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1 Constraint satisfaction problems

NP may be considered as the complexity class of theorems and proofs. To face the fact that NP-problems
are difficult one is lead to introduce probabilistic checking of proofs (that is, to use probabilistic verifiers
instead of requiring the complete assurance of proof correctness).

On the other hand NP may be considered as the complexity class of optimization problems. In this
case one is lead to consider approximations of the optimization problems (that is, to look for solutions
that are feasible but only ”close” to the best solution):

class: NP = NP

↓ ↓

viewed as: Complexity of ⇐⇒ Complexity of
theorems and proofs optimization

↓ ↓

”faced” by: Probabilistic ⇐⇒ Approximantion of
checking of proofs optimization

The power of the probabilistic approach is somehow conveyed by the fact that errors in the ”proof” do
not completely destroy our possibility to find some truth: a ”proof” with some minor errors is still, in
some sense, a vehicle of some partial truth.

Let us now introduce a new class of problems: Constraint Satisfaction Problems.
Constraint satisfaction problems (CSP) are a special category of optimization problems that arise nat-
urally in PCP. An instance of the problem consists of a collection of constraints C1, . . . , Cm on some
variables that take values from some set. The goal is to find an assignment that maximizes the number
of satisfied constraints. Let define this class more precisely.

Definition 1 Given an integer k and a finite alphabet Σ, an instance of Max k-CSP-Σ is constituted
by n-variables, x1, . . . , xn, that take values in Σ and m-constraints C1, . . . , Cm of the form

Cj = ((ij1, . . . , i
j
k), f j : Σk → {0, 1}),

where 1 ≤ ijh ≤ n.
The goal is to find an assignment A : {x1, . . . , xk} → Σ that maximizes the number of satisfied

constraints; a constraint Cj is satisfied by A if f j
(
A(xij

1
), . . . , A(xij

k
)
)

= 1.

Theorem 1 If there exist constants q, c and s such that

NP = PCPc,s[r, q],

where r ∈ O(log(n)), then there exist α < 1, k and Σ such that α-approximating Max k-CSP-Σ is
NP-hard.
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Proof Let H be an NP-complete problem. We want to show that there exists a polynomial reduction
f from H to an instance of Max k-CSP-Σ such that, for some t ∈ {1, . . . , m} (where m is the number of
constraints of the instance),

G ∈ H ⇒ opt(ϕG) ≥ t (1)

G /∈ H ⇒ opt(ϕG) < t · α (2)

(where, ϕG = f(G)).
Since H ∈ NP = PCPc,s[r, q] there exists a verifier V such that

• G ∈ H ⇒ ∃Π : PrR[V Π(G;R) = 1] ≥ c,

• G /∈ H ⇒ ∀Π : PrR[V Π(G;R) = 1] ≤ s.

We consider the class of problems Max k-CSP-Σ where k = 2q and Σ = {0, 1}. For each G we construct
an instance ϕG of Max k-CSP-Σ (with the above k and Σ) satisfying 1 and 2.

Since q is a constant and r ∈ O(log(|G|)) we have that 2q+r ∈ O(|G|). Set n = 2q+r and observe that
V can ”hit” at most n addresses (bits) of the proof tape (note that V could be adaptive). We choose
as a set of variables for our Max k-CSP-Σ instance the set {x1, . . . , xn} constituted by the hit addresses
of the proof tape. Now, let m = 2r be the number of constraints and define, for each R ∈ {0, 1}r, a
constraint fR as follows

fR

(
xiR

1
, . . . , xiR

k

)
= V Π(G,R)

(where Π has x1, . . . , xn as significant addresses and 1 ≤ iRh ≤ n for h = 1, . . . , k).
If G ∈ H there exists a proof Π such that PrR[V Π(G;R) = 1] ≥ c and this says that at least c ·m

constraints are satisfied by Π so that opt(ϕG) ≥ c ·m. Analogously we obtain opt(ϕG) ≤ s ·m. Defining
t = cṁ and choosing α > s/c the conditions 1 and 2 are satisfied.

If a polynomial algorithm A α-approximating Max k-CSP-Σ existed this polynomial reduction would
allow us to decide H in polynomial time as follows. Given G, if A(ϕG) < α · t then G /∈ H otherwise
G ∈ H, indeed:

G ∈ H ⇒ A(ϕG) ≥ α · opt(ϕG) ≥ α · t,
G /∈ H ⇒ A(ϕG) ≤ opt(ϕG) < α · t.

This would mean that P = NP so that A is NP-hard.

A kind of converse also holds.

Theorem 2 Let H be an NP-complete problem. If there exist k, Σ and a polynomial reduction f from H
to an instance of Max k-CSP-Σ such that, for some t ∈ {1, . . . , m} (where m is the number of constraints
of the instance) and some α < 1, we have

G ∈ H ⇒ opt(ϕG) ≥ t

G /∈ H ⇒ opt(ϕG) < t · α
then

H ∈ PCPc,s[r, q],

(where r ∈ O(log(n)) and q is a constant).

Proof Our aim is to construct a verifier V for H. Such a verifier will proceed as follows:

1. constructs ϕG from G (in poly-time) with variables x1, . . . , xn and constraints C1, . . . , Cm,

2. receives a proof Π (i.e. an n-bit string, that may also be interpreted as an assignment to x1, . . . , xn),
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3. uses the random string R (of length r ∈ O(log(|G|))) to choose a constraint Cj and verifies, with
q = k queries, if Cj is satisfied; if so, accepts the input, else rejects.

Finally observe that V is complete and sound:

G ∈ H ⇒ opt(ϕG) ≥ t ⇒ ∃Π : PrR[V Π(G; R) = 1] ≥ t

m
= c,

G /∈ H ⇒ opt(ϕG) < t · α ⇒ ∀Π : PrR[V Π(G; R) = 1] <
t · α
m

= s.

So H is in PCPc,s[r, q].

Dinur’s Theorem actually asserts that such reduction exists for all H in NP so that

NP ⊂ PCPc,s[r, q].

2-3


