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Today, we give a brief review of factorization of polymnomials, then begin our study of primality
testing by giving some simple but inefficient algorithms for testing the primality or compositeness of an
integer, and then introducing a more sophisticated, recent method for testing primality based on the
work of Agarwal et al.

1 Review of Factorization

We know how to factor over many rings:

• If R is a UFD, we know roughly how to factor over R

• If R is a UFD, we can factor over R[x] using resultants, Hensel lifting, linear algebra, and lattice
algorithms.

• We can also factor over R[x]/h(x) where h(x) is an irreducible polynomial, though this factorization
is not always trivial.

• There exist basic rings over which we cannot factor (i.e. Z), but to factor over more complex rings,
we can describe each ring starting with smaller subrings and use a finite number of extensions to
describe the entire ring.

2 Primality testing

2.1 History

The subject of primality testing can be considered as attempting to answer the following two questions:

1. What does a proof of the statement “n is prime” look like?

2. What does a proof of the statement “n is composite” look like?

Note that a “proof” consists of k bits of information, where k is polynomial in log(n), and a polynomial
time algorithm to verify the claim that n is prime or composite.

2.1.1 Proofs of Compositeness of n

An obvious proof of compositeness for a number n would be a factorization n = pq, where p, q 6= 1.
However, as stated above, we don’t have an efficient method to factorize over Z, so such a proof is
difficult to find.

We use the observation Zn ≈ Zp × Zq and the Chinese Remainder Theorem to gain information
about Zn.

From the CRT, we have that if ∃ a,k such that a2k ≡ 1 (mod n) and ak 6≡ ±1 (mod n), or if
an−1 6≡ 1 (mod n), then n is composite. The Solovay-Strasson and Miller-Rabin algorithms exploit
this property to determine if a given n is composite. These algorithms pick a at random, and with
probability greater than 1/2, there exists a k satisfying this compositeness criterion.

However, if we find no such pairs a,k, we have not gained any information - this is not a guarantee
that n is prime.
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2.1.2 Proofs of primality of n

Pratt gave an algorithm for proving p prime using a prime factorization of p− 1 (and other conditions),
but it is VERY hard to find such a proof.

Goldwasser-Killian and Adelman-Huang (1986-88) gave randomized polynomial time proofs of pri-
mality as a strategy for finding primes between n and 2n, but these algorithms are beyond the scope of
this class.

We use an alternate method to prove primality based on the following proof of compositeness:

2.2 Agarwal-Biswas Proof of Compositeness

Agarwal and Biswas developed this algorithm in 1999. Rather than using the Chinese Remainder
Theorem, they used the following simple fact from number theory:

Claim 1 n|(n
i

)∀i iff n is prime.

Proof
(
n
i

)
= n(n−1)···(n−i+1)

i(i−1)···1 by definition.

If n is prime, (n, n−k) = 1 and (n, k) = 1 ∀k. Therefore, (n, (n−1)···(n−i+1)
i(i−1)···1 ) = 1, hence n|(n (n−1)···(n−i+1)

i(i−1)···1 =(
n
i

)
.
If n is composite, n = pq, where p is prime. Then we write

(
n
p

)
= n

p · (n−1)···(n−p+1)
(p−1)···1 , observing that

all the factors in the numerator and denominator of (n−1)···(n−p+1)
(p−1)···1 are relatively prime to p, so that

the whole fraction is relatively prime to p (and relatively prime to n). We already know that n 6 |np , so

n 6 |(n
p

)
= n

p · (n−1)···(n−p+1)
(p−1)···1 .

Given this claim, we could construct a straightforward primality test for n by verifying if n|(n
i

)
, but

we don’t have an efficient way to compute
(
n
i

)
.

Instead, we consider the binomial expansion of (x + a)n = xn +
(
n
1

)
xn−1a + · · ·+ (

n
n−1

)
xan−1 + xn.

Taken modulo n, this equality yields (x + a)n = xn + an +
∑n−1

i=1

(
n
i

)
xian−i ≡ xn + an (mod n) iff n is

prime. We can further simplify this congruence to (x + a)n ≡ xn + a (mod n).
From this fact, we derive the following algorithm:
Given n,
Pick h(x) a monic polynomial of degree poly(log(n))
Then consider (x + 1)n ≡ xn + 1 (mod n), h(x)).
We can use repeated squaring to reduce the equation (mod h(x)) at each step. If this congruence

holds for many polynomials hi(x), it holds for LCM(hi(x)), and we can thereby extend the result.
If n is composite, then (x + 1)n 6≡ xn + 1, so there exists h(x) for which the above congruence does

not hold. We therefore limit ourselves to the case where h(x) = xr − 1.

2.3 Agarwal, Kayal, Saxena Proof of primality

This method for testing compositeness was extended by Agarwal, Kayal, and Saxena in 2002 to test for
primality.

Theorem 2 If ∀r ∈ 1, . . . , log3(n) and ∀a ∈ 1, . . . , log2(n),
(x + a)n ≡ xn + a (mod n, xr − 1) and r 6 |n, then n is a prime power.

