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Abstract. We present the Time-Bounded Task-PIOA modeling frame-
work, an extension of the Probabilistic I/O Automata (PIOA) framework
that is intended to support modeling and verification of security proto-
cols. Time-Bounded Task-PIOAs directly model probabilistic and non-
deterministic behavior, partial-information adversarial scheduling, and
time-bounded computation. Together, these features are adequate to
support modeling of key aspects of security protocols, including secrecy
requirements and limitations on the knowledge and computational power
of adversarial parties. They also support security protocol verification,
using methods that are compatible with informal approaches used in
the computational cryptography research community. We illustrate the
use of our framework by outlining a proof of functional correctness and
security properties for a well-known Oblivious Transfer protocol.

1 Introduction

Interacting abstract state machine modeling frameworks such as I/O Automata,
and proof techniques based on invariant assertions, levels of abstraction, and
composition, have long been used successfully for proving correctness of dis-
tributed algorithms. Security protocols are special cases of distributed algorithms—
ones that use cryptographic primitives such as encryption and trap-door func-
tions, and guarantee properties such as secrecy and authentication. Thus, one
would expect the same kinds of models and methods to be useful for analyzing
security protocols. However, making this work requires additions to the tradi-
tional frameworks, including mechanisms for modeling secrecy requirements, and
for describing limitations on knowledge and computational power of adversarial
parties.
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In this paper, we describe a modeling framework that extends Segala’s Prob-
abilistic I/O Automata (PIOA) framework [Seg95,SL95] and supports descrip-
tion of security-related features. Our extension, which we call the Time-Bounded
Task-PIOA framework, directly models probabilistic and nondeterministic be-
havior, partial-information adversarial scheduling, and time-bounded compu-
tation. We define an approximate implementation relation for Time-Bounded
Task-PIOAs, ≤neg,pt, which captures the notion of computational indistinguisha-
bility—the idea that a polynomial-time-bounded observer cannot, with non-
negligible probability, distinguish the behavior of one automaton from that of
another. We prove that ≤neg,pt is transitive and compositional, and we define a
type of probabilistic simulation relation that can be used to prove ≤neg,pt. We
believe that these features are adequate to support formal modeling and verifi-
cation of typical security protocols, using methods that are compatible with the
informal approaches used in the computational cryptography research commu-
nity.

We illustrate the use of our framework by outlining a proof of functional
correctness and security properties for the Oblivious Transfer (OT) protocol
of [EGL85,GMW87]. Together, these properties are expressed by a statement,
formulated using ≤neg,pt, that every possible behavior of the OT protocol can
also be realized by an abstract system representing the required functionality.
The protocol model consists of the protocol parties, plus an adversary that acts
as a message delivery system and hence has access to dynamic information such
as ciphertexts. The abstract system includes an ideal functionality, i.e., a trusted
third party whose security is assumed, together with a simulator.

Between the protocol and abstract system, we define intermediate systems
at different levels of abstraction, and prove that each consecutive pair of levels
satisfies ≤neg,pt. This decomposes the security proof into several stages, each
of which addresses some particular aspect of the protocol. In particular, com-
putational reasoning is isolated to a single stage in the proof, where a system
using hard-core bits of trap-door functions is shown to implement a system using
random bits. For this interesting step, we reformulate the notion of hard-core
bits using ≤neg,pt, and prove that our reformulation is equivalent to a standard
definition in the literature. The proof of ≤neg,pt for this stage is essentially a
reduction to the security of hard-core bits, but the reduction is reformulated in
terms of ≤neg,pt and composition results for Time-Bounded Task-PIOAs. Other
stages are proved using probabilistic simulation relations.
Background and prior work: Traditionally, security protocols have been an-
alyzed using one of two approaches: formal or computational. In the formal
approach, cryptographic operations are modeled purely symbolically, and secu-
rity of a protocol is expressed in terms of absolute guarantees when the protocol
is run against a Dolev-Yao adversary [DY83], which is incapable of breaking the
cryptographic primitives. This approach lends itself to rigorous proofs using fa-
miliar methods; however, it neglects important computational issues that could
render protocols invalid in practice. In contrast, in the computational approach,
cryptographic operations are modeled as algorithms operating on bit strings,
and security is expressed in terms of probabilistic guarantees when protocols are
run against resource-bounded adversaries. This approach treats computational
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issues realistically, but it does not easily support rigorous proofs. For example,
resource-bounded protocol components are often modeled as Interactive Turing
Machines (ITMs) [GMR89,Can01]. But rigorous proofs in terms of ITMs are
infeasible, because they represent components at too fine a level of detail.

A recent trend in security verification is to combine formal and computational
analysis in one framework [LMMS98,PW00,BPW04,BCT04,RMST04,Bla05], by
defining computational restrictions for abstract machines. This work provides
formal syntax for specifying probabilistic polynomial-time (PPT) processes, and
formulates computational security requirements in terms of semantic properties
of these processes. Our work follows the same general approach, though with its
own unique set of modeling choices.

