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1 Outline of the course

1. Definitions and history of PCP.

2. Approximation of MAX-SAT.

3. Approximation of MAX-CLIQUE.

4-10. A new proof of the PCP Theorem due to Irit Dinur.

2 Definitions of PCP

Let us begin by stating informally the PCP Theorem: there are a format for writing proofs and a
probabilistic method for verifying these proofs that

• accepts valid proofs;

• rejects invalid proofs with probability at least 1/2;

while reading only a constant number of bits of the proof.
This seems to be a statement regarding only logic and probability. So why should we care? Also, we

should clarify what we mean by theorems and proofs and why we should be interested in them.
Here is a possible motivation. Everybody doing scientific research is periodically reviewing papers.

For example, a theoretical computer scientist might be faced with a lot of papers claiming to have a
proof that P=NP, or that P6=NP. How could one check the correctness of these claims efficiently?

We will call such a claim an assertion. A theorem is a true assertion. Purported “proofs” will also
be called evidence. For our purposes, assertions/theorems and evidence/proofs will be simply strings of
bits.

In this context, logic is precisely the science of deriving theorems, telling us how to concatenate
statements to obtain proofs of new statements. However, we will abstract on the exact details of the
derivation. For us, the correctness of the derivation will be checked by a verifier, that is, a verification
algorithm. The verifier V takes as inputs an assertion A and some evidence π. The verifier has to respect
the following properties:

• A is a theorem ⇒ ∃ evidence π s.t. V (A, π) accepts;

• A is not a theorem ⇒ ∀ evidence π, V (A, π) rejects.

Notice that if V (A, π) rejects, it does not mean that A is not a theorem; it simply means that π is not
a proof of A. Finally, we want the verification process to be efficient and thus assume that the verifier
executes in time at most polynomial in the length of its input.

Another difference with the usual approach in logic is that we will be interested in finding short
proofs. For example the following question will be of interest to us: Does A have proofs of length at most
some parameter n? Short proofs give insights: usually, mathematical proofs convey more information if
they are short. This is why we would like to have short proofs of Fermat’s last theorem, of the 4 colors
theorem, etc.

In some sense, the entire theory of computation is focusing on the difference between proving and
verifying assertions. Consider the following language:

shortproofs = {(V,A, 1n)|∃ proof π, |π| ≤ n, s.t. V (A, π) accepts.}
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It is not difficult to see that shortproofs is NP-complete. This means that while verifying short proofs
is easy, finding them is apparently hard. If shortproofs was easily (i.e., poly-time) recognizable, then
we could think of replacing every mathematician with a computer, given the assumption that the main
job of the mathematician is finding short proofs of interesting theorems.

3 History of PCPs

In the middle 80s the definition of a verifier was modified in order to allow interaction and randomness;
that is, proofs are no longer static and the verifier is probabilistic. This notion was introduced by
Goldwasser, Micali and Rackoff and by Babai and Moran; the resulting class of languages was called
Interactive Proofs (IP). What can one prove in this system? An interesting language in IP is graph non-
isomorphism. In order to be convinced by a prover that two graphs are not isomorphic to each other,
one could first show the prover one of the graphs, and then pick one of the two at random, randomly
shuffle its vertices and ask the prover if that graph is isomorphic to the one that was first shown. This
system is apparently more powerful than deterministic static verifiers, since graph non-isomorphism
is not known to be in NP.

Ben-Or, Goldwasser, Kilian and Wigderson extended this notion to that of Multi-prover Interactive
Proofs (MIP) in which the verifier can query multiple independent provers (something like questioning
people claiming their innocence in separate cells). Fortnow, Rompel and Sipser introduced Oracle
Interactive Proofs. An oracle is bound to answer the same question always with the same answer; that
is, answers must be independent of the history of questions. In an oracle proof we can recognize more
languages than in an interactive proof, because we are restricting the ways in which the prover can
lie. Also, with an oracle we can simulate a multi-prover proof with any number of provers. However,
Fortnow et al. also showed that 2 independent provers are enough to decide all languages recognized
with an oracle.

Notice that an oracle can be represented as a huge string of length 2p(n), because it can answer yes
or no to questions of length p(n). But since the verifier executes in polynomial time, it will read only a
polynomial number of bits.

Babai, Fortnow, Levin and Szegedy studied what they called holographic proofs; they particularly
focused on the complexity parameters given by the length of the proof and the time needed for verifica-
tion.

Finally, Feige, Goldwasser, Lovasz, Safra and Szegedy and Arora and Safra focused on different
parameters, namely randomness (number of coin-tosses made by the verifier) and query complexity
(number of bits of the proof). Notice that the proof is read using a random access model.

Definition 1 An (r, q)-restricted PCP verifier V is a polynomial time machine that is given oracle access
to evidence π and to a random coin-toss sequence R, such that |R| ≤ r(|A|), and for every R, the number
of queries to π is at most q(|A|). The machine can only accept or reject, that is V π(A;R) ∈ {0, 1}.

Thus, function r(·) is the randomness complexity of the verifier, while q(·) is its query complexity.
We can now define a parametrized complexity class.

Definition 2 PCPc,s[r, q] is the class of languages L s.t. there is an (r, q)-restricted PCP verifier V s.t.
∀A ∈ {0, 1}n,

• A ∈ L ⇒ ∃π s.t. PrR[V π(A;R) = 1] ≥ c(n);

• A /∈ L ⇒ ∀π PrR[V π(A;R) = 1] ≤ s(n).

Function c(·) measures the completeness of V , while s(·) measures the soundness of V . Sometimes we
omit the first subscript, assuming perfect completeness: PCPs[r, q] = PCP1,s[r, q]. When we omit also
the second subscript, we assume a soundness of 1/2: PCP[r, q] = PCP1/2[r, q].

Our definition is very broad and allows us to capture many complexity classes. For example:
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• PCP[poly(n), 0] = RP;

• PCP2/3,1/2[poly(n), 0] = BPP;

• PCP[0,poly(n)] = NP;

• PCP[0, 0] = P;

• PCP[O(log n),poly(n)] = NP (exercise).

Now we can also shortly express some results about PCP and NP.

• FGLSS: NP ⊆ PCP[O(log n log log n), O(log n log log n)];

• BFLS: NP = PCP[O(log n), O(log3 n)];

• AS: NP = PCP[O(log n), O(log1/2 n)];

• ALMSS: NP = PCP[O(log n), O(1)].

Actually, the PCP Theorem is stating something stronger than the last equality; it says that there is a
universal constant q such that NP = PCP[O(log n), q] (i.e., the length of the proof is independent of the
language). Finally, we mention that H̊astad proved that

∀ε > 0 NP ⊆ PCP1/2+ε[O(log n), 3].
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