6.841 Advanced Complexity Theory

April 18, 2007

Lecture 18

Lecturer: Madhu Sudan

Scribe: Nadia Benbernou

1 Probabilistically Checkable Proofs (PCP)

The goal of a probabilistically checkable proof is to verify a proof by looking at only a small number of bits, and probabilistically decide whether to accept or reject. The two resources which PCPs rely on are randomness and queries. A Restricted (r(n), q(n), a(n)) PCP verifier is a probabilistic polynomial time verifier with oracle access to a proof π that

- 1. uses at most r(n) random bits.
- 2. makes q(n) queries to π .
- 3. expects answers of size a(n).

Definition 1 A language L is in $PCP_s[r(n), q(n), a(n)]$ if there exists a restricted (r(n), q(n), a(n))-PCP verifier V with soundness parameter s such that:

 $\begin{aligned} x \in L \Rightarrow \exists \pi \ s.t. \ \Pr[V^{\pi}(x) \ accepts \] &= 1 \\ x \notin L \Rightarrow \forall \pi, \qquad \Pr[V^{\pi}(x) \ accepts \] < s. \end{aligned}$

Theorem 2 (PCP Theorem) There exists a global constant Q such that $\forall L \in NP$ there is a constant c such that $L \in PCP_{1/2}[c \log n, Q, 2]$

The PCP Theorem was first proved by Arora, Safra, Arora, Lund, Motwani, Sudan, and Szegedy, then later by Dinur.

It is easy to see that NP = $\bigcup_{c \in \mathbb{N}} PCP_0[0, n^c, 2]$, since the proof of membership to a language in NP is polynomial in size, so can just query entire proof and then accept or reject. We also have NP = $\bigcup_{c \in \mathbb{N}} PCP_{1/2}[c \log n, n^c, 2]$, to see the forward inclusion that NP $\subseteq \bigcup_{c \in \mathbb{N}} PCP_{1/2}[c \log n, n^c, 2]$ can simulate $\log n$ bits of randomness (just enumerate over all random strings, count the number of accepting and rejecting configurations, and then output decision).

2 MAX-k-SAT

Definition 3 The promise problem MAX-k-SAT is given by:

 $\Pi_{Yes} = \{ \phi \mid \phi \text{ is a } k\text{-}cnf \text{ formula and all clauses can be simulaneously satisfied} \}$ $\Pi_{No} = \{ \phi \mid \phi \text{ is a } k\text{-}cnf \text{ formula and any assignment satisfies} < 1 - \epsilon \text{ fraction of the clauses} \}$

Corollary 4 There are constants $k, \epsilon > 0$ such that MAX - k - SAT is NP-hard to approximate within $1 - \epsilon$.

Applying the PCP-theorem to SAT. There is a proof system π such that verifier can query this string in several locations, and if it says one all the time, then ϕ is satisfiable, and if it says zero at least 1/2 the time, then ϕ is unsatisfiable. Given a formula ϕ as input, we'd like to output a MAX – k – SAT instance that is in Π_{Yes} if ϕ is satisfiable and is in Π_{No} if the formula is unsatisfiable. Enumerate all random strings of length r(n): $(r_1, \ldots, r_{2^{r(n)}})$. On random string r_i , the verifier queries some locations of π and computes some function f_i of them, and outputs 0 or 1. The function f_i depends only on a constant number of variables Q (the number of queries to π).

For each *i*, take f_i and write it as a Q-cnf formula ψ_{f_i} . f_i is a function of Q variables, so there are at most 2^Q clauses in ψ_{f_i} . Combining these formulae over all *i* into the expanded boolean formula $\psi = \psi_{f_1} \wedge \cdots \wedge \psi_{f_{2^r(n)}}$, there are at most $2^{r(n)} \cdot 2^Q$ clauses in ψ . These clauses are in the variables of the proof. If ϕ is satisfiable, then there is a proof π for which all of the f_i 's will accept, and hence each clause in ψ is satisfied. And if ϕ is not satisfiable then for all proofs π , at least 1/2 of the f_i 's will reject. Hence for at least half of the f_i , there is at least one clause out of the 2^Q clauses in ϕ_{f_i} which is false. Hence $\forall \pi$, at least $\frac{1}{2} \cdot \frac{1}{2^Q}$ fraction of the clauses of ψ are unsatisfied. Thus we have an algorithm which given a formula ϕ as input outputs a MAX – Q – SAT instance.

