
6.841 Advanced Complexity Theory March 19, 2007

Lecture 12

Lecturer: Madhu Sudan Scribe: Suho Oh, Jose Soto

1 Overview

• Randomized Reductions. Valiant-Vazirani: SAT ≤RP Unique-SAT .

• Toda’s Theorem: PH ⊆ P#P .

2 The Theorem of Valiant-Vazirani.

To state this theorem we will need some definitions first:

Definition 1 (Unique-SAT promise problem) .

Unique-SAT = (UY ES , UNO).

UY ES = {ϕ |ϕ has 1 satisfying assignment}.

UNO = {ϕ |ϕ has 0 satisfying assignment}.

Definition 2 (Randomized Reductions) Given two promise problems Π = (ΠY ES ,ΠNO) and Γ =
(ΓY ES ,ΓNO). We say that Π reduces to Γ under a BP randomized reduction “Π ≤BP Γ” if there exists a

probabilistic polynomial time algorithm A, a polynomial p(n) and a polynomial time computable function

s(n) such that:

x ∈ ΠY ES =⇒ A(x) ∈ ΓY ES w.p. ≥ s(n) +
1

p(n)
.

x ∈ ΠNO =⇒ A(x) 6∈ ΓNO w.p. ≤ s(n).

[⇐⇒ A(x) ∈ ΓNO w.p. ≥ 1 − s(n)].

When s(n) = 0 we say that it is a RP randomized reduction and we denote it by “Π ≤RP Γ”.

Using the previous definition we can state the theorem as follows:

Theorem 1 (Valiant-Vazirani)

SAT ≤RP Unique-SAT.

To find an RP reduction a natural idea is to map an instance ϕ(x) of SAT into a new formula
ψ(x) = ϕ(x) ∧ f(x), where f(x) is a sufficiently “nice” formula. In that way if ϕ(x) ∈ SATNO then we
would know that ψ(x) has no satisfying assignment, and so ψ(x) ∈ UNO. The problem is to determine
a nice f(x) such that if ϕ ∈ SATY ES , then ψ(x) has exactly one satisfying assignment with enough
probability.

How can we find such a formula?
One idea is to pick some m ≤ n, and some h : {0, 1}n → {0, 1}m “at random”, and output the

formula ψ(x) = ϕ(x) ∧ [h(x) = 0] so that if ϕ ∈ SATY ES then hopefully ψ ∈ UY ES .
Let us formalize the idea a little bit:
Define for a fixed ϕ, the set S of satifying assignment of ϕ, S = {x |ϕ(x) = 1}. Clearly there

exist an m ∈ {2, . . . , n + 1} such that 2m−2 ≤ |S| ≤ 2m−1. Using that m we can pick a function
h : {0, 1}n → {0, 1}m and use it to output ψ.

How can we find the right m? We just guess it, since we are picking it at random from the set
{2, . . . , n+ 1}, we are right with probability 1/n.

12-1

How can we pick h? We can not pick it at random since h would not be efficiently computable. What
do we mean/want?

We need a set H ⊆ {h : {0, 1}n → {0, 1}m} such that:

1. H is not too big. Precisely we need |H| ≤ 2poly(n) so that we are able to pick an element from it
using with only poly(n) random bits.

2. Every h ∈ H should be computable in polynomial time (i.e. it should have a small formula)

3. A typical h ∈ H should be sufficiently random. More precisely, for any set S ⊆ {0, 1}n with
2m−2 ≤ |S| ≤ 2m−1,

Pr[∃!x ∈ S s.t. h(x) = 0] ≥ Ω(1).

How can we get such family? We can use a “Pairwise Independent hash family”.

Definition 3 (Pairwise independent) H ⊆ {h : {0, 1}n → {0, 1}m} is a pairwise independent family

if ∀x 6= y ∈ {0, 1}n,∀α, β ∈ {0, 1}m,

Pr
h∈H

[h(x) = α, h(y) = β] =
1

4m
.

Lemma 1 There exists a pairwise independent hash family H such that it is easy to sample and ∀h ∈ H,

formula-size(h) is poly(n).

Proof Define
H = {hA,b(x) = Ax+ b (mod 2) |A ∈ {0, 1}m×n, b ∈ {0, 1}m}.

It is clear that hA,b has small formula size and for any x 6= y, α, β:

Pr
A,b

[Ax+ b = α,Ay + b = β] =
1

4m
.

Lemma 2 ∀S ⊆ {0, 1}n, 2m−2 ≤ |S| ≤ 2m−1,

Pr
h∈H

[∃!x ∈ S, h(x) = 0] ≥
1

8
.

Proof Fix x ∈ S, then:

Pr
h∈H

[h(x) = 0] =
1

2m
.

Fix x 6= y ∈ S, then:

Pr
h∈H

[h(x) = 0 ∧ h(y) = 0] =
1

4m
.

