
6.841 Advanced Complexity Theory Apr 2, 2007

Lecture 14
Lecturer: Madhu Sudan Scribe: Nate Ince, Krzysztof Onak

1 Introduction

The idea behind interactive proofs came from cryptography. Transferring coded
massages usually involves a password known only to the sender and receiver,
and a message. When you send an encrypted message, you have to show you
know the password to show that your message is official. However, if we do this
by sending the password with the message, there’s a high chance the password
could be eavesdropped. So we would like a method to let you show you know
the password without sending it. Goldwasser, Mikoli, and Rakoff were inspired
by this to create the idea of the interactive proof.

2 The IP protocol

Let L be some language. We say that L ∈ IP as a protocol between an
exponential-time prover P and a polynomial time randomized verifier V so
if x ∈ L, then the probabillity that after a completed exchange Π between
P and V, Pr[V (x,Π) = 1] ≥ 1 − 1/2|x| and if x /∈ L, then the probability
that after a completed exchange Π′ between Q and V, where Q is any expon-
tential algorithm, Pr[V (x,Π′) = 1] ≤ 1/2|x|. We formally define an exchange
between P and V as a series of questions and answers q1, a1, a2, q2 . . . , qn, an

so that |qi|, |ai|, n ∈ poly(|x|), q1 = V (x), ai = P (x; q1, a1, . . . , qi), and qi =
V (x, ; q1, a1, . . . , ai−1; ri−1) for all i ≤ n, where ri is a random string V uses at
the ith exchange to determine all “random” decisions V makes. Note that only
V knows ri.

It is clear that NP and BPP are contained in IP. NP is just IP without
random decisions. We will prove that, in fact, IP = PSPACE

3 Graph Non-Isomorphism

We have previous seen the graph isomorphism problem (GI) to be quite difficult.
However, we will now show GNI ∈ IP . We briefly define:

Definition 1 Two graphs G1 and G2 with vertices numbered from 1 to n are
equivalent (G1 ' G1) if there is a permutation Π so that if ij is an edge in G1

then Π(i)Π(j) is an edge in G2

14-1

If two graphs are isomorphic, the permutation is all that is necessary for
verifiction. More is necessary

We now demonstrate GI ∈ IP by the following protocol:

1. V picks some permutation Π at random and chooses i ∈ {1, 2}. V sends
H = Π(Gi).

2. If G1 6' G2, P can search in exponential time for which graph H was before
permutation (Or guess). Otherwise, it has a 1/2 chance of guessing. V
sends its answer, j, to P.

3. P accepts if i = j, otherwise it goes back to step one until there have been
a suitable number of rounds. Probabillity of an error goes down in the
number of rounds.

4 The Arthur-Merlin Protocols

In a similar manner Bobai and Moran defined a type of proof known as an
Arthur-Merlin protocol. This protocol is similar to IP. Arthur functions like the
Verifier V, except that he must announce ri to Merlin. Merlin is computationally
the same as P (Including the possibillity of dishonesty for x /∈ L. AM[k] is the
class after an exchange Π between Arthur and Merlin in k queries by Arthur
and responses by Merlin, then if x ∈ L then Arthur accepts with probabillity
at least 2/3, and if x /∈ L, then Arthur accepts with probabillity at most 1/3.
Similarly, MA consists of a one question by Merlin and an answer from Arthur,
and qualification for acceptance remains the same.

5 Known inclusions between the classes

5.1 Brief overview

• NP ⊆ MA

This inclusion holds because Merlin can simply send Arthur a proof that
x belongs to the language. Is it possible that NP = MA? One can show
that BPP ⊆ MA, so this would imply that BPP ⊆ NP, a result that we
do not know how to prove.

• MA ⊆ AM

We can let Arthur act first.

• AM = AMAMAM

Any constant number of communication rounds between Arthur and Mer-
lin can be replaced by a single round.

14-2

• AM ⊆ IP

We can trivially replace a constant number of communication rounds by
a polynomial number of them, and public randomness by private random-
ness.

