6.885 Algebra and Computation September 26, 2005

Lecture 5

Lecturer: Madhu Sudan Scribe: Elena Grigorescu

In today’s lecture we will first go through a brief response to the comments on the previous lecture.
The comments and the brief responses will be posted soon. We will continue by introducing methods of
polynomial factorization, in particular root finding algorithms in finite fields.

1 A review of last lecture

In the last lecture we defined Strong Generating Sets (SGS) in a permutation group and we showed
an algorithm for building a small-size (O(n?)) SGS of a group G =< S >. We then demonstrated an
efficient algorithm for testing membership in a permutation group, which was based on the idea that if
0 € G then o is the product of polynomially many elements of a SGS of G.

The motivation for looking at these rather non-intuitive generating sets is that they give a good rep-
resentation of a group, which in turn leads to good and sometimes unexpected algorithms (membership
seems rather exponential but it turns out not be). Generally, algebraic algorithms exhibit a couple of
paradigms that we have already encountered in the concept of SGSs:

1. non-intuitive definition
2. given an object meeting the definition the problem is easy to solve
3. an object meeting the definition exists

4. objects meeting the definition can be constructed efficiently.

It is often the case that for the last two paradigms the proofs are very different.

1.1 Summary of the membership testing algorithm

Let 7 be a permutation and let G =< S > and G < 5,,.

BUILD SGS(S):

T « 0;

while 0 € SUT - T s.t. not MEM-CLOSURE(c, T)
T « ADD-ELEM(o, T) UT

return T.

ADD-ELEM(o,T):

if o = 1 then return o

else let k = k(o);j = o~ 1(k);
if o' eTstk=k(c');0'(j) =k
return ADD-ELEM (o - /=1, T')
else return o.

MEM-CLOSURE(0,T:)

it ADD-ELEM(c,T) = 1 return TRUE
else return FALSE.

MEM(r, S)

T «—BUILD-SGS(S)
return MEM-CLOSURE(w, T').

We can now move on to a new topic.

5-1

2 Factorization of polynomials - a very simple scenario

INPUT: Integers a,p, with p prime;
GOAL: Compute a € Z, st a® = a mod p, if « exists.

We are first interested in whether a exists, and we will show that the following test decides the
existence of a root.

Test: If a”> =1 then a has a root; else it does not.

Proof: Suppose a has a root, and a? = a. By Fermat’s Little Theorem we have that Yo € Ly,
aP~! =1 mod p. Therefore, P~ = "= = 1.
In proving the converse, we introduce ideas that will be useful in finding roots of polynomials in more
general settings. Suppose that a’= =1 mod p. We want to show that a has a root.
Let p(z) = 2?71 — 1, pi(x) = 2" — 1 and p2(x) = 2" + 1. Thus p(z) = p1(x)p2(x). We know
that each o € Zj is a unique root of p(z) and thus it is a unique root of either p; or ps. Since for
any square b € Z7, 22 — b has exactly 2 roots in Zy,, which are distinct, it follows that exactly %
elements in Z; are squares. We also know that each of these squares are roots of p; (z), and since the de-

gree of py(x) is ”2;1, it follows that the squares in Zy are the only roots of p; (). This concludes the proof.

We can now try and find the square roots of a when they exist. When p is an odd prime we distin-
guish two cases, namely p = 3 mod 4 for which we will give a deterministic algorithm, and p = 1 mod 4
for which we give a randomized algorithm that determines the roots.

Case 1: p=3 mod 4
As before, let p(z) = 277! — 1 = py(2)p2(2), p1(z) = "7 — 1 and pa(x) = 2" + 1. We claim that
x —a|pi(x), and
x+ a | pa(x).
To see this, notice that since % is odd, we have that o™ and (—a)pr1 have different signs. Thus,
each of them are roots of only one of p;(x) and py(z), which proves the claim.
From the argument above we can deduce that ged(z? — a,xpT_l — 1) = 2 — a. Therefore, in order to

compute a we only need to compute the above gcd, which only takes polynomial time in the smallest
degree (= 2).