From the knowledge that n is a prime power, it is straightforward to determine if n is in fact prime.
Recall that for primes p, f(x)p ≡ f(xp) (mod p).
We make the following observation:
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Suppose that we’ve run the test for compositeness and found only polynomials f(x) satisfying f(x)n =
f(xn).

If n is composite, n = pq, where p is prime, so f(xn) ≡ f(x)n (mod p, xr − 1) AND f(xp) ≡ f(x)p

(mod p, xr − 1). Say that p|n but that n 6= pi ∀i, and that h(x) is an irreducible factor of xr−1
x−1 in Fp[x].

Then let us examine K = Fp[x]/h(x). Note that we can derive information about the function h(x), but
that it doesn’t matter for our purposes what h we pick.

Definition 3 Suppose that R = Z[x]/(h(x), q(x)). We say that f is introspective with respect to m if
f(x)m = f(xm) in R.

Definition 4 For integers p,n, and r, we define t = tp,n,r = |{pinj (mod r)|i, j ∈ Z}|

Lemma 5 (Lemma 1) 1. If f and g are introspective with respect to R, then so is f · g.
2. If f is introspective with respect to m1 and m2 in R = Zn[x]/(xr − 1), then f is introspective with

respect to m1 ·m2 in R.

Proof

1. f , g are introspective, so f(x)m = f(xm) and g(x)m = g(xm) in R. Then, (f · g)(xm) = f(xm) ·
g(xm) = f(x)m · g(x)m = (f(x) · g(x))m.

2. We have f(x)m1 = f(xm1) and f(x)m2 = f(xm2). Now, f(x)m1m2 = (f(x)m1)m2 . Let us write
xm1 = z, then f(x)m1m2 = f(z)m2 = fR′(Zm2) (mod zr − 1), where R′ = Z/(xr − 1). We then
substitute back in for z, obtaining f(xm

1 m2) (mod xm1r − 1). Here we use a polynomial so that
xr − 1|xm1r − 1. By this construction, we have the desired identity for any ring R, provided that
the congruence is considered (mod xr − 1). We let q(x) = xr − 1, so that q(x)|q(xm1).

Now that we have introduced this notion of introspection, our goal is to use this property to write
out identities in a field.

Lemma 6 Suppose p|n, n 6= pi, h(x) is irreducible and monic in Fp[x]. Then ∃ a polynomial p in Fp[y]
with coefficients ±1 of degree ≤ nt so that ∀f ∈ Fp[x] such that f is introspective with respect to n in
K = Fp[x]/h(x), P (f) = 0 in K.

To prove this lemma, we begin with a weaker statement and the following claim:

Claim 7 If f is introspective with respect to m1 and m2 in R = Zn[x]/(xr−1) and m1 ≡ m2 (mod r).
Then f(x)m1=f(x)m2 in R.

Note that this claim gives us an actual ring identity and also establishes f as a root of the polynomial
P (Y ) = ym

1 − ym
2 .

Proof
We have that f(x)m1 = f(xm1) and that f(x)m2 = f(xm2). Furthermore, f(xm1+ir) ≡ f(xm1) ≡

f(xm2) (mod xr − 1) since xr ≡ 1 (mod r) and xm1 ≡ xm2+ir. Our goal is to find such a pair m1,
m2 so that f is a root of the polynomial P (y) = ym1 − ym2 .

Suppose that f is introspective with respect to n. Then f is also introspective with respect to n2,
ni+1,. . .,nr, so there exists a pair i,j so that ni ≡ nj (mod r). Letting m1 = ni and m2 = nj , we have
a pair satisfying the conditions of our claim, and therefore, we have a polynomial P of degree less than
nr.

We further show that deg(P ) < nt (where t is tp,n,r as defined above). Compare pinj (mod r) to
n,n2,. . .,nr. There are at most t elements in this sequence by definition of t.
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We can limit the degree of p even further as follows. n is prime, so we consider the ring K = Fp[x]/h(x)
where p prime. p is prime, so f is introspective with respect to p.

Now, consider the following integers:

1 n n2 . . . ni

p pn pn2 . . . pni

p2 p2n p2n2 . . . p2ni

...
...

...
...

...
pj pjn pjn2 . . . pjni

Since f is introspective with respect to p and with respect to n, f is introspective with respect to
all the integers listed in the table, and all of these values are distinct integers. Set i, j =

√
t. Then

all integers in the table are ≤ n2
√

t, and there are at least t + 1 elements in the array. Hence, by
the pigeonhole principle, there exists a pair l,k and a pair l′,k′ so that pknl ≡ pk′nl′ (mod r). Then
deg(P ) ≤ n2

√
t.

3 Continuation

We note that we can construct infinitely many such polynomials, but that they are not all distinct
modulo h. Next time, we show that if n,p,h, and K are as before, the following statement holds:

Lemma 8 Let f ,g be polynomials in Zp[x] of degree less than t, both introspective with respect to n in
K. Then f 6≡ g (mod h(x)).
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