1 Overview

- Randomized Reductions. Valiant-Vazirani: $S A T \leq_{R P} U n i q u e-S A T$.
- Toda's Theorem: $P H \subseteq P^{\# P}$.

2 The Theorem of Valiant-Vazirani.

To state this theorem we will need some definitions first:
Definition 1 (Unique-SAT promise problem).

$$
\begin{aligned}
\text { Unique }-S A T & =\left(U_{Y E S}, U_{N O}\right) . \\
U_{Y E S} & =\{\varphi \mid \varphi \text { has } 1 \text { satisfying assignment }\} . \\
U_{N O} & =\{\varphi \mid \varphi \text { has } 0 \text { satisfying assignment }\} .
\end{aligned}
$$

Definition 2 (Randomized Reductions) Given two promise problems $\Pi=\left(\Pi_{Y E S}, \Pi_{N O}\right)$ and $\Gamma=$ $\left(\Gamma_{Y E S}, \Gamma_{N O}\right)$. We say that Π reduces to Γ under a BP randomized reduction " $\Pi \leq_{B P} \Gamma$ " if there exists a probabilistic polynomial time algorithm A, a polynomial $p(n)$ and a polynomial time computable function $s(n)$ such that:

$$
\begin{array}{rll}
x \in \Pi_{Y E S} \Longrightarrow & A(x) \in \Gamma_{Y E S} & \text { w.p. } \geq s(n)+\frac{1}{p(n)} . \\
x \in \Pi_{N O} \Longrightarrow \quad A(x) \notin \Gamma_{N O} & \text { w.p. } \leq s(n) . \\
& {\left[\Longleftrightarrow A(x) \in \Gamma_{N O}\right.} & \text { w.p. } \geq 1-s(n)] .
\end{array}
$$

When $s(n)=0$ we say that it is a RP randomized reduction and we denote it by " $\Pi \leq_{R P} \Gamma$ ".
Using the previous definition we can state the theorem as follows:
Theorem 1 (Valiant-Vazirani)

$$
S A T \leq_{R P} \text { Unique-SAT }
$$

To find an $R P$ reduction a natural idea is to map an instance $\varphi(x)$ of $S A T$ into a new formula $\psi(x)=\varphi(x) \wedge f(x)$, where $f(x)$ is a sufficiently "nice" formula. In that way if $\varphi(x) \in S A T_{N O}$ then we would know that $\psi(x)$ has no satisfying assignment, and so $\psi(x) \in U_{N O}$. The problem is to determine a nice $f(x)$ such that if $\varphi \in S A T_{Y E S}$, then $\psi(x)$ has exactly one satisfying assignment with enough probability.

How can we find such a formula?
One idea is to pick some $m \leq n$, and some $h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ "at random", and output the formula $\psi(x)=\varphi(x) \wedge[h(x)=\overline{0}]$ so that if $\varphi \in S A T_{Y E S}$ then hopefully $\psi \in U_{Y E S}$.

Let us formalize the idea a little bit:
Define for a fixed φ, the set S of satifying assignment of $\varphi, S=\{x \mid \varphi(x)=1\}$. Clearly there exist an $m \in\{2, \ldots, n+1\}$ such that $2^{m-2} \leq|S| \leq 2^{m-1}$. Using that m we can pick a function $h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ and use it to output ψ.

How can we find the right m ? We just guess it, since we are picking it at random from the set $\{2, \ldots, n+1\}$, we are right with probability $1 / n$.

How can we pick h ? We can not pick it at random since h would not be efficiently computable. What do we mean/want?

We need a set $\mathcal{H} \subseteq\left\{h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}\right\}$ such that:

1. \mathcal{H} is not too big. Precisely we need $|\mathcal{H}| \leq 2^{\text {poly(n) }}$ so that we are able to pick an element from it using with only $\operatorname{poly}(n)$ random bits.
2. Every $h \in \mathcal{H}$ should be computable in polynomial time (i.e. it should have a small formula)
3. A typical $h \in \mathcal{H}$ should be sufficiently random. More precisely, for any set $S \subseteq\{0,1\}^{n}$ with $2^{m-2} \leq|S| \leq 2^{m-1}$,

$$
\operatorname{Pr}[\exists!x \in S \text { s.t. } h(x)=\overline{0}] \geq \Omega(1)
$$

How can we get such family? We can use a "Pairwise Independent hash family".
Definition 3 (Pairwise independent) $\mathcal{H} \subseteq\left\{h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}\right\}$ is a pairwise independent family if $\forall x \neq y \in\{0,1\}^{n}, \forall \alpha, \beta \in\{0,1\}^{m}$,

$$
\operatorname{Pr}_{h \in \mathcal{H}}[h(x)=\alpha, h(y)=\beta]=\frac{1}{4^{m}} .
$$

Lemma 1 There exists a pairwise independent hash family \mathcal{H} such that it is easy to sample and $\forall h \in \mathcal{H}$, formula-size(h) is poly (n).