Case 2: p=1 mod 4
Consider the more general setting of finding roots of a polynomial of the form g(z) = 2% — Az — B =
(x—pB)(x—=). If § and y are random and independent elements of the field, then the ged(g(x), ot — 1)
is of degree 1 when only one of 8 and are roots of p; (). Since the size of the field is p we can conclude
that the probability of finding a linear factor of g(x) is about 1/2.

We would now like to be able to map a and —« into 8 and ~ respectively, such that we could
apply this approach to finding the roots of a € Z;. Notice that there exist ¢ and d s.t. ca+d = [
and ¢(—a) + d = . To make # and « random and independent, we only need to pick ¢ # 0 and d
randomly and independently of each other. We can deduce that 2> — Az — B = (v — B)(z —7) =
(r — (ca+d))(x — (c(—a) + d) = (v — d)? — 2a.

The promised algorithm follows.

SQ-ROOT(p, a):

1. If a = 0 return 0; If a” = —1 return ‘none exists’;
2. Pick ¢ € Z;, and d € Z,, at random

3. Compute ¢(z) = ged((x — d)? — ARa,z"T — 1)

4. If g(z) = x — (§ return :l:@;

5. Else go to 2.

5-2

As before,

Preezs aez, [ged((z — d)? — a,z"T — 1) is linear | =

Preezs aez, [ged((z — (ca + d))(z — (c(—a) + d),a:p'z;1 —1) is linear | & 1/2,

since ca 4+ d and ¢(—«) + d are random and distinct elements of Z,. By repeating the algorithm, the
success probability can be made arbitrarily large, which concludes the analysis.

3 Generalization - Roots modulo p of higher degree polynomi-
als

INPUT: p prime, co,C1,...,Cn € Zp, f(z) = c;a’.
GOAL: Find all a s.t. x —a | f(z).

We can assume W.l.o.g. that f(z) has distinct linear factors. Otherwise, given a root « one could
check in various ways if (z —«)? | f(z). As an exercise, show that if (z —a?) | f(x) then z —a | ged(f, f)
(note that the derivative f/ = > ic;z°~! mod p is a formal definition).

From now on assume f(x) = Y ¢;z' = II(z — ;) is st. als are distinct.

Notice that if « is a root of f(z) then it is also a root of 2 — xz, and thus, w.p. ~ 1/2, « is a root
of p1(z) = 2" — 1. The goal of splitting f(z) leads us into considering ¢(z) = gcd(f(:z:),mprl —1).
However, this approach will work only if not all of the roots of 2" — 1 are also roots of f- The solution
to this is that we can use randomization as we did in the square-root algorithm. Thus, map «; into
random ;. We might not be able to get the independence of the (;’s, but we are only interested in
splitting the polynomial once. Therefore, it is enough to focus only on random S, and B2. With random
¢,d we could map f(z) = I(z — a;) into f(z) = H(z — (coy 4+ d)). Then f(z) = I(z — (ca; +d)) =
(24 — o) = ¢ f(252). If we found a root of f we can therefore find a root of f.

We are now ready to present the algorithm.

ROOT-FIND(f(z) = ¢;at):
L f(z) — ged(a? -, f(x))
2. Pick ¢ € Z;,,d € Z;, at random
3. f(x) — " f(21)
4. If () = gcd(f(x),o:prl — 1) is non-trivial (not n)
return ROOT-FIND(q(z) = L G(cz + d)), ROOT-FIND (£)),

cn q(x)

Notice that the above algorithm only uses the fact that p is odd, so p does not necessarily need to be
prime. The algorithm is due to Berlekamp, 1972 and it is probably the first algorithm in the literature
that uses randomization. No deterministic such algorithm is known of.

In future lectures we will be dealing with the factorization of polynomials over even fields and with
the factorization of polynomials into irreducible polynomials of degree higher than linear.

We conclude the lecture with the following exercise.
Given (31, ..., 0y € Z,, define the k’th symmetric function in {31, ...,08,} as

o(Br,...,Bn) = Z ies B

ScC[n],|S|=k

Compute (81, ..., ,) efficiently.

5-3