Then:

Pr
h∈H

[h(x) = 0 ∧ ∀y ∈ S \ {x}, (h(y) 6= 0)] ≥ Pr
h∈H

[h(x) = 0] −
∑

y∈S\{x}

Pr
h∈H

[h(x) = 0 = h(y)]

≥
1

2m
−

|S|

4m
≥

1

2m+1
,

where the last inequality holds since |S| ≤ 2m−1.
Hence,

Pr
h∈H

[∃x ∈ S s.t. h(x) = 0 ∧ ∀y ∈ S \ {x}, (h(y) 6= 0)] =
∑

x∈S

Pr
h∈H

[h(x) = 0 ∧ ∀y ∈ S \ {x}, (h(y) 6= 0)]

≥
|S|

2m−1
≥

1

8
,

12-2

where the first equality holds by independence of the events inside the probability, and the last equality
holds since |S| ≥ 2m−2.

Using both lemmas we can prove Valiant-Vazirani’s theorem. Given an instance ϕ for SAT , the
polynomial time algorithm A does the following:

1. It picks at random m ∈ {2, . . . , n+ 1}.

2. It picks at random a hash function from the hash family H given by Lemma 1.

3. It outputs the formula ψ(x) = ϕ(x) ∧ [h(x) = 0].

If ϕ(x) ∈ SATY ES , then with probability 1/n, A picks the right m. Using Lemma 2 for S the set of
satisfying assignments of ϕ, we know that A picks a hash function from H, such that h(x) = 0 for an
unique x ∈ S. It follows that with probability 1/(8n) the algorithm outputs a formula with only one
satisfying assignment, i.e. a formula in UY ES .

On the other hand, if ϕ(x) ∈ SATNO, then A will output ψ(x) that has no satisfying assignment.
Hence A is an RP reduction from SAT to Unique-SAT .

2.1 Consequences

Corollary 1 SAT ≤RP

⊕

SAT .

Where
⊕

SAT := {φ | Number of satisfying assignments of φ is even }

Proof
We reduce Unique-SAT to

⊕

SAT as following. For given ψ(x) ∈ Unique-SAT ,

ψ
′

(bx) :=

1, b = 0, x = 0
1, b = 1, ψ(x) = 1
0, o.w.

Combining with SAT ≤RP Unique-SAT , the corollary follows!

Now we can use this reduction k times to get,

ψ −→ ψ1(x1)

−→ ψ2(x2)

−→ ψ3(x3)

· · ·

−→ ψk(xk)

Set ψ̂ as,

ψ̂(x1, · · ·, xk) =

k
∧

i=1

ψi(xi)

Then, # of satisfying assignments of ψ̂ =
∏

(#of satisfying assignments of ψi)

So if the # of satisfying assignments for some ψi is even, then # of satisfying assignments for ψ̂ is even
too! From this we get :

SAT ≤StrongBP

⊕

SAT

3 Toda’s Theorem

Theorem 2 (Toda) PH ⊆ P#P

12-3

3.1 Operators

For a complexity class C, define the following operators:

Parity Operator :

•
⊕

C := {
⊕

L|L ∈ C}

•
⊕

L := {x|# of y’s satisfying (x, y) ∈ L is even }

BP Operator :

• BP · C := {BP · L|L ∈ C}

• BP · L := {x| Pry[(x, y) ∈ L] ≥ 1 − 2−q(n)}

• i.e., if x 6∈ BP · L, Pry[(x, y) ∈ L] ≤ 2−q(n)

∃ Operator :

• ∃C := {∃L|L ∈ C}

• ∃L := {x|∃y such that (x, y) ∈ L}.

3.2 Properties

Proofs will be shown on Wednesday.

1.
⊕

·P · C ≤ BP ·
⊕

C.

2.
⊕

·
⊕

·C ≤
⊕

C.

3. BP ·BP · C ≤ BP · C.

3.3 Main Ideas

SAT ≤StrongBP

⊕

SAT implies:

• NP ⊆ BP ·
⊕

·P .

• Co-NP ⊆ BP ·
⊕

·P , because BP ·
⊕

·P is closed under complement.

ΣP
2 ⊆ ∃ · ∀ · P ⊆ BP ·

⊕

·BP ·
⊕

·P

⊆ BP ·BP ·
⊕

·
⊕

·P (Using properties above)

⊆ BP ·
⊕

·P.

By induction, we can get

ΣP
k ⊆ BP ·

⊕

·P.

which implies PH ⊆ BP ·
⊕

·P .

4 To show Next time

• BP ·
⊕

·P ⊆ P#P .

• L := {(M,x, a, b)|# {y|M(x, y) accepts } ≤ a(mod b) } ∈ P#P .

• ΣP
k ⊆ ∃ ·BP ·

⊕

·P .

12-4