Our starting point was the Probabilistic I/O Automata (PIOA) modeling
framework [Seg95,SL95], which is based on abstract machines that allow both
probabilistic and nondeterministic choices. In order to resolve nondeterministic
choices (a prerequisite for stating probabilistic properties), PIOAs are combined
with perfect-information schedulers, which can use full knowledge about the
past execution in selecting the next action. This scheduling mechanism is too
powerful for analyzing security protocols; e.g.,, a scheduler’s choice of the next
action may depend on “secret” information hidden in the states of honest pro-
tocol participants, and thus may reveal information about secrets to dishonest
participants. Therefore, we augmented the PIOA framework to obtain the Task-
PIOA framework [CCK+06a,CCK+06b], in which nondeterministic choices are
resolved by oblivious task schedules, which schedule sets of actions (tasks) instead
of individual actions. Task-PIOAs support familiar methods of abstraction and
composition. They include an implementation relation, ≤0, between automata,
based on trace distributions, and probabilistic simulation relations that can be
used to prove ≤0.

In this paper, we define Time-Bounded Task-PIOAs by imposing time bounds
on Task-PIOAs, expressed in terms of bit string encodings of automata con-
stituents. This allows us to define polynomial-time Task-PIOAs and our approx-
imate implementation relation ≤neg,pt. We adapt the probabilistic simulation
relations of [CCK+06a,CCK+06b] so that they can be used to prove ≤neg,pt.
Our analysis of Oblivious Transfer follows the style of Universally Composable
(UC) Security [Can01] and universal reactive simulatability [PW01].

In [LMMS98,MMS03,RMST04], a process-algebraic syntax is used to specify
protocols, and security properties are specified using an asymptotic observational
equivalence on process terms. Nondeterministic choices are resolved by several
types of probabilistic schedulers, e.g.,, special Markov chains or probability dis-
tributions on the set of actions. Various restrictions, such as environment- and
history-independence, are imposed on these schedulers to enable them to sup-
port computational security arguments. In [PW00,PW01,BPW04], protocols are
specified as interrupt-driven state machines that interact via a system of ports
and buffers, and security is specified in terms of reactive simulatability, which
expresses computational indistinguishability between the environment’s views
of the protocol and the abstract functional specification. A distributed protocol,
in which machines activate each other by generating explicit “clock” signals, is
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used for scheduling among the (purely probabilistic) machines. This mechanism
is similar to the ones typically used for ITMs [GMR89,Can01].

Our work differs from that of these two schools in our choice of underlying ma-
chine model and scheduling mechanism. Also, we follow a different modeling and
proof methodology, based on the one typically used for distributed algorithms:
we use nondeterminism extensively as a means of abstraction, and organize our
proofs using invariants, levels of abstraction, and composition.

In other related work, security analysis is sometimes carried out, informally,
in terms of a sequence of games, which are similar to our levels of abstrac-
tion [Sho04,BR04,Bla05,Hal05].
Overview: Sections 2 and 3 review the PIOA and Task-PIOA frameworks,
respectively. Section 4 defines Time-Bounded Task-PIOAs, and the approximate
implementation relation ≤neg,pt. Section 5 presents our definition of hard-core
predicates for trapdoor permutations, in terms of ≤neg,pt. Section 6 explains
how we model cryptographic protocols and their requirements, illustrating this
method with the OT protocol. Section 7 outlines our proofs for OT. Conclusions
follow in Section 8. Complete details appear in [CCK+06c].

2 PIOAs

In this section, we summarize basic definitions and results for PIOAs; full defi-
nitions, results, and proofs appear in [CCK+06a,CCK+06b].

We let R≥0 denote the set of nonnegative reals. We assume that the reader
is comfortable with basic notions of probability, such as σ-fields and discrete
probability measures. For a discrete probability measure µ on a set X, supp(µ)
denotes the support of µ, that is, the set of elements x ∈ X such that µ(x) 6=
0. Given set X and element x ∈ X, the Dirac measure δ(x) is the discrete
probability measure on X that assigns probability 1 to x.

A Probabilistic I/O Automaton (PIOA) P is a tuple (Q, q̄, I, O,H,D), where:
(i) Q is a countable set of states, with start state q̄ ∈ Q; (ii) I, O and H
are countable, pairwise disjoint sets of actions, referred to as input, output and
internal actions, respectively; and (iii) D ⊆ Q × (I ∪ O ∪ H) × Disc(Q) is a
transition relation, where Disc(Q) is the set of discrete probability measures
on Q. An action a is enabled in a state q if (q, a, µ) ∈ D for some µ. The set
A := I ∪O∪H is called the action alphabet of P. If I = ∅, then P is closed. The
set of external actions of P is I ∪ O and the set of locally controlled actions is
O ∪H. We assume that P satisfies:

– Input enabling: For every q ∈ Q and a ∈ I, a is enabled in q.
– Transition determinism: For every q ∈ Q and a ∈ A, there is at most one

µ ∈ Disc(Q) such that (q, a, µ) ∈ D.

An execution fragment of P is a finite or infinite sequence α = q0 a1 q1 a2 . . .
of alternating states and actions, such that (i) if α is finite, it ends with a
state; and (ii) for every non-final i, there is a transition (qi, ai+1, µ) ∈ D with
qi+1 ∈ supp(µ). We write f state(α) for q0, and if α is finite, we write lstate(α)
for its last state. Frags(P) (resp., Frags∗(P)) denotes the set of all (resp., all
finite) execution fragments of P. An execution of P is an execution fragment α
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with f state(α) = q̄. Execs(P) (resp., Execs∗(P)) denotes the set of all (resp., all
finite) executions of P. The trace of an execution fragment α, written trace(α),
is the restriction of α to the external actions of P.

A PIOA, together with a scheduler that chooses the sequence of actions to
be performed, gives rise to a unique probabilistic execution, and thereby, to a
unique probability distribution on traces. Traditionally, the schedulers used for
PIOAs have been perfect-information schedulers, which can use full knowledge
about the past execution in selecting the next action.

