
6.885 Algebra and Computation October 26, 2005

Lecture 13
Lecturer: Madhu Sudan Scribe: Michael Manapat

In today’s lecture, we’ll complete the analysis of the LLL algorithm and finish factoring over Q[X]
(details will be left to the exercises).

1 LLL Analysis

Let b1, . . . , bn ∈ Zn be lattice points and let ÃL(b1, . . . , bn) be the lattice generated by b1, . . . , bn, i.e., the
set of all Z-linear combinations of b1, . . . , bn:

ÃL(b1, . . . , bn) =

{
n∑

i=1

λibi : λi ∈ Z
}

.

Our goal is to find a short vector in ÃL.
Before continuing, we recall some notational conventions:

• b∗i will denote the projection of bi in the direction orthogonal to the subspace generated by
b1, . . . , bi−1, and

• bi(j) will denote the projection of bi to the subspace orthogonal to the one generated by b1, . . . , bi−1.

Note that the by the way the Gram-Schmidt orthogonalization procedure works, each bi is a linear
combination (over R) of the b∗j , j ≤ i:

bi =
i∑

j=1

µijb
∗
j .

The matrix {µij} is then a lower-triangular matrix with 1s on the diagonal.
Now we can describe the LLL algorithm:

1: Step 1: Gram-Schmidt Reduction
2: for i = 1 to n do
3: for j = i− 1 to 1 do
4: m ← round(µij)
5: bi ← bi −mbj

6: end for
7: end for
8: Step 2: Swap
9: if there is an i such that ‖bi(i− 2)‖ ≤ 3

4‖bi−1(i− 2)‖ then
10: swap bi and bi−1

11: go to Step 1
12: else
13: stop and output b1

14: end if

1.1 LLL Potential Function

Let Voli(b1, . . . , bi) denote the volume of the parallelpiped formed by the vectors b1, . . . , bi in Euclidean
space. In the case of n vectors in n-space, this volume is just the determinant of the matrix whose

13-1

columns are the coefficients of the bj . Equivalently, this volume is the product of the lengths of the b∗j :

Voli(b1, . . . , bi)) =
i∏

j=1

‖b∗j‖.

Now we define a potential function Φ by

Φ =
n∏

i=1

Voli(b1, . . . , bi).

We can get a sense of the running time of the LLL algorithm by making the following observations:

• Φ is always an integer (each Voli is clearly an integer, being the determinant of an integer matrix).

• Φ remains unchanged in step 1 of the algorithm.

• Φ decreases by a factor of 3/4 in step 2 if a swap is made (Voli−1 decreases by 3/4, but all other
volumes remain unchanged).

• At the start, ‖b∗i ‖ ≤ n2l, so initially Φ ≤ (n2l)n2
, i.e., Φ ≤ 2poly(l,n).

Since the potential function is decreasing exponentially fast, and initially has a value that is exponential
in a polynomial of l and n, we can conclude that the number of repeated loops (i.e., the number of times
steps 1 and 2 are executed) is polynomial in l and n.

Now we turn to the correctness of the algorithm.

Lemma 1 If b1, . . . , bn, b∗1, . . . , b
∗
n, and {µij} as earlier satisfy

1. for all i > j, |µij | ≤ 1/2, and

2. for all i, ‖bi(i− 2)‖ > 3
4‖bi−1(i− 2)‖,

then for all nonzero vectors v ∈ ÃL(b1, . . . , bn), ‖b1‖ ≤ 2n‖v‖.

Clearly the second condition in the lemma is satisfied after the algorithm terminates (step 2 clearly
ensures this). We leave it as an easy exercise to show that the reduction procedure in step 1 results in
a matrix {µij} all of whose entries are bounded in magnitude by 1/2. We will prove the claim in two
steps.

Claim 2 For all bi, b∗j , and v ∈ ÃL(b1, . . . , bn) \ {0}, ‖v‖ ≥ min{‖b∗i ‖}.

Proof We can write
v =

∑
λibi =

∑
λ∗i b

∗
i ,

where the λi ∈ Z and the λ∗i ∈ R. Since the b∗j are orthogonal, we have

‖v‖2 =
∑

|λ∗i |2‖b∗i ‖2,

so it is enough to show that some λ∗i has magnitude at least 1.
Now bi =

∑
j µijb

∗
j , so

v =
∑

i

λi


∑

j

µijb
∗
j


 ,

13-2

and thus
λ∗i =

∑

j≥i

µjiλj .

Let k be the largest index such that λk 6= 0. Then

λ∗k =
∑

j≥k

µjkλj = µkkλk = λk.

Since λk ∈ Z, we conclue that |λ∗k| ≥ 1, whence the desired conclusion follows.

Claim 3 For all i, ‖b∗i ‖ ≤ 2‖b∗i+1‖.
Proof This follows from the inequality

‖b∗i ‖ ≥
√(

3
4

)2

−
(

1
2

)2

‖bi−1(i− 2)‖ ≥ 1
2
‖b∗i−1‖,

which one can deduce by drawing a picture of the vectors b∗i and b∗i−1 in the plane.

Given the preceding claims, the conclusion of the lemma, and thus the correctness of the LLL algorithm,
follows easily.

2 Factoring

Given a polynomial f ∈ Z[X] of degree at most d and coefficients bounded in magnitude by 2n, we find
a factor of f as follows:

1. If the greatest common divisor of f and its derivative f ′ is nontrivial, output that factor and stop.

2. Find a prime p such that the gcd of the images of f and f ′ in Fp[X] is also trivial.

3. Factor f as f = gh (mod pt) in Fp[X], where g and h are monic and relatively prime and g is
irreducible in Fp[X].

4. Use Hensel Lifting to find monic polynomials G and H such that f = GH (mod pt).

5. Find ḡ and Ḡ of appropriate degree such that ḡ(X) = G(X)Ḡ(X) (mod pt).

6. If ḡ and f have a nontrivial gcd, output that gcd; otherwise, output “f is irreducible.”

2.1 Exercises

We conclude with a series of exercises that address the details of the above procedure:

1. If f and g are relatively prime polynomials of degree d, with coefficients in the range −c, . . . , c,
then the resultant is bounded by O(dc)O(d).

2. Iff = g∗h∗ over the integers and g∗ factors into irreducible polynomials in the form g(x)g1(x) · · · gk(x)
(mod p), then g∗ is a candidate polynomial for the ḡ of step 5.

3. If f = gh over Z[X], with the degree of f at most d and the coefficients of f bounded by 2n, then
the coefficients of g are bounded by O(d)O(d)2n.

4. Prove that the g∗ of exercise 2 divides any ḡ reported in step 5.

13-3