Proof Define

$$
\mathcal{H}=\left\{h_{A, b}(x)=A x+b(\bmod 2) \mid A \in\{0,1\}^{m \times n}, b \in\{0,1\}^{m}\right\}
$$

It is clear that $h_{A, b}$ has small formula size and for any $x \neq y, \alpha, \beta$:

$$
\underset{A, b}{\operatorname{Pr}}[A x+b=\alpha, A y+b=\beta]=\frac{1}{4^{m}}
$$

Lemma $2 \forall S \subseteq\{0,1\}^{n}, 2^{m-2} \leq|S| \leq 2^{m-1}$,

$$
\operatorname{Pr}_{h \in \mathcal{H}}[\exists!x \in S, h(x)=\overline{0}] \geq \frac{1}{8} .
$$

Proof Fix $x \in S$, then:

$$
\operatorname{Pr}_{h \in \mathcal{H}}[h(x)=0]=\frac{1}{2^{m}} .
$$

Fix $x \neq y \in S$, then:

$$
\operatorname{Pr}_{h \in \mathcal{H}}[h(x)=0 \wedge h(y)=0]=\frac{1}{4^{m}} .
$$

Then:

$$
\begin{aligned}
\operatorname{Pr}_{h \in \mathcal{H}}[h(x)=0 \wedge \forall y \in S \backslash\{x\},(h(y) \neq 0)] & \geq \operatorname{Pr}_{h \in \mathcal{H}}[h(x)=0]-\sum_{y \in S \backslash\{x\}} \operatorname{Pr}_{h \in \mathcal{H}}[h(x)=0=h(y)] \\
& \geq \frac{1}{2^{m}}-\frac{|S|}{4^{m}} \geq \frac{1}{2^{m+1}},
\end{aligned}
$$

where the last inequality holds since $|S| \leq 2^{m-1}$.
Hence,

$$
\begin{aligned}
\operatorname{Pr}_{h \in \mathcal{H}}[\exists x \in S \text { s.t. } h(x)=0 \wedge \forall y \in S \backslash\{x\},(h(y) \neq 0)] & =\sum_{x \in S} \operatorname{Pr}_{h \in \mathcal{H}}[h(x)=0 \wedge \forall y \in S \backslash\{x\},(h(y) \neq 0)] \\
& \geq \frac{|S|}{2^{m-1}} \geq \frac{1}{8}
\end{aligned}
$$

where the first equality holds by independence of the events inside the probability, and the last equality holds since $|S| \geq 2^{m-2}$.

Using both lemmas we can prove Valiant-Vazirani's theorem. Given an instance φ for $S A T$, the polynomial time algorithm A does the following:

1. It picks at random $m \in\{2, \ldots, n+1\}$.
2. It picks at random a hash function from the hash family \mathcal{H} given by Lemma 1 .
3. It outputs the formula $\psi(x)=\varphi(x) \wedge[h(x)=0]$.

If $\varphi(x) \in S A T_{Y E S}$, then with probability $1 / n$, A picks the right m. Using Lemma 2 for S the set of satisfying assignments of φ, we know that A picks a hash function from \mathcal{H}, such that $h(x)=0$ for an unique $x \in S$. It follows that with probability $1 /(8 n)$ the algorithm outputs a formula with only one satisfying assignment, i.e. a formula in $U_{Y E S}$.

On the other hand, if $\varphi(x) \in S A T_{N O}$, then A will output $\psi(x)$ that has no satisfying assignment. Hence A is an $R P$ reduction from $S A T$ to Unique-SAT.