Two PIOAs Pi = (Qi, q̄i, Ii, Oi,Hi, Di), i ∈ {1, 2}, are said to be compatible
if Ai∩Hj = Oi∩Oj = ∅ whenever i 6= j. In that case, we define their composition
P1‖P2 to be the PIOA (Q1 ×Q2, (q̄1, q̄2), (I1 ∪ I2) \ (O1 ∪O2), O1 ∪O2, H1 ∪
H2, D), where D is the set of triples ((q1, q2), a, µ1×µ2) such that (i) a is enabled
in some qi; and (ii) for every i, if a ∈ Ai then (qi, a, µi) ∈ Di, and otherwise µi =
δ(qi). A hiding operator is also available for PIOAs: given P = (Q, q̄, I, O,H, D)
and S ⊆ O, hide(P, S) is defined to be (Q, q̄, I, O′,H ′, D), where O′ = O \ S
and H ′ = H ∪ S.

3 Task-PIOAs

The perfect-information schedulers that have been used to resolve nondetermin-
istic choices in PIOAs are too powerful for computational analysis of security
protocols; e.g.,, a scheduler’s choice of the next action may depend on “secret”
information hidden in the states of honest protocol participants, and thus may
reveal information about secrets to dishonest participants. To avoid this problem,
we resolve nondeterminism using a more restrictive, oblivious task mechanism.
Again, full definitions, results, and proofs appear in [CCK+06a,CCK+06b].
Basic definitions: A Task-PIOA T is a pair (P, R), where P = (Q, q̄, I, O,H,D)
is a PIOA (satisfying transition determinism), and R is an equivalence relation
on the locally-controlled actions O ∪H. The equivalence classes of R are called
tasks. A task T is an output task if T ⊆ O, and similarly for internal tasks. Un-
less otherwise stated, we will use terminology inherited from the PIOA setting.
We require the following axiom for task-PIOAs:

– Action determinism: For every state q ∈ Q and every task T ∈ R, there
is at most one action a ∈ T that is enabled in q.

In case some a ∈ T is enabled in q, we say that T is enabled in q. If T is enabled
in every state from a set S, then T is enabled in S.

A task schedule for T = (P, R) is a finite or infinite sequence ρ = T1 T2 . . .
of tasks in R. A task schedule is oblivious, in the sense that it does not de-
pend on dynamic information generated during execution. Because of the action-
determinism assumption for task-PIOAs and the transition-determinism assump-
tion for PIOAs, ρ can be used to generate a unique probabilistic execution, and
hence, a unique trace distribution, of P. One can do this by repeatedly scheduling
tasks, each of which determines at most one transition of P.

Formally, we define an operation apply that “applies” a task schedule to a
finite execution fragment, by applying tasks one at a time. To apply a task T
to an execution fragment α: (i) if T is not enabled in lstate(α), then the result
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Automaton Srcchan(D, µ):
Signature:
Input:

none
Output:

randchan(d), d ∈ D

Internal:
chooserand

State:
chosenval ∈ D ∪ {⊥}, initially ⊥

Transitions:
chooserand
Pre: chosenval = ⊥
Eff:

chosenval := choose-random(D, µ)

randchan(d)
Pre: d = chosenval 6= ⊥
Eff:

none

Tasks: {chooserand}, {randchan(∗)}

Fig. 1. Code for Srcchan(D, µ)

of “apply” is α itself; (ii) otherwise, due to action- and transition-determinism,
there is a unique transition from lstate(α) with a label in T , and the result of
“apply” is α extended with that transition. We generalize this construction from
a single fragment α to a discrete probability measure η on execution fragments.

Now consider η of the form δ(q̄). For every task schedule ρ, apply(δ(q̄), ρ),
the results of applying ρ to q̄, is said to be a probabilistic execution of T . This
can be viewed as a probabilistic tree generated by running P from its start
state, resolving nondeterministic choices according to ρ. The trace distribution
induced by ρ, tdist(ρ), is the image measure of apply(δ(q̄), ρ) under the measur-
able function trace. A trace distribution of T is tdist(ρ) for any ρ, and we define
tdists(T ) := {tdist(ρ) | ρ is a task schedule for T }.

Figure 1 contains a specification of a random source task-PIOA Srcchan(D,µ),
which we use in our OT models. Src draws an element d from the distribu-
tion µ using the action chooserand and outputs that element using the ac-
tion randchan(d). It has two tasks: internal task {chooserand} and output task
{randchan(d) | d ∈ D}. Notice, since all randchan(d) actions are grouped into
a single task, a task scheduler decides whether or not to output the random
element without “knowing” which element has been drawn.

Given compatible task-PIOAs Ti = (Pi, Ri), i ∈ {1, 2}, we define their com-
position T1‖T2 to be the task-PIOA (P1‖P2, R1 ∪R2). Note that R1 ∪R2 is an
equivalence relation because compatibility requires sets of locally controlled ac-
tions to be disjoint. It is also easy to check that action determinism is preserved
under composition. The hiding operation for task-PIOAs hides all actions in the
specified tasks: given task-PIOA T = (P, R) and a set U ⊆ R of output tasks,
hide(T , U) is defined to be (hide(P,

⋃
U), R).