• IP = PSPACE, AM ⊆ Σp
2

[Lund-Fortnow-Karloff-Nisan], [Shamir]

5.2 The containment of IP in PSPACE

It turns out that the actions of the optimal prover can be computed in PSPACE.
Given a verifier V we wish to find out what is the maximum probability that V
accepts a word x. More formally, we are interested in the value of

max
P

Pr[P ↔ V (x)],

which, as we will shortly see, can be computed in polynomial space.
We consider the tree of all possible interactions between the prover and the

verifier. The internal nodes represent the turns of either the verifier or the
prover, and the edges outgoing from nodes to their children correspond to all
possible messages sent to the other party. In each leaf of the tree, we consider all
the sequences of coin tosses of the verifier that are consistent with the messages
on the path from the root to this leaf. We compute the conditional probability
that x was accepted given this sequence of messages.

We can compute the desired quantity recursively by DFS. At each node
representing the prover’s round, we choose the message that maximizes the
probability of x being accepted (this is how the optimal prover would respond),
that is, we take the maximum of the probabilities at the children.

At each node representing a turn of the verifier, we compute a weighted aver-
age of the probabilities at children. The average is weighted by the probabilities
of choosing each message by the verifier.

The desired quantity can be computed recursively without constructing the
interaction tree explicitly, and by the definition of IP, it suffices to know it to
be able to tell if x is in the language or not.

5.3 One-sided error public = two-sided error private

Now we will show that every protocol with private coin tosses and two-sided
error can be replaced by a protocol with public coin tosses and one-sided error,
for interactive proof systems with polynomially many rounds. The proof that
we present is due to Kilian.

Let V be a prover with two-sided error and private coin tosses. We are
interested in the number of accepting paths of V on x with an optimal prover.
If we knew it, we would be able to tell if x is in the language or not.

We will construct a verifier V ′, and we will show how to bound the correct
number of accepting paths for x. Consider the tree of interaction of V with an

14-3

optimal prover. Each edge corresponds to a message sent by the verifier and a
reply sent by the optimal prover. We assume that V ′ can ask what is the optimal
answer to a query of V , and moreover, for each sequence of messages exchanged
by V and the optimal prover, we can ask what is the number of the accepting
computations in the subtree corresponding to this sequence of messages.

For simplicity suppose that V always sends a single bit. This implies that
each internal node in the interaction tree has two children. V ′ will descend down
the interaction tree, asking at each node about the number N of accepting paths
in the subtree rooted at that node, and about the same numbers, N0 and N1, for
the children of that node. Verifier V ′ always makes sure that N = N0 +N1, and
with probability Ni/N follows the path corresponding to the situation when V
answers i. If eventually it reaches a leaf corresponding to an accepting situation
it accepts, and otherwise it rejects.

Let N be the actual number of accepting paths, and let N ′ be the number
of accepting paths according to a prover. If the prover tries to overestimate
the number of accepting paths (N ′ > N), we can detect this with probability
at least 1 − N/N ′. This can easily be proven by induction. Suppose that in
the subtrees of the node the actual numbers of accepting paths are N0 and N1,
and the claimed numbers of accepting paths are N ′

0 and N ′
1. We assume that

N ′ = N ′
0 + N ′

1, otherwise we detect that the prover is cheating instantly. The
probability of detection of cheating is(

1− N0

N ′
0

)
· N ′

0

N ′ +
(

1− N1

N ′
1

)
· N ′

1

N ′ = 1− N

N ′ .

Therefore, in our new proof system a prover cannot significantly overestimate
the number of accepting paths.

6 Next lecture

It turns out that one can convert a two-sided error private-randomness veri-
fier into a one-sided error public-randomness verifier preserving the number of
rounds of interaction ([Goldwasser-Sipser], [Goldreich-Mansour-Sipser]). As a
component of this result we will show the Goldwasser-Sipser protocol for Ap-
proximate Counting.

14-4

