. The two resources which PCPs rely on are randomness and queries.
A Restricted (r(n), q(n), a(n)) PCP verifier is a probabilistic polynomial time
verifier with oracle access to a proof π that

1. uses at most r(n) random bits.

2. makes q(n) queries to π.

3. expects answers of size a(n).

Definition 1 A language L is in PCPs[r(n), q(n), a(n)] if there exists a re-

stricted (r(n), q(n), a(n))−PCP verifier V with soundness parameter s such that:

x ∈ L⇒ ∃π s.t. Pr[V π(x) accepts] = 1

x 6∈ L⇒ ∀π, Pr[V π(x) accepts] < s.

Theorem 2 (PCP Theorem) There exists a global constant Q such that ∀L ∈
NP there is a constant c such that L ∈ PCP1/2[c log n,Q, 2]

The PCP Theorem was first proved by Arora, Safra, Arora, Lund, Motwani,
Sudan, and Szegedy, then later by Dinur.

It is easy to see that NP = ∪c∈NPCP0[0, n
c, 2], since the proof of membership

to a language in NP is polynomial in size, so can just query entire proof and
then accept or reject. We also have NP = ∪c∈NPCP1/2[c logn, nc, 2], to see the
forward inclusion that NP ⊆ ∪c∈NPCP1/2[c logn, nc, 2] can simulate logn bits
of randomness (just enumerate over all random strings, count the number of
accepting and rejecting configurations, and then output decision).

2 MAX-k-SAT

Definition 3 The promise problem MAX-k-SAT is given by:

ΠYes = {φ |φ is a k-cnf formula and all clauses can be simulaneously satisfied}

ΠNo = {φ |φ is a k-cnf formula and any assignment satisfies < 1 − ε fraction of the clauses}

18-1

Corollary 4 There are constants k, ε > 0 such that MAX−k−SAT is NP-hard

to approximate within 1 − ε.

Applying the PCP-theorem to SAT. There is a proof system π such that
verifier can query this string in several locations, and if it says one all the
time, then φ is satisfiable, and if it says zero at least 1/2 the time, then φ is
unsatisfiable. Given a formula φ as input, we’d like to output a MAX − k −
SAT instance that is in ΠYes if φ is satisfiable and is in ΠNo if the formula is
unsatisfiable. Enumerate all random strings of length r(n): (r1, . . . , r2r(n)). On
random string ri, the verifier queries some locations of π and computes some
function fi of them, and outputs 0 or 1. The function fi depends only on a
constant number of variables Q (the number of queries to π).

For each i, take fi and write it as a Q-cnf formula ψfi
. fi is a function of

Q variables, so there are at most 2Q clauses in ψfi
. Combining these formulae

over all i into the expanded boolean formula ψ = ψf1
∧· · ·∧ψf

2r(n)
, there are at

most 2r(n) · 2Q clauses in ψ. These clauses are in the variables of the proof. If
φ is satisfialbe, then there is a proof π for which all of the fi’s will accept, and
hence each clause in ψ is satisfied. And if φ is not satisfiable then for all proofs
π, at least 1/2 of the fi’s will reject. Hence for at least half of the fi, there is at
least one clause out of the 2Q clauses in φfi

which is false. Hence ∀π, at least
1
2 · 1

2Q fraction of the clauses of ψ are unsatisfied. Thus we have an algorithm
which given a formula φ as input outputs a MAX −Q− SAT instance.

3 Generalized Graph Coloring (GGC)

A GGC instance is a 4-tuple (V,E,Σ, {ce}e∈E) where V is set of vertices, E is
set of edges, Σ is set of colors, and ce : Σ×Σ → {TRUE,FALSE} is a constraint
on edge e. For example, in a 3-coloring of a graph, the constraint ce on each
edge e = (vi, vj) would just be A(vi) 6= A(vj) where A : V → {0, 1, 2} is the
color assignment to the vertices.

Let G be a GGC instance. G is satisfiable if ∃A : V → Σ such that
∀e = (vi, vj) ∈ E, ce(A(vi), A(vj)) = TRUE. The interesting parameter for
these graphs is the unsatisfiability of G. Define

UNSAT(G) := minA:V →Σ
of edges (vi, vj) s.t. ce(A(vi), A(vj)) = FALSE

|E|
.

Suppose exists a polynomial transformation T that takes Boolean formulae to
GGC(a) instances (where a is the number of colors) such that:

• φ ∈ SAT ⇒ T (φ) is satisfiable (i.e. UNSAT(T (φ)) = 0)

• φ 6∈ SAT ⇒ UNSAT(T (φ)) > ε

Then NP ⊆ ∪c∈NPCP1−ε(c logn, 2, a). To see why this is true: the proof is the
coloring A. The verifier picks a random edge (vi, vj) and queries the 2 elements
A(vi) and A(vj), then checks whether this assignment (A(vi), A(vj)) satisfies
the constraint c(vi,vj).