Implementation: An implementation relation expresses the idea that every
behavior of one automaton is also a behavior of a second automaton. In that
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case, it is “safe” to replace the second automaton with the first in a larger system.
This notion mades sense only if the two automata interact with the environment
via the same interface: thus, two task-PIOAs T1 and T2 are comparable if I1 = I2

and O1 = O2.
If T and E are task-PIOAs, then E is said to be an environment for T if T and

E are compatible and T ‖E is closed. If T1 and T2 are comparable task-PIOAs,
then T1 implements T2, written T1 ≤0 T2, if tdists(T1‖E) ⊆ tdists(T2‖E) for
every environment E for both T1 and T2. Equivalently, given any task schedule
ρ1 for T1‖E , there is a task schedule ρ2 for T2‖E such that tdist(ρ1) = tdist(ρ2).
Since we require equality of corresponding trace distributions, this is also referred
to as perfect implementation. Transitivity of ≤0 is trivial and compositionality
is proved in [CCK+06a,CCK+06b].
Simulation relations: In [CCK+06a,CCK+06b], we define a new type of prob-
abilistic simulation relation for task-PIOAs, and prove that such simulation rela-
tions are sound for proving ≤0. Here we outline the definition. Let T1 = (P1, R1)
and T2 = (P2, R2) be two comparable closed task-PIOAs. A simulation from
T1 to T2 is a relation R from discrete probability measures on Frags∗(P1) to
discrete probability measures on Frags∗(P2) satisfying a number of conditions:
(i) If (η1, η2) ∈R, then η1 and η2 induce the same trace distribution; (ii) The
Dirac measures δ(q̄1) and δ(q̄2) are related by R; and (iii) There is a function
corr : (R1

∗ × R1) → R2
∗ such that, given (η1, η2) ∈R, a task schedule ρ for

T1 and a task T of T1, the measures apply(η1, T ) and apply(η2, corr(ρ, T )) are
related by the expansion of R. (Expansion is a standard operation on relations
between discrete measures (cf. [CCK+06b]).) That is, given a task schedule ρ
for T1 that has already been matched in T2, and a new task T , corr matches T
with a finite sequence of tasks of T2, and the result of scheduling T after η1 is
again related to the result of scheduling the sequence corr(ρ, T ) after η2.
Adversarial scheduling: The standard scheduling mechanism in the security
protocol community is an adversarial scheduler—a resource-bounded algorith-
mic entity that determines the next move adaptively, based on its own view
of the computation so far. Our oblivious task schedules do not directly cap-
ture the adaptivity of adversarial schedulers. To address this issue, we separate
scheduling concerns into two parts: We model the adaptive adversarial scheduler
as a system component, e.g.,, a message delivery service that can eavesdrop on
the communications and control the order of message delivery. Such a service
has access to partial information about the execution: it sees information that
other components communicate to it during execution, but not “secret informa-
tion” that these components hide. Its choices may be essential to the analysis
of the protocol. On the other hand, basic scheduling choices are resolved by a
task schedule sequence, chosen nondeterministically in advance. These choices
are less important; for example, in the OT protocol, both the transmitter and
receiver make random choices, but it is inconsequential which does so first.

4 Time-Bounded Task-PIOAs

A key assumption of computational cryptography is that certain problems can-
not be solved with non-negligible probability by resource-bounded entities. In
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particular, adversaries are assumed to be resource-bounded. To express such
bounds formally, we introduce the notion of a time-bounded task-PIOA, which
assumes bit-string representations of automata constituents and imposes time
bounds on Turing machines that decode the representations and compute the
next action and next state. Complete details appear in [CCK+06c].
Basic definitions: We assume a standard bit-string representation for actions
and tasks of task-PIOAs. A task-PIOA T is said to be b-time-bounded, where b ∈
R≥0, provided: (i) every state and transition has a bit-string representation, and
the length of the representation of every automaton part is at most b; (ii) there
is a deterministic Turing machine that decides whether a given representation of
a candidate automaton part is indeed such an automaton part, and this machine
runs in time at most b; (iii) there is a deterministic Turing machine that, given
a state and a task of T , determines the next action (or indicates “no action”),
in time at most b; and (iv) there is a probabilistic Turing machine that, given
a state and an action of T , determines the next state of T , in time at most b.
Furthermore, each of these Turing machines can be described using a bit string
of length at most b, according to some standard encoding of Turing machines.

Composing two compatible time-bounded task-PIOAs yields a time-bounded
task-PIOA with a bound that is linear in the sum of the original bounds. Simi-
larly, hiding changes the time bound by a linear factor. We say that task schedule
ρ is b-bounded if |ρ| ≤ b, that is, ρ is finite and contains at most b tasks.
Task-PIOA families: Typically, a computational hardness assumption states
that, as the size of a problem grows, the success probability of a resource-bounded
entity trying to solve the problem diminishes quickly. The size of a problem is
expressed in terms of a security parameter k ∈ N, e.g.,, the key length for an
encryption scheme. Accordingly, we define families of task-PIOAs indexed by a
security parameter: a task-PIOA family T is an indexed set {Tk}k∈N of task-
PIOAs. The notion of time bound is also expressed in terms of the security
parameter; namely, given b : N → R≥0, we say that T is b-time-bounded if
every Tk is b(k) time-bounded. Task-PIOA family T is said to be polynomial-
time-bounded provided that T is p-time-bounded for some polynomial p. Com-
patibility and parallel composition for task-PIOA families are defined pointwise.
Results for composition and hiding carry over easily from those for time-bounded
task-PIOAs.
Approximate implementation: Our notion of approximate implementation
allows errors in the emulation and takes into account time bounds of various
automata involved. Let T be a closed task-PIOA with a special output action
accept and let ρ be a task schedule for T . The acceptance probability with respect
to T and ρ is defined to be:

Paccept(T , ρ) := Pr[β ← tdist(T , ρ) : β contains accept],

where β ← tdist(T , ρ) means β is drawn randomly from tdist(T , ρ).
From now on, we assume that every environment has accept as an output. Let

T1 and T2 be comparable task-PIOAs, ε, b ∈ R≥0, and b1, b2 ∈ N. Then we define
T1 ≤ε,b,b1,b2 T2 as follows: Given any b-time-bounded environment E for both T1
and T2, and any b1-bounded task schedule ρ1 for T1‖E , there is a b2-bounded task
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schedule ρ2 for T2‖E such that |Paccept(T1‖E , ρ1) − Paccept(T2‖E , ρ2)| ≤ ε. In
other words, from the perspective of a b-time-bounded environment, T1 and T2
“look almost the same” in the sense that T2 can use at most b2 steps to emulate
at most b1 steps of T1. The relation ≤ε,b,b1,b2 is transitive and preserved under
composition and hiding, with certain adjustments to errors and time bounds.

We extend the relation ≤ε,b,b1,b2 to task-PIOA families in the obvious way:
Let T 1 = {(T1)k}k∈N and T 2 = {(T2)k}k∈N be (pointwise) comparable task-
PIOA families, ε, b : N→ R≥0, and b1, b2 : N→ N. Then we say that T 1 ≤ε,b,b1,b2

T 2 provided that (T1)k ≤ε(k),b(k),b1(k),b2(k) (T2)k for every k.
Restricting attention to negligible error and polynomial time bounds, we ob-

tain a generic version of approximate implementation, ≤neg,pt; we will used this
relation throughout our analysis to express computational security properties. A
function ε : N→ R≥0 is said to be negligible if, for every constant c ∈ R≥0, there
exists k0 ∈ N such that ε(k) < 1

kc for all k ≥ k0. (In other words, ε diminishes
more quickly than the reciprocal of any polynomial.) We say that T 1 ≤neg,pt T 2

if, for all polynomials p and p1, there is a polynomial p2 and a negligible function
ε such that T 1 ≤ε,p,p1,p2 T 2. We show that ≤neg,pt is transitive and preserved
under composition; for composition, we need to assume polynomial time bounds
for one of the task-PIOA families.

Theorem 1. Suppose T 1, T 2 and T 3 are three comparable task-PIOA families
such that T 1 ≤neg,pt T 2 and T 2 ≤neg,pt T 3. Then T 1 ≤neg,pt T 3.

Theorem 2. Suppose T 1, T 2 are comparable families of task-PIOAs such that
T 1 ≤neg,pt T 2, and suppose T 3 is a polynomial time-bounded task-PIOA family,
compatible with both T 1 and T 2. Then T 1‖T 3 ≤neg,pt T 2‖T 3.

Simulation relations: In order to use simulation relations in a setting with
time bounds, we impose an additional assumption on the length of matching task
schedules: Given c ∈ N, a simulation R is said to be c-bounded if |corr(ρ1, T )| ≤ c
for all ρ1 and T . We have the following theorem:

Theorem 3. Let T 1 and T 2 be comparable task-PIOA families, c ∈ N. Suppose
that for every polynomial p, every k, and every p(k)-bounded environment Ek
for (T 1)k and (T 2)k, there exists a c-bounded simulation Rk from (T 1)k‖Ek to
(T 2)k‖Ek. Then T 1 ≤neg,pt T 2.

Proof. In [CCK+06b], soundness of simulation is proved as follows: Given
a simulation R between closed task-PIOAs T1 and T2, and a task schedule
ρ1 = T1, T2, . . . for T1, we construct a task schedule ρ2 for T2 by concatenat-
ing sequences returned by corr: ρ2 := corr(λ, T1) . . . corr(T1 . . . Tn, Tn+1) . . . (λ
denotes the empty sequence.) We then prove that tdist(ρ1) = tdist(ρ2). Note
that, if R is c-bounded, then the length of ρ2 is at most c · |ρ1|.

Now let polynomials p and p1 be given as in the definition of ≤neg,pt. Let p2

be c · p1 and ε be the constant-0 function. Using the proof outlined above, it is
easy to check that p2 and ε satisfy the requirements for ≤neg,pt. 2
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5 Hard-Core Predicates

In this section, we reformulate the standard definition of hard-core predicates
using our approximate implementation relation ≤neg,pt. This is an important
step towards a fully formalized computational analysis of the OT protocol, since
the security of OT relies on properties of hard-core predicates.7 For the rest
of the paper, we fix a family D = {Dk}k∈N of finite domains and a family
Tdp = {Tdpk}k∈N of sets of trap-door permutations such that Dk is the domain
of every f ∈ Tdpk.