3 Generalized Graph Coloring (GGC)

A GGC instance is a 4-tuple $(V, E, \Sigma, \{c_e\}_{e \in E})$ where V is set of vertices, E is set of edges, Σ is set of colors, and $c_e : \Sigma \times \Sigma \to \{\text{TRUE}, \text{FALSE}\}$ is a constraint on edge e. For example, in a 3-coloring of a graph, the constraint c_e on each edge $e = (v_i, v_j)$ would just be $A(v_i) \neq A(v_j)$ where $A : V \to \{0, 1, 2\}$ is the color assignment to the vertices.

Let G be a GGC instance. G is satisfiable if $\exists A : V \to \Sigma$ such that $\forall e = (v_i, v_j) \in E, c_e(A(v_i), A(v_j)) = \text{TRUE}$. The interesting parameter for these graphs is the unsatisfiability of G. Define

$$\text{UNSAT}(G) := \min_{A:V \to \Sigma} \frac{\# \text{ of edges } (v_i, v_j) \text{ s.t. } c_e(A(v_i), A(v_j)) = \text{FALSE}}{|E|}$$

Suppose exists a polynomial transformation T that takes Boolean formulae to GGC(a) instances (where a is the number of colors) such that:

- $\phi \in \text{SAT} \Rightarrow T(\phi)$ is satisfiable (i.e. $\text{UNSAT}(T(\phi)) = 0$)
- $\phi \notin \text{SAT} \Rightarrow \text{UNSAT}(T(\phi)) > \epsilon$

Then NP $\subseteq \bigcup_{c \in \mathbb{N}} PCP_{1-\epsilon}(c \log n, 2, a)$. To see why this is true: the proof is the coloring A. The verifier picks a random edge (v_i, v_j) and queries the 2 elements $A(v_i)$ and $A(v_j)$, then checks whether this assignment $(A(v_i), A(v_j))$ satisfies the constraint $c_{(v_i, v_j)}$.

4 Dinur's Main Theorem

Theorem 5 There is a polynomial time transformation $T : GGC(16) \rightarrow GGC(16)$ and an $\alpha > 0$ such that:

- If G is satisfiable, then T(G) is satisfiable.
- If $UNSAT(G) < \alpha$, then $UNSAT(T(G)) > 2 \cdot UNSAT(G)$.
- Size(T(G)) = O(|G|).

Initially G may have $\text{UNSAT}(G) \in 0, 1/n^2$ (i.e. there is a coloring A for which all constraints are satisfied, or for all colorings A there is at least one constraint out of the n^2 constraints which is not satisfied-note that n^2 is an upper bound on the number of constraints since number of edges is at most n^2). Apply T to G once we amplify this gap to $\text{UNSAT}(T(G)) \in \{0, 2/n^2\}$. Apply T a second time to get $\text{UNSAT}(T(T(G))) \in \{0, 4/n^2\}$, a third time to get $\text{UNSAT}(T \circ T \circ T(G)) \in \{0, 8/n^2\}$, ..., a logarithmic number of times to get $\text{UNSAT}(T \circ \cdots \circ T(G)) \in \{0, \epsilon\}$ for a constant ϵ .

Definition 6 A hypergraph is q-uniform if each hyperedge involves exactly q vertices.