2.1 Consequences

Corollary $1 S A T \leq_{R P} \bigoplus S A T$.
Where $\bigoplus S A T:=\{\phi \mid$ Number of satisfying assignments of ϕ is even $\}$

Proof

We reduce Unique-SAT to $\bigoplus S A T$ as following. For given $\psi(x) \in U n i q u e-S A T$,

$$
\psi^{\prime}(b x):= \begin{cases}1, & b=0, x=\overline{0} \\ 1, & b=1, \psi(x)=1 \\ 0, & o . w\end{cases}
$$

Combining with $S A T \leq_{R P}$ Unique-SAT, the corollary follows!
Now we can use this reduction k times to get,

$$
\begin{array}{rlr}
\psi & \longrightarrow & \psi_{1}\left(x_{1}\right) \\
& \longrightarrow & \psi_{2}\left(x_{2}\right) \\
& \longrightarrow & \psi_{3}\left(x_{3}\right) \\
& \cdots & \\
& \longrightarrow & \psi_{k}\left(x_{k}\right)
\end{array}
$$

Set $\hat{\psi}$ as,

$$
\hat{\psi}\left(x_{1}, \cdots, x_{k}\right)=\bigwedge_{i=1}^{k} \psi_{i}\left(x_{i}\right)
$$

Then, \# of satisfying assignments of $\hat{\psi}=\Pi$ (\#of satisfying assignments of ψ_{i})
So if the \# of satisfying assignments for some ψ_{i} is even, then \# of satisfying assignments for $\hat{\psi}$ is even too! From this we get :

$$
S A T \leq_{\text {Strong } B P} \bigoplus S A T
$$

3 Toda's Theorem

Theorem 2 (Toda) $P H \subseteq P^{\# P}$

3.1 Operators

For a complexity class \mathcal{C}, define the following operators:
Parity Operator :

- $\bigoplus \mathcal{C}:=\{\bigoplus L \mid L \in \mathcal{C}\}$
- $\bigoplus L:=\{x \mid \#$ of y 's satisfying $(x, y) \in L$ is even $\}$

BP Operator :

- BP. $\mathcal{C}:=\{B P \cdot L \mid L \in \mathcal{C}\}$
- $B P \cdot L:=\left\{x \mid \operatorname{Pr}_{y}[(x, y) \in L] \geq 1-2^{-q(n)}\right\}$
- i.e., if $x \notin B P \cdot L, \operatorname{Pr}_{y}[(x, y) \in L] \leq 2^{-q(n)}$
\exists Operator :
- $\exists \mathcal{C}:=\{\exists L \mid L \in \mathcal{C}\}$
- $\exists L:=\{x \mid \exists y$ such that $(x, y) \in L\}$.

3.2 Properties

Proofs will be shown on Wednesday.

1. $\bigoplus \cdot P \cdot \mathcal{C} \leq B P \cdot \bigoplus \mathcal{C}$.
2. $\bigoplus \cdot \bigoplus \cdot \mathcal{C} \leq \bigoplus \mathcal{C}$.
3. $B P \cdot B P \cdot \mathcal{C} \leq B P \cdot \mathcal{C}$.

3.3 Main Ideas

$S A T \leq_{\text {Strong } B P} \bigoplus S A T$ implies:

- $N P \subseteq B P \cdot \bigoplus \cdot P$.
- $C o-N P \subseteq B P \cdot \bigoplus \cdot P$, because $B P \cdot \bigoplus \cdot P$ is closed under complement.

$$
\begin{aligned}
\Sigma_{2}^{P} \subseteq \exists \cdot \forall \cdot P & \subseteq B P \cdot \bigoplus \cdot B P \cdot \bigoplus \cdot P \\
& \subseteq B P \cdot B P \cdot \bigoplus \cdot \bigoplus \cdot P \text { (Using properties above) } \\
& \subseteq B P \cdot \bigoplus \cdot P
\end{aligned}
$$

By induction, we can get

$$
\Sigma_{k}^{P} \subseteq B P \cdot \bigoplus \cdot P
$$

which implies $P H \subseteq B P \cdot \bigoplus \cdot P$.

4 To show Next time

- $B P \cdot \oplus \cdot P \subseteq P^{\# P}$.
- $L:=\{(M, x, a, b) \mid \#\{y \mid M(x, y)$ accepts $\} \leq a(\bmod b)\} \in P^{\# P}$.
- $\Sigma_{k}^{P} \subseteq \exists \cdot B P \cdot \bigoplus \cdot P$.