In the traditional definition, a function B :
⋃

k∈N Dk → {0, 1} is said to be a
hard-core predicate for Tdp if, whenever f and z are chosen randomly from Tdpk

and Dk, respectively, the bit B(f−1(z)) “appears random” to a probabilistic-
polynomial-time observer, even if f and z are given to the observer as inputs.
This captures the idea that f−1(z) cannot be computed efficiently from f and
z. More precisely, a hard-core predicate is defined by the following slight refor-
mulation of Definition 2.5.1 of [Gol01]:

Definition 1. A hard-core predicate for D and Tdp is a predicate B :
⋃

k∈N Dk →
{0, 1} such that (i) B is polynomial-time computable; and (ii) for every proba-
bilistic polynomial-time predicate G = {Gk}k∈N

8, there is a negligible function
ε such that, for all k,

Pr[ f ← Tdpk;
z ← Dk;
b← B(f−1(z)) :
Gk(f, z, b) = 1 ]

−

Pr[ f ← Tdpk;
z ← Dk;
b← {0, 1} :
Gk(f, z, b) = 1 ]

≤ ε(k).

Note that, when A is a finite set, the notation x ← A means that x is selected
randomly (according to the uniform distribution) from A.

Our new definition uses ≤neg,pt to express the idea that B(f−1(z)) “appears
random”. We define two task-PIOA families, SH and SHR. The former outputs
random elements f and z from Tdpk and Dk, and the bit B(f−1(z)). The latter
does the same except B(f−1(z)) is replaced by a random element from {0, 1}.
Then B is said to be a hard-core predicate for D and Tdp if SH ≤neg,pt SHR.

Definition 2. B is said to be a hard-core predicate for D and Tdp if SH ≤neg,pt

SHR, where SH and SHR are defined as follows. For each k ∈ N, let µk and
µ′k denote the uniform distributions on Tdpk and Dk, respectively. Let µ′′ be the
uniform distribution on {0, 1}.

SH is defined to be hide(Srctdp‖Srcyval‖H, {randyval(∗)}), where (i) Srctdp =
{Srctdp(Tdpk, µk)}k∈N; (ii) Srcyval = {Srcyval(Dk, µ′k)}k∈N; and (iii) each Hk

obtains f from Srctdp(Tdpk, µk) and y from Srcyval(Dk, µ′k), and outputs z :=
f(y) via action randzval and b := B(y) via action randbval (cf. Figure 2). Since
f is a permutation, this is equivalent to choosing z randomly and computing y
as f−1(z).
7 In [MMS03], an OT protocol using hard-core bits is analyzed in a process-algebraic

setting. However, that work does not include a formalization of hard-core predicates.
8 This is defined to be a family of predicates that can be evaluated by a family (Mk)k

of probabilistic polynomial-time Turing machines.
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randzval(∗)
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randzval(∗)

randbval(∗)

SH SHR

Fig. 2. SH and SHR

SHR is defined to be Srctdp‖Srczval‖Srcbval, where (i) Srctdp is as in SH; (ii)
Srczval = {Srczval(Dk, µ′k)}k∈N; and (iii) Srcbval = {Srcbval({0, 1}, µ′′)k}k∈N.

These two systems are represented in Fig. 2. There, the automata labeled with
$© represent the random source automata. We claim that these two definitions

of hard-core bits are equivalent:

Theorem 4. B is a hard-core predicate for D and Tdp according to Definition 1
if and only if B is a hard-core predicate for D and Tdp according to Definition 2.

To illustrate how our new definition of hard-core predicates can be exploited
in analyzing protocols, we show that a hard-core predicate can be applied twice,
and a probabilistic polynomial-time environment still cannot distinguish the
outputs from random values. We use this fact in our OT proof, in a situation
where the transmitter applies the hard-core predicate to both f−1(zval(0)) and
f−1(zval(1)), where f is the chosen trap-door function.

We show, if B is a hard-core predicate, then no probabilistic polynomial-time
environment can distinguish distribution (f, z(0), z(1), B(f−1(z(0))), B(f−1(z(1))))
from distribution (f, z(0), z(1), b(0), b(1)), where f is a randomly-chosen trap-
door permutation, z(0) and z(1) are randomly-chosen elements of Dk, and b(0)
and b(1) are randomly-chosen bits. We do this by defining two task-PIOA fam-
ilies, SH2 and SHR2, that produce the two distributions, and showing that
SH2 ≤neg,pt SHR2. Task-PIOA family SH2 is defined as

hide(Srctdp‖Srcyval0‖Srcyval1‖H0‖H1, {rand(∗)yval0, rand(∗)yval1}),

where Srctdp is as in the definition of SH, Srcyval0 and Srcyval1 are isomorphic
to Srcyval in SH, and H0 and H1 are two instances of H (with appropriate
renaming of actions). Task-PIOA family SHR2 is defined as

(Srctdp‖Srczval0‖Srczval1‖Srcbval0‖Srcbval1),

where Srctdp is as in SH2, Srczval0 and Srczval1 are isomorphic to Srczval in
SHR, and Srcbval0 and Srcbval1 are isomorphic to Srcbval in SHR.

Theorem 5. If B is a hard-core predicate, then SH2 ≤neg,pt SHR2.

Proof. Theorem 4 implies that SH ≤neg,pt SHR. To prove that SH2 ≤neg,pt

SHR2, we introduce a new task-PIOA family Int, which is intermediate between
SH2 and SHR2. Int is defined as

hide(Srctdp‖Srcyval0‖H0‖Srczval1‖Srcbval1, {rand(∗)yval0}),
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where Srctdp is exactly as in SH2 and SHR2; Srcyval0 and H0 are as in SH2;
and Srczval1 and Srcbval1 are as in SHR2. Thus, Int generates bval0 using the
hard-core predicate B, as in SH2, and generates bval1 randomly, as in SHR2.