Lemma 7 There exists a transformation

 $T_1: GGC(c \ colors, q - uniform) \rightarrow GGC(2 \ colors, \lceil log c \rceil \cdot q - uniform)$

such that

$$UNSAT(T_1(G)) = UNSAT(G).$$

Proof For a vertex v_i of a hyperedge in G with $A(v_i) \in \{1, 2, ..., c\}$, map it

Figure 1:

to x vertices $(v'_{i_1}, \ldots, v'_{i_x})$ where $x = x_1 \ldots x_{\log A(v_i)})$ is the binary representation the color $A(v_i)$ (hence x is at most $\log c$) and assign each vertex v'_{i_j} the color corresponding to its bit x_j in the binary representation of c. See Fig. 1. Hence a q-hyperedge which is c-colored maps to a hyperedge containing $o(\log c) \cdot q$ vertices which are 2-colored. Lemma 8 There exists a transformation

$$T_2: GGC(2 \ colors, q - uniform) \rightarrow GGC(2 \ colors, 3 - uniform)$$

such that:

$$UNSAT(G) = 0 \Rightarrow UNSAT(T_2(G)) = 0,$$
$$UNSAT(T_2(G)) > \frac{1}{2^{q+2}} \cdot UNSAT(G).$$

Lemma 9 There exists a transformation

$$T_3: GGC(c \ colors, q - uniform) \rightarrow GGC(c^q \ colors, 2 - uniform)$$

such that:

$$UNSAT(G) = 0 \Rightarrow UNSAT(T_3(G)) = 0$$
$$UNSAT(T_3(G)) > \frac{1}{a}UNSAT(G).$$

Proof Given a *c*-coloring of a *q*-uniform hypergraph *G*, we create a graph $T_3(G)$ with vertices consisting of V(G) and an additional vertex corresponding to each hyperedge of *G*. We join each hyperedge vertex e_h to the *q* vertices involved in the hyperedge $h = (v_1, \ldots, v_q)$. So the number of edges in $T_3(G)$ is $q \cdot |E|$, where |E| is number of edges in *G*. See Fig. 2

Figure 2:

And we assign "vertex set" vertices one of c colors, and hyperedge vertices e_h a q-tuple of colors where each position of the tuple can take on one of c colors. Let $A': V \to [c] \times \cdots \times [c] = [c]^q$ be a c^q coloring of $T_3(G)$.

For an edge (v_i, e_h) in $T_3(G)$ where $h = (v_1, \ldots, v_i, \ldots, v_q)$, define the edge constraint for $T_3(G)$ to be:

- 1. $A'(v_j)$ is the color corresponding to the j^{th} position of $A'(e_h)$.
- 2. The q-tuple of colors assigned to e_h satisfy the hyperedge constraint for G (i.e. $c(A'(e_h)) = \text{TRUE}$).

The first constraint ensures that for an edge (v_j, e_h) we have $A'(e_h)$ of the form $(A(v_1), \ldots, A(v_j), \ldots, A(v_q))$ where color assigned to the j^{th} position of $A'(e_h)$ matches the color assigned to $v_j A(v_j)$.

Let

$$\text{UNSAT}(G) = \min_{A:V \to [c]} \frac{\text{\#of unsatisfied hyperedges in } G}{|E|} = \epsilon.$$

Suppose for contradiction that

$$\operatorname{UNSAT}(T_3(G)) < \frac{\epsilon}{q}.$$

We have

$$\text{UNSAT}(T_3(G)) = \min_{A': V \to [c]^q} \frac{\#\text{of unsatisfied edges in } T_3(G)}{q \cdot |E|} < \frac{\epsilon}{q}.$$

Hence the #unsatisfied edges in $T_3(G) <$ #unsatisfied edges in G. If we apply the coloring of the "vertex set" vertices in $T_3(G)$ to the vertices of G, then each unsatisfied edge in $T_3(G)$ will yield at most one unsatisfied edge in G (namely if the second condition of $T_3(G)$ is violated then the hyperedge in G will not be properly colored). And all other hyperedges of G will be satisfied since satisfied edges (v_i, e_h) in $T_3(G)$ correspond to satisfied hyperedge e_h in G. But this induces a c-coloring of G with

$$\text{UNSAT}(G) \le \frac{\#\text{of unsatisfied edges in } T_3(G)}{|E|} < \epsilon,$$

contradicting the fact that $\text{UNSAT}(G) = \epsilon \blacksquare$