18-2

4 Dinur’s Main Theorem

Theorem 5 There is a polynomial time transformation T : GGC(16) → GGC(16)
and an α > 0 such that:

• If G is satisfiable, then T (G) is satisfiable.

• If UNSAT(G) < α, then UNSAT(T (G)) > 2 · UNSAT(G).

• Size(T (G)) = O(|G|).

Initially G may have UNSAT(G) ∈ 0, 1/n2 (i.e. there is a coloring A for which
all constraints are satisfied, or for all colorings A there is at least one constraint
out of the n2 constraints which is not satisfied–note that n2 is an upper bound
on the number of constraints since number of edges is at most n2). Apply T to G
once we amplify this gap to UNSAT(T (G)) ∈ {0, 2/n2}. Apply T a second time
to get UNSAT(T (T (G))) ∈ {0, 4/n2}, a third time to get UNSAT(T ◦T ◦T (G)) ∈
{0, 8/n2}, ..., a logarithmic number of times to get UNSAT(T ◦ · · · ◦ T (G)) ∈
{0, ε} for a constant ε.

Definition 6 A hypergraph is q-uniform if each hyperedge involves exactly q
vertices.

Lemma 7 There exists a transformation

T1 : GGC(c colors, q − uniform) → GGC(2 colors, [log c] · q − uniform)

such that

UNSAT(T1(G)) = UNSAT(G).

Proof For a vertex vi of a hyperedge in G with A(vi) ∈ {1, 2, . . . , c}, map it

a

b

c

G T1(G)

Figure 1:

to x vertices (v′i1 , . . . , v
′

ix
)where x = x1 . . . xlog A(vi)) is the binary representation

the color A(vi) (hence x is at most log c) and assign each vertex v′ij
the color

corresponding to its bit xj in the binary representation of c. See Fig. 1. Hence
a q-hyperedge which is c-colored maps to a hyperedge containing o(log c) · q
vertices which are 2-colored.

18-3

Lemma 8 There exists a transformation

T2 : GGC(2 colors, q − uniform) → GGC(2 colors, 3 − uniform)

such that:

UNSAT(G) = 0 ⇒ UNSAT(T2(G)) = 0,

UNSAT(T2(G)) >
1

2q+2
· UNSAT(G).

Lemma 9 There exists a transformation

T3 : GGC(c colors, q − uniform) → GGC(cq colors, 2 − uniform)

such that:

UNSAT(G) = 0 ⇒ UNSAT(T3(G)) = 0,

UNSAT(T3(G)) >
1

q
UNSAT(G).

Proof Given a c-coloring of a q-uniform hypergraph G, we create a graph
T3(G) with vertices consisting of V (G) and an additional vertex corresponding
to each hyperedge of G. We join each hyperedge vertex eh to the q vertices
involved in the hyperedge h = (v1, . . . , vq). So the number of edges in T3(G) is
q · |E|, where |E| is number of edges in G. See Fig. 2

a

b

c

G

T3
de

a

b

c

d

e

eabc

eade

V
E

T3(G)

Figure 2:

And we assign “vertex set” vertices one of c colors, and hyperedge vertices
eh a q-tuple of colors where each position of the tuple can take on one of c colors.
Let A′ : V → [c] × · · · × [c] = [c]q be a cq coloring of T3(G).

For an edge (vi, eh) in T3(G) where h = (v1, . . . , vi, . . . , vq), define the edge
constraint for T3(G) to be:

1. A′(vj) is the color corresponding to the jth position of A′(eh).

2. The q-tuple of colors assigned to eh satisfy the hyperedge constraint for
G (i.e. c(A′(eh)) = TRUE).

18-4

The first constraint ensures that for an edge (vj , eh) we have A′(eh) of the form
(A(v1), . . . , A(vj), . . . , A(vq)) where color assigned to the jth position of A′(eh)
matches the color assigned to vj A(vj).

Let

UNSAT(G) = minA:V →[c]
#of unsatisfied hyperedges in G

|E|
= ε.

Suppose for contradiction that

UNSAT(T3(G)) <
ε

q
.

We have

UNSAT(T3(G)) = minA′:V →[c]q
#of unsatisfied edges in T3(G)

q · |E|
<
ε

q
.

Hence the #unsatisfied edges in T3(G) < #unsatisfied edges in G. If we apply
the coloring of the “vertex set” vertices in T3(G) to the vertices of G, then each
unsatisfied edge in T3(G) will yield at most one unsatisfied edge in G (namely
if the second condition of T3(G) is violated then the hyperedge in G will not be
properly colored). And all other hyperedges of G will be satisfied since satisfied
edges (vi, eh) in T3(G) correspond to satisfied hyperedge eh in G. But this
induces a c-coloring of G with

UNSAT(G) ≤
#of unsatisfied edges in T3(G)

|E|
< ε,

contradictng the fact that UNSAT(G) = ε

18-5