To see that SH2 ≤neg,pt Int, note that Definition 1 implies that

hide(Srctdp‖Srcyval1‖H1, {rand(∗)yval1}) ≤neg,pt Srctdp‖Srczval1‖Srcbval1,

because these two systems are simple renamings of SH and SHR. Now let I be
the task-PIOA family hide(Srcyval0‖H0, {rand(∗)yval0}. It is easy to see, from
the code for the two components of I, that I is polynomial-time-bounded. Then
by Theorem 2,

hide(Srctdp‖Srcyval1‖H1, {rand(∗)yval1})‖I ≤neg,pt Srctdp‖Srczval1‖Srcbval1‖I.

Since the left-hand side of this relation is SH2 and the right-hand side is Int,
this implies SH2 ≤neg,pt Int.

Similarly, Int ≤neg,pt SHR2. Since SH2 ≤neg,pt Int and Int ≤neg,pt SHR2,
transitivity of ≤neg,pt (Theorem 1) implies that SH2 ≤neg,pt SHR2. 2

6 Computational Security

Here, we explain how we define the security of cryptographic protocols, illustrat-
ing with our OT example. Our method follows the general outline in [PW01,Can01],
which in turn follows standard practice in the computational cryptography com-
munity. We first define a task-PIOA specifying the functionality the protocol is
supposed to realize, then specify task-PIOAs describing the protocol, and finally,
define what it means for a protocol to securely realize its specification.

The functionality task-PIOA represents a “trusted party” that receives pro-
tocol inputs and returns protocol outputs, at various locations. See the full ver-
sion of [Can01] for many examples of classical cryptographic functionalities. The
functionality we use for Oblivious Transfer is a task-PIOA Funct that behaves
as follows. First, it waits for two bits (x0, x1) representing the inputs for the
protocol’s first party (the transmitter), and one bit i representing the input for
the protocol’s second party (the receiver). Then, it outputs the bit xi to the
receiver, and nothing to the transmitter.

Since the definitions of protocols are typically parameterized by a security
parameter k, we define a protocol as a task-PIOA family π = {πk}k∈N, where πk

is the composition of the task-PIOAs specifying the roles of the different protocol
participants for parameter k. Given families D and Tdp, and a parameter k, the
OT protocol we consider executes as follows. First the transmitter Trans selects
a trapdoor permutation f from Tdpk, together with its inverse f−1, and sends
f to the receiver Rec. Then, using its input bit i and two randomly selected
elements (y0, y1) of Dk, Rec computes the pair (z0, z1) = (f1−i(y0), f i(y1)), and
sends it in a second protocol message to Trans. Finally, using its input bits
(x0, x1), Trans computes the pair (b0, b1) = (x0 ⊕B(f−1(z0)), x1 ⊕B(f−1(z1)))
and sends it to Rec, who can now recover xi as B(yi)⊕ bi.
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In order to define the security of a protocol with respect to a functionality,
we must specify a particular class of adversaries. Depending on the context, ad-
versaries may have different capabilities: they may have passive or active access
to the network, may be able to corrupt parties (either statically or dynami-
cally), may assume partial or full control of the parties, etc. Various scenarios
are discussed in [Can01]. We specify a particular class of adversaries by defin-
ing appropriate restrictions on the signature and transition relation of adversary
task-PIOAs. By composing an adversary task-PIOA Advk with a protocol task-
PIOA πk, we obtain what we call the real system.

For the OT protocol, we consider polynomial-time-bounded families of ad-
versaries. The adversaries have passive access to protocol messages: they receive
and deliver messages (possibly delaying, reordering, or losing messages), but do
not compose messages of their own. They may corrupt parties only statically (at
the start of execution). They are “honest-but-curious”: they obtain access to all
internal information of the corrupted parties, but the parties continue to follow
the protocol definition. In this paper, we discuss only one corruption case, in
which only the receiver is corrupted. In this case, the adversary gains access to
the input and output of Rec (that is, i and xi), and to its internal choices (that
is, y0 and y1). However, as we said above, Rec continues to follow the protocol
definition, so we model it as a component distinct from the adversary.

In order to prove that the protocol realizes the functionality, we show that,
for every adversary family Adv of the considered class, there is another task-
PIOA family Sim, called a simulator, that can mimic the behavior of Adv by
interacting with the functionality. This proves that the protocol does not reveal
to the adversary any information it does not need to reveal—that is, anything
not revealed by the functionality itself.

The quality of emulation is evaluated from the viewpoint of one last task-
PIOA, the environment. Thus, security of the protocol says that no environment
can efficiently decide if it is interacting with the real system, or with the compo-
sition of the functionality and the simulator (we call this composition the ideal
system). This indistinguishability condition is formalized as follows:

Theorem 6. Let RS be a real-system family, in which the family Adv of ad-
versary automata is polynomial-time-bounded. Then there exists an ideal-system
family IS , in which the family Sim is polynomial-time-bounded, and such that
RS ≤neg,pt IS .

In the statement of Theorem 6, quantification over environments is encap-
sulated within the definition of ≤neg,pt: RS ≤neg,pt IS says, for every polyno-
mial time-bounded environment family Env and every polynomial-bounded task
schedule for RS‖Env, there is a polynomial-bounded task schedule for IS‖Env
such that the acceptance probabilities in these two systems differ by a negligible
amount.

7 Levels-of-Abstraction Proofs

In order to prove that Theorem 6 holds for the OT protocol and the adversaries of
Section 6, we show the existence of an ideal system family IS with RS ≤neg,pt IS .



14

To that end, we build a structured simulator family SSim from any adversary
family Adv : for every index k, SSimk is the composition of Advk with an abstract
version of πk based on a task-PIOA TR(Dk, Tdpk). TR works as follows. First,
it selects and sends a random element f of Tdpk, as Trans would. Then, when
Advk has delivered f , TR emulates Rec: it chooses a random pair (y0, y1) of
elements of Dk, and sends the second protocol message, computed as the pair
(f1−i(y0), f i(y1)). Next, TR generates the third protocol message using the bit
xi obtained from the Funct , which TR obtains because xi is an output at the
corrupted receiver. Namely, TR computes bi as B(yi)⊕xi and b1−i as a random
bit. Observe that, if Adv is polynomial-time-bounded, then so is SSim. Also, if
we define SIS by SISk = Funct‖SSimk, then SIS is an ideal system family.

In showing that RS ≤neg,pt SIS , we define two intermediate families of sys-
tems, Int1 and Int2 , and decompose the proof into showing three subgoals:
RS ≤neg,pt Int1 , Int1 ≤neg,pt Int2 , and Int2 ≤neg,pt SIS . All arguments in-
volving computational indistinguishability and other cryptographic issues are
isolated to the middle level, namely, Int1 ≤neg,pt Int2 .

The Int1 k system is almost the same as SISk, except that TR is replaced by
TR1 , which differs from TR as follows. First, it has an extra input in(x)Trans ,
obtaining the protocol input (x0, x1) intended for the transmitter. Second, it
computes the third protocol message differently: the bit bi is computed as in TR,
but the bit b1−i is computed using the hard-core predicate B, as B(f−1(z1−i))⊕
x1−i. The Int2 k system is defined to be the same as SISk except that it includes
a random source automaton Srccval1 that chooses a random bit cval1, and TR
is replaced by TR2 , which is essentially the same as TR1 except that b1−i is
computed as cval1⊕ x1−i.

Our proofs that RS ≤neg,pt Int1 and Int2 ≤neg,pt SIS use simulation re-
lations. To prove that RS ≤neg,pt Int1 , we show that, for every polynomial p,
for every k, and for every p(k)-bounded environment Envk for RSk and Int1 k,
there is a c-bounded simulation relation Rk from RSk‖Envk to Int1 k‖Envk,
where c is a constant. Using Theorem 3, we obtain RS ≤neg,pt Int1 . Our proof
of Int2 ≤neg,pt SIS is similar, but with an interesting aspect. Namely, we show
that computing the bit b1−i as a random bit is equivalent to computing it as the
XOR of a random bit and the input bit xi.

Our proof that Int1 ≤neg,pt Int2 uses a computational argument, based on
our definition of a hard-core predicate. The only difference between Int1 and
Int2 is that a use of B(f−1(z1−i)) in Int1 is replaced by a random bit in Int2 .
This is precisely the difference between the SR and SHR systems discussed in
Section 5. In order to exploit the fact that SR ≤neg,pt SHR, we build an interface
task-PIOA family Ifc which represents the common parts of Int1 and Int2 .
Then, we prove: (i) Int1 ≤neg,pt SH‖Ifc‖Adv and SHR‖Ifc‖Adv ≤neg,pt Int2 by
exhibiting simple, constant-bounded simulation relations between these systems,
and (ii) SH‖Ifc‖Adv ≤neg,pt SHR‖Ifc‖Adv by using our definition, Definition 2,
of hard-core predicates, the fact that both Ifc and Adv are polynomial-time-
bounded, and the composition property of ≤neg,pt (Theorem 2). Finally, using
transitivity of ≤neg,pt (Theorem 1), we have RS ≤neg,pt SIS, as needed.
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8 Conclusions

We have introduced time-bounded task-PIOAs and task-PIOA families, building
on the task-PIOA framework of [CCK+06a,CCK+06b]. We have adapted ba-
sic machinery, such as composition and hiding operations, and implementation
and simulation relations, to time-bounded task-PIOAs. We have demonstrated
the use of this framework in formulating and proving computational security
properties for an Oblivious Transfer protocol [EGL85,GMW87]. Our proofs are
decomposed into several stages, each showing an implementation relationship,
≤neg,pt, between two systems. Most of these implementations are proved using
simulation relations to match corresponding events and probabilities in the two
systems. Others are proved using computational arguments involving reduction
to the security of cryptographic primitives. Traditional reduction arguments for
cryptographic primitives are reformulated in terms of ≤neg,pt.

Our framework supports separation of scheduling concerns into two pieces:
high-level scheduling, which is controlled by an algorithmic entity (e.g., the ad-
versary component), and low-level scheduling, which is resolved nondeterminis-
tically by a task schedule. This separation allows inessential ordering of events
to remain as nondeterministic choices in our system models, which increases the
generality and reduces the complexity of the models and proofs.

We believe that the model and techniques presented here provide a suit-
able basis for analyzing a wide range of cryptographic protocols, including those
that depend inherently on computational assumptions and achieve only compu-
tational security. Future plans include applying our methods to analyze more
complex protocols, including protocols that use other cryptographic primitives
and protocols that work against more powerful adversaries. We plan to estab-
lish general security protocol composition theorems in the style of [Can01,PW01]
within our framework. We would like to formulate general patterns of adversarial
behavior, in the style of [PW01], within our framework, and use this formulation
to obtain general results about the security of the resulting systems.
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